
High Performance, Energy Efficient Chipkill Correct
Memory with Multidimensional Parity

Xun Jian, John Sartori, Henry Duwe, Rakesh Kumar, University of Illiinois at Urbana-Champaign

Abstract—It is well-known that a significant fraction of server power is consumed in memory; this is especially the case for
servers with chipkill correct memories. We propose a new chipkill correct memory organization that decouples correction of
errors due to local faults that affect a single symbol in a word from correction of errors due to device-level faults that affect
an entire column, sub-bank, or device. By using a combination of two codes that separately target these two fault modes, the
proposed chipkill correct organization reduces code overhead by half as compared to conventional chipkill correct memories for
the same rank size. Alternatively, this allows the rank size to be reduced by half while maintaining roughly the same total code
overhead. Simulations using PARSEC and SPEC benchmarks show that, compared to a conventional double chipkill correct
baseline, the proposed memory organization, by providing double chipkill correct at half the rank size, reduces power by up to
41%, 32% on average over a conventional baseline with the same chipkill correct strength and access granularity that relies on
linear block codes alone, at only 1% additional code overhead.

�

1 INTRODUCTION

THE Memory systems in data centers consume a large
amount of power. As online services continue to prolif-

erate, the total power consumption of the memory systems
in data centers will continue to rise. This presents a strong
need for innovations to lower memory power consumption.

Server memory systems require error protection as a
standard feature to prevent the loss of sensitive customer
data and increase server availability. Chipkill correct is an
advanced type of error correction in memory that corrects
errors due to a complete device failure. Large scale studies
show that chipkill correct reduces the uncorrectable error
rate by 10X [4] to 36X [10] compared to Single Error Cor-
rection, Double Error Detection (SECDED).

Despite their higher reliability, conventional chipkill cor-
rect memories are power hungry, since they require a large
number of DRAM devices per memory access to keep
code overhead low. In this paper, we reduce the power
consumption of memory systems that implement chipkill
correct by separately targeting local faults that affect a single
symbol in a word and device-level faults that affect an entire
column, sub-bank, or device. We observe that device-level
faults cause a large number of errors and therefore can be
easily localized with little overhead. Once localized, errors
due to device-level faults can be corrected using erasure
codes, which only incur half as much overhead as the
error correction codes used in conventional chipkill correct
memories. We also observe that a local fault only affects
a single word at a time; therefore a single unit of error
correction resources per 100s of words (to correct only a
single corrupted word out of this many words) can correct
errors due to such faults with high coverage. By decoupling
the correction of errors due to local faults from correction
of errors due to device-level faults, the proposed chipkill
correct memory with multidimensional parity checksums,
or MPCMem, can reduce the number of devices required per
memory access by half while maintaining the same overall
code overhead as conventional chipkill correct memories,

. Manuscript submitted: 18-Mar-2012. Manuscript accepted:1-
Jun-2012. Final manuscript received: 12-Jun-2012

which dramatically reduces the dynamic power consump-
tion of memory.

2 BACKGROUND

The access granularity of the memory system has to match
the cacheline size of the last level cache. A group of DRAM
devices, called a rank, is required to operate in parallel
to satisfy this access granularity. A rank is divided into
multiple independent banks, where each bank consists of
a physical sub-bank in each device. A limited number of
ranks can share the same memory bus channel, with it’s own
dedicated memory controller (MC).

Conventional chipkill correct memories are protected by
linear block codes, where data are divided into independent
blocks, or codewords. Each codeword consists of data and
check symbols, where a symbol is a group of adjacent
bits [5]. By storing each symbol of a word in a separate de-
vice in the rank, the lost symbol can be reconstructed when
a device fails. Using one of the most efficient linear block
codes, such as the Reed-Solomon code, a linear block code
with R check symbols can detect up to R corrupted symbols
or correct up to only R/2 corrupted symbols. However, if
the position of the corrupted symbols are known through
some other means, the linear block code that detects R cor-
rupted symbols can also correct up to R corrupted symbols;
a linear block code used in this fashion is called an erasure
code. Unlike conventional chipkill correct memories that
use linear block codes to both detect and correct all errors,
MPCMem uses erasure codes to correct against device-level
faults (see Section 3.3).

The check symbols in a chipkill correct memory are stored
in redundant devices in the rank. Since the number of
redundant devices per rank for a given strength of chipkill
correct is constant regardless of the number of data devices
in the rank, reducing the number of data devices per rank
increases the overall code overhead. On the other hand,
reducing the number of devices per rank decreases dynamic
access power. Our goal is to reduce the rank size of chipkill
correct memory by half without affecting its strength and
access granularity, while maintaining roughly the same code
overhead.

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 12, NO. 2, JULY-DECEMBER 2013 39

Posted to the IEEE & CSDL on 6/28/2012
DOI 10.1109/L-CA.2012.21 1556-6056/13/$31.00 © 2013 Published by the IEEE Computer Society

Fig. 1. Example configuration of MPCMem with 1 checksum
group per row and 2 per column.

3 MPCMEM

3.1 Encoding

Figure 1 shows the logical view of a memory bank in
MPCMem with a total of m rows and n columns. Wi,k

represents a codeword located at the ith row and kth column
in memory. A codeword in MPCMem is created using an
erasure code, which allows the codeword to detect errors
but not correct them by itself. Just as the symbols of a
codeword in a conventional chipkill correct organization,
each symbol of a codeword in MPCMem is stored in a
separate device in the rank to guarantee error detection
in the event of device failure(s). To keep the overhead
of the codewords the same as that of SECDED (11.1%),
in our double chipkill correct configuration, MPCMemD,
a codeword consists of 18 symbols, where 2 of these are
check symbols, which translates to 16 data devices and
2 redundant devices per rank. To incur the same code
overhead in the single chipkill correct implementation of
MPCMem, MPCMemS, a codeword in MPCMemS consists
of 9 bits, where 8 bits contain data and the 9th bit is an odd
parity bit for the 8 data bits, which leads to a memory rank
consisting of 8 data devices and 1 redundant device.

Every codeword in MPCMem belongs to a row checksum
group (RCG) and a column checksum group (CCG). A
RCG/CCG is comprised of a set of codewords in the same
row/column as well as a row checksum (RCS)/column
checksum (CCS). The RCS and CCS are collectively known
as multidimensional parity checksums, or MPCs. To keep
the overhead of the MPCs low, we assign 256 codewords
to each checksum group, which results in an additional
overhead of (1/256) · 2 = 0.78%. There are nrg RCGs per
row and ncg CCGs per column. A codeword in the ith

row and kth column belongs to the xth RCG in the ith

row and belongs to the yth CCG in the kth column, where
x = mod(k, nrg) and y = mod(i, ncg). This mapping rule
maximizes the physical distance between the members of
the same checksum group in order to mitigate the impact
of multi-bit cluster faults by spreading each faulty cell
across different checksum groups [7]. RCG1,1, CCG1,1, and
CCG2,1 in figure 1 are examples of checksum groups when
nrg=1 RCG ncg=2. A checksum is the bitwise odd parity
of the codewords in the checksum group. Let’s take for

example a hypothetical checksum group (CG) with 2 code-
words, where each codeword consists of 4 2-bit symbols.
If the codewords are 11’01’10’00 and 01’11’11’10’ (where ’
separates the symbols), then the checksum is 01’01’10’01.

3.2 Correction of Errors due to Local Faults
Error detection in MPCMem is performed on-the-fly with
each memory access through the linear block code. When a
corrupted codeword is detected, the remaining codewords
in the corrupted codeword’s RCG are read out and checked
for error. These codewords are bitwise xored together as
they arrive. If no errors are detected in these codewords
or the RCS of the RCG, then the correct codeword can be
reconstructed from the xor result and the RCS using bit-
wise odd parity. During this process, if another codeword
or the RCS is discovered to be corrupt, the RCG cannot
correct the codeword and the procedure must be repeated
using the CCG instead. If a checksum is corrupt, it can be
corrected through its CG after any corrupted codewords in
its CG have been corrected.

3.3 Correction of Errors due to Device-Level Faults
If an error cannot be corrected by either the RCG or the
CCG, the underlying fault may be a device-level fault. In
order to use the erasure codewords to correct errors due
to device-level faults, the faults must be localized first.
MPCMem takes the divide-and-conquer approach of first
localizing individual column faults. Once multiple column
faults are localized to the same sub-bank, a sub-bank fault is
identified. Experimental results from [10], [11] suggest that
the ratio of column faults to complete device faults is well
below 10 to 1, which can therefore serve as the threshold
for merging multiple faulty columns into a single faulty
sub-bank. Similarly, a device fault can be identified when
multiple sub-bank faults are localized to the same device.
MPCMem does not localize row faults for two reasons. First,
due to the fact that each codeword belongs to both a RCG
and CCG, every codeword in a faulty row can be corrected
through its CCG. Second, modern operating systems log all
occurrences of errors. Since memory pages are mapped to
rows, not columns, the OS can migrate a page that suffers
frequent errors (which suggest a row fault) to a different
row in memory.

The memory controller then attempts column fault local-
ization. Since each device is fixed to a symbol position, a
mismatched checksum symbol corresponding to a particular
symbol position is used to locate which device contains the
incorrect codeword symbol(s). To localize a faulty column,
a large number of CCGs along the column containing the
problematic CCG are read out and their checksums are
computed and then compared against the CCSs stored in
memory. When the number of checksum symbol mismatch
corresponding to a device exceeds a threshold, the memory
controller localizes the faulty column to that particular
device. We observe that in the event of a column fault
due to a malfunctioning read datapath, a massive number
of errors along the problem column appears immediately,
which causes half of the CCGs along the column to contain
an odd number of corrupted codewords; these CCGs are
able to report symbol mismatches. Assuming that a total
of 128 CCGs are read out, a threshold value of 20 is
both low enough to render a false negative probability of

40 IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 12, NO. 2, JULY-DECEMBER 2013

4.29 · 10−16 yet high enough to rule out the possibility of
false positives due to chance alignments of many local faults
along the same column. In the event of a column fault due
to a malfunctioning write datapath that result in a gradual
accumulation of errors that may not immediately exceed
the threshold, we can increase the number of errors by
artificially injecting a write to every CCG in the column.

We observe that if the CCG read out is only performed
when the RCG is unable to correct a local fault, a column
fault may remain undetected for a long time until one of
the affected cells in the column becomes uncorrectable by
the RCG due to chance alignment with a new fault in the
same row. This can lead to a long period of performance
degradation where every time an affected cell in the column
is accessed, an expensive RCG read out is performed. As
a result, instead of always performing RCG read out first
and CCG second only when the former fails to correct a
corrupted codeword, we propose performing CCG read out
first and RCG second for 1/10th of local fault corrections.
When the CCG is read out first, the memory controller
counts the total number of corrupted codewords in the
CCG. Once a threshold is exceeded, a complete column fault
localization procedure is carried out. Taking into considera-
tion the possible alignment of 2 local faults in a single 256-
word CCG, we decided on the threshold value of 3.

Once a column fault in a sub-bank has been localized, its
address range is stored in an erasure history table. After the
number of faulty columns in a sub-bank of a device exceeds
a threshold, the address range of the sub-bank is stored in
the erasure history table and corresponding column fault
entries are cleared. Similarly, when all the sub-banks in a
device are faulty, the address range of the device is stored
in the erasure history table. After a fault has been localized,
errors due to the fault can be corrected using the standard
syndrome correction for erasure codes. Errors due to the
alignment of a device-level fault and local fault affecting
the same codeword can be corrected using a combination of
erasure correction for device-level faults and CG correction
for the local fault. Note that after a device-level fault has
been remembered in the erasure history table, correcting
the errors due to the fault can be done on-the-fly via the
erasure codewords.

3.4 Error Correction Overhead

Compared to conventional chipkill correct memories, where
all error detection and correction operations happen on-
the-fly, MPCMem operates on-the-fly only for correction of
errors due to device-level faults and detection of all errors.
A CG read out operation is required for each error correction
of a local fault and up to 128 CG read out operations are
required to localize a device-level fault, where each CG
readout operation require accessing 256 codewords. Our cal-
culations show that the average latency of error correction
for a local fault is 600ns for a DDR2 memory with 667MHz
I/O frequency; this is similar to that of a page migration.
The latency of fault localization is 2ms, which is close to that
of a disk access. To estimate the overall latency overhead
on the memory system, we need to consider the frequency
of these operations. We used data reported in [4], which
records the frequency of access to faulty words in memory
to estimate the frequency of error correction of local faults.
Since a device-level fault needs to be identified only once,

the frequency of fault localization can be approximated by
the device-level fault rate reported in [10]. Due to the fact
that the devices examined in the report were only 1 to 2
years old, to be conservative, we increased the reported
fault rate by 3 orders of magnitude. The combined latency
overhead of error correction and faulty localization is in the
order of 10−8%/1GB of memory.

The memory controller needs to access its erasure history
table prior to each memory access to differentiate errors
due to local faults from those due to device-level faults. We
estimate that a total of 256 entries is sufficient for the erasure
history table. Memory controllers that reports an excess of
256 device-faults should have the appropriate ranks in its
channel replaced. Since the access to the erasure history
table takes place in parallel with the access to memory, it
does not increase memory access latency. Due to the fact that
access to the erasure history table is on-chip, its energy per
access is negligible compared to that of accessing DRAM.

3.5 Physical Implementation Details
We observe that the software management technique and
the minor modifications to the CPU proposed in [6] for
storing the error correction (not error detection) check sym-
bols of linear block codewords in the data region of memory
can be easily generalized to managing arbitrary type of error
correction resources via software, such as the MPCs. Note
that only linear block codes are used in [6]; although the
software-managed error correction reduces the number of
redundant devices per rank, thereby improving the effective
I/O pin usage of the CPU, it does not reduce the code
overhead of chipkill correct since it does not modify the
error correction code itself.

While software-managed MPCMem can be implemented
using off-the-shelf DRAM devices, we also suggest
hardware-managed MPCMem as a viable alternative, since
the former induces additional memory traffic to update the
MPCs. In hardware-managed MPCMem, the MPCs are to
be updated within the DRAM devices themselves, without
generating additional memory traffic. Since MPCs uses the
simple bit-wise odd parity, they can be updated using an
array of primitive xor gates. The checksums are stored in
dedicated parity sub-banks corresponding to each sub-bank
of a DRAM device. Decoders internal to the DRAM device
translate the open row in the data bank as well as the
column address of an access command into the appropriate
location in the parity banks. The access latency of the parity
banks is negligible compared to the data banks since the
parity banks are only 1% the size of the data banks. Dual
modular redundancy can be applied to the parity sub-
banks to provide error detection for the checksum symbols.
Each device is only responsible for storing the checksum
symbols that are computed using the codeword symbols
stored in the device. Due to limited space, we cannot
provide every detail of the hardware-managed MPCMem; a
reader familiar with the internal structure of DRAM devices
can easily fill in the details of an efficient and low overhead
implementation.

4 METHODOLOGY

M5, a full system simulator [8], was integrated with DRAM-
sim [9] for memory timing and power modeling. Table 1
describes the CPU microarchitecture, while Table 2 describes

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 12, NO. 2, JULY-DECEMBER 2013 41

TABLE 1
Processor Microarchitecture

SS Width IQ Size Phys Regs LSQ Size L1 D$, I$
2 16 72FP/72INT 32LQ 32 kB

L1 lat. L2$ Assoc lat. line size
1 cycle 1MB 16 10 cycles 64b

TABLE 2
Memory Configurations. R. stands for rank.

Name Tech I/O Chan R./Chan R. Size
SCC DDR3 X4 2 1 18

MPCMemS DDR3 X8 2 2 9
DCC DDR2 X4 1 1 36

MPCMemD DDR2 X8 1 2 18

memory configurations for MPCMem and the correspond-
ing baselines. We used the open page and high performance
mapping policies in DRAMsim. To provide reduced rank
size, both MPCMemD and MPCMemS use devices with
twice the I/O width as their respective baselines. To ensure
that the power benefits of the MPCMems evaluated are
strictly due to their reduced rank size, we kept everything
else constant, including the total usable memory capacity,
bus width, as well the technology type and density of the
DRAM devices. The parameters for the DRAM devices are
taken from Micron [1], [2].

We evaluated the hardware-managed implementation of
MPCMem. The impact of the write overhead on latency
and power are modeled by increasing the write current
(IDD4W) by read current (IDD4 - 3P) [9]. The time delay
is modeled by extending the Write Latency (WL) by twice
the normal number of burst cycles per access (t burst). Since
the checksums take up around 1% of total memory capacity,
we increased the total power of memory by 1% to take
into account the power consumption of the parity banks.
Our test workloads include 21 single-core and 27 quad-
core multi-programmed workloads from a selection of 24
SPEC2000 and SPEC2006 benchmarks, as well as 8 quad-
core PARSEC benchmarks.

5 EXPERIMENTAL RESULTS

Figure 2 presents the power reduction and IPC improve-
ment of hardware-managed MPCMemD and MPCMemS vs
DCC and SCC baselines. On average, MPCMemD reduces
power by 31.8%, while MPCMemS reduces power by 17.6%.
The longer write access latency is hidden by having twice
as many ranks per channel (see Table 2), which allows
multiple memory accesses to be served concurrently. This
explains the small performance improvements in the figure.
Software-management of error correction resources has been
thoroughly evaluated in [6]. Despite requiring additional
write accesses to memory, a rank of software-managed chip-
kill correct memory with 18 devices has an average of 27.2%
power reduction and only 1% IPC degradation [6] compared
to a rank of conventional memory with 36 devices.

We also considered the reliability impact of MPCMem.
Since MPCMem enables chipkill correct with half as many
devices per rank, it improves reliability compared to the
baseline. Just as the baselines, MPCMem uses linear block
codes to detect errors and to correct errors due to device-
level faults. However, MPCMem uses MPCs to correct
errors due to local faults. To evaluate the effectiveness of
MPCMem at correcting local faults, we developed analytical
and Monte Carlo models to determine the MTTF to first
uncorrectable local fault and found it to be with 5% of that of
conventional chipkill correct. MPCs offers strong reliability

Fig. 2. IPC and power improvement over baselines.

against local faults because (A) the increased utilization of
the available error correction resources through sharing, and
(B) each codeword belongs to two checksum groups.

6 RELATED WORK

The most recent work that reduces the rank size of chipkill
correct memory to reduce power is LOT-ECC [3], which
aims to provide single chipkill correct double chipkill detect
for the particular rank size of 9 at 21% code overhead. For
the same code overhead (2/(8+2)+1% = 21%), MPCMemD
configured with 8 data devices and 2 redundant devices
can correct faults in an additional device. Under LOT-ECC,
after a device fails, every read access to memory requires
a second access to obtain error correction resources. In
addition, LOT-ECC requires that device-level faults manifest
as stuck at 0 or 1 faults [3]. However, many device-level
faults do not manifest in this manner. Examples include
device-level faults due to a bad write datapath that lead
to a gradation accumulation of errors and row faults due
to a bad row address decoder causing the wrong row of a
device always getting accessed.

7 CONCLUSIONS

Conventional chipkill memories require a large rank size
to keep code overhead low. MPCMem decouples correction
of local faults from that of device-level faults by correcting
them with codes that are individually optimized for each
type of faults. As a result, MPCMem can reduce rank size
by half while maintaining the same access granularity and
chipkill correct strength as any given conventional chipkill
correct memory, at the cost of 1% additional code overhead.
MPCMemD achieves up to 41% power reduction, 32% on
average, compared to conventional double chipkill correct
memories that relies on linear block codes alone.

REFERENCES

[1] ”1Gb: x4, x8, x16 DDR2 SDRAM,” MICRON,2007.
[2] ”1Gb: x4, x8, x16 DDR3 SDRAM,” MICRON,2007.
[3] A.N. Udipi et al., ”LOT-ECC: LOcalized and Tiered Reliability

Mechanisms for Commodity Memory Systems”, ISCA, 2012.
[4] B. Schroeder and E. Pinheiro and W.D. Weber, ”DRAM errors

in the wild: a large-scale field study,” SIGMETRICS, 2009.
[5] C.L. Chen and M.Y. Hsiao, ”Error-Correcting Codes for Semi-

conductor Memory Applications: A State-of-the-Art Review,”
IBM Journal of Research and Development, vol.28, no.2, 1984.

[6] D.H. Yoon and M. Erez, ”Virtualized and flexible ECC for main
memory,” ASPLOS, 2010.

[7] J. Kim et al., ”Multi-bit Error Tolerant Caches Using Two-
Dimensional Error Coding,” Micro 2007.

[8] N.L. Binkert et al., ”The M5 Simulator: Modeling Networked
Systems,” Micro, 2006.

[9] ”University of Maryland Memory System Simulator Manual,”
University of Maryland.

[10] V. Sridharan and D. Liberty, ”Field Study of DRAM Errors,”
SELSE, 2012.

[11] X. Li and M. Huang and K. Shen and L. Chu, ”A Realistic
Evaluation of Memory Hardware Errors and Software System
Susceptibility,” A technical report sponsored by the NSF, 2007.

42 IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 12, NO. 2, JULY-DECEMBER 2013

