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Abstract—A sequential adaptive compressed sensing procedure for
signal support recovery is proposed and analyzed. The procedure is based
on the principle of distilled sensing, and makes used of sparse sensing
matrices to perform sketching observations able to quickly identify
irrelevant signal components. It is shown that adaptive compressed
sensing enables recovery of weaker sparse signals than those that can be
recovered using traditional non-adaptive compressed sensing approaches.

Index Terms—Adaptive sensing, compressed sensing, support recovery

I. INTRODUCTION

A sparse vector can be uniquely identified from a relatively small
number of random measurements. Specifically, consider x ∈ Rn
with k < n non-zero elements and suppose we measure y = Ax,
where A ∈ Rm×n, with m < n. The dimension of x is greater
than the number of measurements, but because x is sparse it can be
perfectly recovered from y if A is designed carefully. The theory of
Compressed Sensing shows that if the elements of A are generated
by i.i.d. zero mean Gaussian random variables, for example, then x
is can be recovered perfectly if m = O(k logn); see, eg., [1], [2].

Compressed Sensing has a variety of potential applications, but in
many cases the measurements may be corrupted by noise. Instead
of measuring y = Ax, we instead measure y = Ax + w, where
w ∈ Rm is a noise or error vector. In general, perfect recovery is no
longer possible in the noisy case. Two objectives to consider are:

support recovery − infer the locations of non-zero elements

signal estimation − estimate x

Clearly both objectives are challenging if x is weak relative to w.
More precisely, assume the noise is i.i.d. zero mean Gaussian with
variance σ2 and let us impose the constraint

E‖A‖2F ≤M, (1)

where ‖ · ‖F is the Frobenius matrix norm. The constraint simply
limits the total amount of sensing energy – for example, it is satisfied
if A has m = M unit norm rows, though in general the number
of measurements m and the total measurement budget M need not
be equal. A constraint on the available sensing energy is natural in
any conceivable practical implementation, and from a mathematical
perspective the issue of noise is irrelevant without it. Under this
constraint, the probability of correct support recovery and quality
of the estimation are limited by the relative strength of x compared
to w. Note that if the correct support is identified, then estimating
the signal reduces to the classical problem of estimating an arbitrary
vector in Rk. Therefore, we focus on support recovery in this paper.

The sensing matrix A can be designed non-adaptively or adap-
tively. In a non-adaptive design, A is designed a priori before any
measurements are acquired. The i.i.d. Gaussian design mentioned
above is an example of this. Adaptive designs, in contrast, are sequen-
tial. The design of each row of A can depend on the measurements

obtained from previous rows. Adaptive designs are more flexible and
may be able to focus sensing toward the non-zero elements of x,
improving the SNR of the measurements. In fact, it is known that
adaptive designs can offer significant advantages over non-adaptive
designs when noise is present in the measurements.

To ensure the probability of exactly recovering the support is
close to 1, the non-zero elements of x must be significantly large
relative to the noise level. For non-adaptive designs, the amplitude
of the smallest non-zero element of x must exceed a constant times√

n
M
σ2 logn; see, eg., [3]–[5]. The factor of M/n is the sensing

energy per dimension and
√

logn is needed to ensure that the signal
is larger than the largest noise contribution. As we show in this
paper, adaptive designs succeed under the weaker requirement that the
amplitude of the smallest non-zero element of x exceeds a constant
times

√
n
M
σ2(log k + log log2 logn). It is worth emphasizing that

this improvement can lead to dramatic gains in practice, since in
many applications of interest n > 106 and k � n.

II. MAIN RESULT

Our main contribution is a sequential procedure for the design
of compressed measurements, referred to as Sequential Compressed
Sensing (SCS), and stated in Algorithm 1 in the next section. The
algorithm consists of two stages. The first stage involves log2 logn
steps. Each step uses several sparse compressed sensing matrices
(consisting of about of k log k log log n measurements in total),
which are used to remove half of the zero components (in expectation)
at each step, while guaranteeing that all the non-zero components
are retained (with large probability). Thus, the expected number of
components remaining after the first stage is bounded by n/ logn+k,
and the k non-zero components are guaranteed to be contained in this
set. The second stage faces a lower dimensional problem (approxi-
mately n/ logn instead of n) and this makes it possible to reliably
remove all remaining zero components using only k logn additional
measurements. The key advantage of this sequential algorithm is
that the support can be recovered exactly at much lower SNRs
compared to traditional (non-sequential, non-adaptive) compressed
sensing methods. Our main result is the following theorem.

Theorem 1. The SCS procedure described in Algorithm 1 uses
O(kmax{log k log logn, logn}) measurements. If the minimum
non-zero value in x is greater than a constant times√

n

M
σ2(log k + log log2 logn) ,

then Algorithm 1 exactly recovers the support of x with probability
at least 1 − δ, for any choice of δ > 0 used in the algorithm.
Furthermore, for sufficiently large n and k ≤ n/ log2 logn, the
expected sensing energy used by the algorithm is at most M .

It is worth noting that when x is sufficiently sparse, i.e., when
k = O(nβ/ log logn) for some fixed β > 0, the total number



of measurements satisfies O(k logn), so this procedure can be
compared fairly with classical compressed sensing in these regimes.

III. SEQUENTIAL COMPRESSED SENSING ALGORITHM

The sequential compressed sensing procedure we propose here is
based on the sequential sensing-and-refinement approach proposed
in our earlier work on distilled sensing (DS) [6]. The essential
idea of DS is to acquire the unknown sparse vector using a multi-
step acquisition process, where each step involves measurement and
refinement. The refinements sequentially reduce the dimension of the
search space, in order to preferentially place more sensing energy
on the locations where the signal components are most likely to be
present, while not “wasting” sensing energy on locations where signal
components are likely absent. Our initial DS work considered a direct
(i.e., non-compressive) measurement model, identified conditions on
the minimum signal component amplitude sufficient to ensure that DS
successfully recovers all but an asymptotically vanishing fraction of
signal support, and showed that DS succeeds at recovering weaker
signals than comparable non-adaptive approaches. Here we extend
these ideas to compressive sensing, and seek to identify conditions
sufficient to enable a stronger exact support recovery result.

This SCS procedure proposed here (depicted in Algorithm 1)
also improves on our earlier compressive distilled sensing (CDS)
work [7], which employed a different measurement and estimation
process (based on random Gaussian sensing matrices). The recovery
results we obtained in [7] were valid only for sparse signals with
dynamic range (the ratio of the largest to smallest nonzero component
amplitudes) on the order of a constant. Our current approach removes
this dynamic range constraint.

This work is related to other recent efforts in adaptive com-
pressive sensing. In [8] a measurement model without the additive
noise term was examined, and an adaptive sensing procedure that
recovers k-sparse signals (or approximate nearly sparse signals to
within a constant factor of the best k-term approximation) using
only O(k log log n) measurements was proposed. The authors of
[9] considered a noisy measurement model much like the one we
adopt here, and in the context of establishing fundamental lower
bounds for `2 signal estimation error associated with any (adaptive
or non-adaptive) procedure, obtained a lower bound on the expected
number of support errors associated with any sensing and testing
procedure. In contrast, here we seek stronger guarantees on the
probability of exact support recovery. Other related efforts include
[10], which examined adaptive sensing techniques for exact support
recovery using non-compressive measurements; [11], which identified
sufficient conditions for support recovery of structured (tree-)sparse
signals via adaptive compressive sensing; and [12], which examined
an adaptive compressive sensing technique under a model where
additive noise enters the signal itself, prior to each measurement.

A. Structured Random Measurement Matrices

Let x = [x1 . . . xn]T . For the remainder of the paper assume xi ≥
0, and let S = {i : xi 6= 0}. This non-negativity assumption can be
easily removed, as discussed in [6], but makes the entire presentation
much simpler. At each stage of our procedure, we utilize structured
random matrices with r rows and n columns, where each column
of the matrix has a single nonzero entry whose location is chosen
uniformly at random with replacement from the set {1, 2, . . . , r}.
The amplitude of each nonzero entry is selected at random from the
set {−α,+α}, where α > 0 is a parameter that can be specified
(amplitudes and locations are mutually independent). For shorthand,
we denote random matrices A ∈ Rr×n generated in this fashion as

Algorithm 1: Sequential Compressed Sensing.

Input Parameters:
n, k,M and confidence parameter δ > 0;

Internal Algorithm Parameters:
s = dlog2 logne (number of refinement steps)

τ1 =

⌈
log

2

δ
+ log k + log log2 logn

⌉
(number of sensing matrices per step in Stage 1)

τ2 =

⌈
32 max

{
9 log

8

δ
+ 9 log k , log

8

δ
+ log(n− k)

}⌉
(number of sensing matrices in Stage 2)

r = 6k (number of rows in each sensing matrix)

α =

√
M

6nτ1
(magnitude of non-zero entries)

I1 = {1, 2, . . . , n} (initial index set)

Stage 1: (Refinement)
for j = 1 to s do

for t = 1 to τ1 do
Generate matrix: At ∼ A(r, n, α);
Mask: Set `-th column of At to zero ∀` /∈ Ij ;
Collect measurements: yt = Atx + wt;
Backproject: x̃t = AT

t yt;
end
Compute proxy x̂ with entries x̂i =

∑τ1
t=1 sgn (x̃i,t);

Refine search space: Ij+1 = {i ∈ Ij : x̂i > 0};
end

Stage 2: (Estimation)
for t = 1 to τ2 do

Generate matrix: At ∼ A(r, n, α);
Mask: Set `-th column of At to zero ∀` /∈ Is+1;
Collect measurements: yt = Atx + wt;
Backproject: x̃t = AT

t yt;
end
Compute proxy x̂ with entries x̂i =

∑τ2
t=1 sgn (x̃i,t);

Final Support Estimate: Ŝ = {i ∈ Ij : x̂i > 1/4}

being drawn from a distribution denoted by A(r, n, α); in particular,
we will write A ∼ A(r, n, α) to denote an independent realization of
such a structured random matrix. Similar sensing matrix constructions
have been examined in the sketching literature; see, eg., [13], [14].

B. Sensing and Refinement

Each measurement step in our SCS procedure will employ a col-
lection of independent structured random sensing matrices generated
as described above. We describe the measurements corresponding
to each sensing matrix in the collection by yt = Atx + wt,
t = 1, 2, . . . , τ , where the At are matrices constructed as described
above, but with some columns “masked” to zero. Here, t indexes the
elements of the collection, and there are a total of τ such elements.
The aim of the refinement step is to quickly identify locations of x
which are no longer deemed worthy of further investigation, and to
adapt the subsequent sensing matrices so that no sensing energy is
expended measuring those locations.

Measurements obtained in each stage are used to form a set
of estimates of the form x̃t = AT

t yt for t = 1, . . . , τ . The
estimates are combined to form a signal proxy x̂ with entries
x̂i =

∑τ
t=1 sgn (x̃i,t). Here the notation x̃i,t is shorthand for the i-th



entry of the vector x̃t, and sgn(·) denotes the signum function which
takes the value −1 (+1) when the argument is less than (greater than)
zero, and is zero when the argument is zero.

In the initial measurement step all locations of x are observed
(equivalently, the sensing matrices have nonzero entries in all
columns). Each refinement step then identifies a set of locations at
which measurements will be obtained in the next measurement step,
simply by identifying the entries of the current proxy x̂ that exceed
zero. The rationale is, as we will show below, that the signs of the
entries of the proxy are very likely to match the corresponding signs
of the unknown x at locations in the support set, and the signs of the
entries of the proxy are equally likely off of the signal support. Since
we have assumed that the nonzero entries of x are all non-negative,
identifying the set of locations at which the proxy is non-negative is
therefore likely to result in a refined set containing all of the locations
of the true signal components, and about half of the locations off
of the support. This process is iterated several times, resulting in a
sequence of refinements of the search space, which then hone in on
the true signal support.

IV. PROOF OF MAIN RESULT

The proof proceeds in a constructive way, and provides a justifi-
cation for the internal parameter choices, namely s, r, α, τ1 and
τ2. Note that the s must be an integer, and τ1 and τ2 must be
odd integers. For simplicity, in the analysis below we don’t consider
these constraints, as this doesn’t qualitatively change the results. Let
S = {i : xi 6= 0} and Sc denote the true support set and its
complement, respectively. Let xmin = mini∈S |xi|. The following
lemma characterizes the proxy obtained at each step.

Lemma 1. The following are true about the entries of the proxy x̂j
formed in the j-th step:

1) Pr (x̂j,i > 0) = Pr (x̂i,j < 0) = 1/2 for any i ∈ Scj , and
2) for any i ∈ Sj ,

Pr (x̂j,i < 0) = Pr (x̂i,j ≤ 0) ≤ exp

(
−τ(1− 2p)2

4

)
provided p < 1/2, where

p ,
1

2
exp

(
−α

2x2min

2σ2

)
+

(
k − 1

r

)
. (2)

To ensure the lemma is applicable we need to guarantee condition
(2), which involves both r and α. The proposed choice of r guarantees
that the second term on the r.h.s. of (2) is less than 1/6. Further, if

xmin ≥
√

2σ2 log 3

α
= Ω

(√
n

M
σ2(log k + log log2 logn)

)
,

the first term in the r.h.s. of (2) is also bounded by 1/6, so we
conclude that p < 1/3 < 1/2.

The next step is to ensure that, after Stage 1, we have not lost any
signal components. This means we must control the probability of
the event {S * Is}. This is easily done via a union bound

P (S * Is) = P (∪i∈S ∪sj=1 {x̂i,j < 0})

≤ ks exp

(
−τ1(1− 2p)2

4

)
,

using the result of Lemma 1. Given p < 1/3 and our choice of τ1
we conclude, after some trivial algebra, that P (S * Is) ≤ δ/2. This
means that, with probability 1 − δ/2, all the signal components are
still considered in Stage 2. Denote this event as Ω1.

Now we show that Stage 2 exactly recovers the support set. We
use of the following lemma from [15], adapted to our context.

Lemma 2. Suppose that p in (2) satisfies p < 1/2. Choose the final
threshold value T to satisfy T < 1− 2p and let δ > 0 be arbitrary.
Conditioned on the event Ω1, the choice

τ2 ≥ max

{
2

(T − (1− 2p))2
log

(
8k

δ

)
,

2

T 2
log

(
8(n− k)

δ

)}
where τ2 is an odd integer is sufficient to ensure that Ŝ = S with
probability at least 1− δ/2.

Since we already showed that p < 1/3, thresholding at T = 1/4
satisfies the condition of the lemma. Furthermore the choice τ2 we
took follows immediately from the lemma statement. Finally, since
P (Ω1) ≥ 1 − δ/2, and that P (Ŝ = S|Ω1) ≥ 1 − δ/2 we conclude
that the support set estimator Ŝ generated by Algorithm 1 is equal
to S with probability at least 1− δ.

Now that we ensured the algorithm recovers the exact signal sup-
port with high probability, we will quantify the number of measure-
ments it requires and the total sensing budget. First, the total number
of measurements is easily computed as follows. The algorithm makes
rsτ1 measurements in Stage 1 and rτ2 measurements in the Stage
2. Therefore, the total number of measurements is m = rsτ1 +
rτ2 ≤ C k

(
(log k + log log2 logn+ log δ−1) log2 logn+ logn

)
where C > 0 is a constant (e.g., C = 1728 will suffice). Note
that m = O (kmax{log k log log n , logn}). Next consider the
expected total sensing energy used by the algorithm. To this end it is
important to characterize the expected problem size in Stage 2. We
first characterize the problem size after each step in Stage 1, given
by |Ij |. Making use of the first part of Lemma 1,

E|Ij | = E|Ij ∩ Sc|+ E|Ij ∩ S|
≤ E|Ij ∩ Sc|+ k

=
∑
i∈Sc

Pr

(
j−1⋂
`=1

x̂i,` > 0

)
+ k

≤ (n− k) max
i∈Sc

Pr

(
j−1⋂
`=1

x̂i,` > 0

)
+ k,

from which it follows that E|Ij | ≤ n−k
2j−1 +k. Using this result we can

easily evaluate the total sensing energy. Note that, for j = 1, . . . , s
the sensing matrix at each step satisfies

E‖At‖2F = α2E|Ij | ≤ α2 n− k
2j−1

+ k .

This means the expected total sensing energy used in Stage 1, which
we will denote by E1, is bounded by

E1 ≤ α2τ1 (2(n− k) + sk) ≤ M

3
+
Mk log2 logn

6n
,

where the last inequality follows by inserting the specified values of
α and τ1. It follows that if k ≤ n/ log2 logn, then E1 ≤M/2. For
Stage 2, note that each sensing matrix satisfies

E‖At‖2F = α2E|Is+1| ≤ α2

(
n− k

2s
+ k

)
.

Therefore the total expected energy used in Stage 2, denoted by E2,
is bounded by τ2 times the quantity above. That is,

E2 ≤ τ2α
2

(
n− k

2s
+ k

)
≤ 33α2 logn

(
n− k
logn

+ k

)
≤ 33

M

6nτ1
(n− k + k logn)

≤ M/2 ,



provided n is sufficiently large and k ≤ n/ log2 logn. In the second
inequality we made use of the fact that τ2 < 33 logn for large enough
n. Taken together, these imply the budget constraint is satisfied.
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APPENDIX

A. Proof of Lemma 1

For ease of notation, we drop the subscripts j on the sets Sj
and Scj here, with the implicit understanding that we’re considering
the refinement in a particular step. Further, to better describe the
structured sparse sensing matrices we employ in our procedure, it
is useful to introduce the following random variables: take (j, t) ∈
{1, . . . , n} × {1, . . . , τ} and let Zj,t be i.i.d. Rademacher random
variables and Hj,t be i.i.d. discrete uniform random variables over
{1, . . . , r}, also independent from the Rademacher random variables.
The jth column of matrix At has a single non-zero element in row
Hj,t, taking the value αZj,t, where α > 0. Formally, [At]ij =
αZj,t1{i = Hj,t}.

To describe the observation process we introduce the “noise”
variables Wi,t, which are i.i.d. normal random variables with zero
mean and variance σ2 = 1. These are also independent from the
other random variables introduced so far. The projective observations
are τ vectors of the form

Yt = Atx+Wt t ∈ {1, . . . , τ} .

The entries of each vector can also be written as

Yi,t =
∑

j:Hj,t=i

αZj,txj +Wi,t =
∑

j∈S:Hj,t=i

αZj,txj +Wi,t .

Following the proposed algorithm we compute the proxy vectors,
which after simple algebraic manipulation can be shown to be

x̃i,t = α2xi+α
2Zi,t

∑
`∈S:` 6=i

Z`,tx`1{H`,t = Hi,t}+αZi,tWHi,t,t .

(3)
Finally, in our algorithm we take x̂i =

∑τ
t=1 sgn(x̃i,t), and these are

the main quantities we want to characterize. We consider two cases.
Case 1): Let i /∈ S. Note that, since xi = 0 we have

x̃i,t = αZi,t

WHi,t,t +
∑

`∈S: 6̀=i

αZ`,tx`1{H`,t = Hi,t}

 .

Note this is the product of two independent random variables, since
the terms in the summation depend only on Z`,t with ` 6= i.
Furthermore one easily can verify that each term in this product is
a symmetric random variable around zero (this can be easily done
using a conditioning argument). In addition, note that with probability
one each x̃i,t is different than zero, so the sgn(x̃i,t) = 0 with zero
probability. These two facts together immediately show that sgn(x̃i,t)
are Rademacher random variables. Now clearly x̂i =

∑τ
t=1 sgn(x̃i,t)

are also symmetric zero mean random variables. Since τ is assumed
odd it is immediate that x̂i cannot take the value zero, and therefore
the first result of the lemma follows.

Case 2): Let i ∈ S. Recall equation (3). Notice that the middle
term in that equation is the one that complicates the analysis.
However, this term is actually zero with significant probability. Define
the event Ωi,t = {∀` ∈ S, H`,t 6= Hi,t}. It is elementary to show
that

P (Ωi,t) =

(
1− 1

r

)|S|−1

≥ 1− |S| − 1

r
.

We proceed by noting that the middle term of (3) is zero under
Ωi,t, and therefore

P (x̃i,t < 0|Ωi,t) = P (α2xi + αZi,tWHi,t,t < 0 | Ωi,t)

= P (αxi + WHi,t,t < 0 | Ωi,t)

≤ 1

2
exp

(
−α

2x2i
2σ2

)
,

where the final step make use of standard Gaussian tail bounds. By
removing the conditioning on Ωi,t we conclude that

P (x̃i,t < 0) ≤ 1

2
exp

(
−α

2x2i
2σ2

)
+
|S| − 1

r
.

We now focus our attention on each individual value of x̂i, for a fixed
but arbitrary i ∈ S. By construction {x̃i,t}τt=1 are i.i.d., therefore we
can use Hoeffding’s inequality to characterize x̂i. Let pi = P (x̃i,t <
0) and assume for now that pi < 1/2. Then

P (x̂i < 0) = P (

τ∑
t=1

sgn(x̃i,t) < 0)

= P (
τ∑
t=1

sgn(x̃i,t)− τ(1− 2pi) < −τ(1− 2pi))

≤ exp

(
−τ(1− 2pi)

2

2σ2

)
.

Finally, recall the expression (2) and note that pi ≤ p for all i ∈ S.
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