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ABSTRACT
Recent results show that a relatively small number of ran-
dom projections of a signal can contain most of its salient
information. It follows that if a signal is compressible in
some orthonormal basis, then a very accurate reconstruc-
tion can be obtained from projections of the signal onto ran-
dom basis elements. We extend this type of result to show
that compressible signals can be accurately recovered from
random projections contaminated with noise, in many cases
much more accurately than is possible using an equivalent
number of conventional point samples. We also investigate
the application of this new sampling and reconstruction pro-
cedure to remote wireless sensing.

1. INRODUCTION

This paper consists of two main contributions. First, we de-
velop theory for reconstructing signals from random projec-
tions and show that this approach has significant advantages
over more conventional sampling schemes. Second, we ap-
ply our new results to the problem of wireless sensing.

Recent theory informs us that a relatively small number
of random projections of a signal can contain most of its
salient information [1, 2, 3]. For example, the groundbreak-
ing work in [1] has shown that k random Fourier projec-
tions contain enough information to reconstruct piecewise
smooth signals at a distortion level nearly equivalent to that
attainable from k optimally selected projections. More gen-
erally, assume that a signal f ∈ Rn is well approximated
in some orthonormal basis in the following sense. Let f (m)

denote the best m-term approximation of f in terms of this
basis and suppose that the average squared error behaves
like

‖f − f (m)‖2

n
≡ 1
n

n∑
i=1

(fi − f
(m)
i )2 = O(m−2α)

for some α ≥ 1. The parameter α governs the degree to
which f is compressible with respect to the basis. In a
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noiseless setting, it can be shown that an approximation of
such a signal can be recovered from k random projections
with an average squared error that is O

(
(k/ log n)−2α)

)
,

nearly as good as the best k-term approximation error; see
[1, 2, 3]. On the other hand, we show in this paper that one
can accurately reconstruct such a signal from k random pro-
jections (corrupted with noise) to yield an average squared
reconstruction error that is O

(
(k/ log n)

−2α
2α+1

)
. For sparse

signals a stronger result is obtained - the expected average
squared reconstruction error is O

(
(k/ log n)−1

)
.

As a motivation for the use of random projections, con-
sider the following simple example. Suppose the signal f∗

is a vector of length n with one nonzero entry of amplitude√
n such that ‖f∗‖2/n = 1. First, consider random spa-

tial point sampling where observations are noise-free (i.e.,
each sample is of the form yj = f∗(tj), where tj is se-
lected uniformly at random from the set {1, . . . , n}). The
squared reconstruction error is 0 if the spike is located and
1 otherwise, and the probability of not finding the spike in
k trials is (1 − 1/n)k, giving an average squared error of
(1 − 1/n)k · 1 +

[
1− (1− 1/n)k

]
· 0 = (1 − 1/n)k. If n

is large, we can approximate this by (1 − 1/n)k ≈ e−k/n,
which is approximately equal to 1 if k � n. On the other
hand, we present a sampling and reconstruction scheme in
this paper based on k random projections (corrupted with
noise), which yields an average squared reconstruction er-
ror that is O(k/ log n)−1. This shows that even given the
advantage of being noiseless, the reconstruction error from
conventional point sampling can be far greater than that re-
sulting from random projections.

We will investigate an application of these results to
wireless sensing. Consider an ensemble of n wireless sen-
sors that can be jointly synchronized for phase-coherent
communications with a remote destination. Suppose that
each sensor multiplies its measurement by a random num-
ber (known only to itself and the destination) and then all
n sensors transmit their (randomly scaled) measurements to
the remote destination. Furthermore, suppose these data are
transmitted via uncoded amplitude modulation in a phase-
coherent fashion, so that the received signal (summation of



the n transmitted signals) constitutes a random projection
of the form described above. Repeating this process k times
provides a very efficient transmission of k random projec-
tions of the sensor readings to the destination. Moreover,
the received signal power is a factor n times the total trans-
mit power (ignoring a constant depending on the distance of
the destination from the sensors) due to the phase-coherent
nature of the transmissions. A remarkable consequence of
this fact is that the total transmit power required in order to
reconstruct the sensor values at the destination to within an
accuracy of O

(
(k/ log2 n)

−2α
2α+1

)
decays rapidly to zero as

the density of sensors increases.
This paper is organized as follows. In Section 2 we state

the basic problem and main theoretical results of the paper.
In Section 3 we derive reconstruction error rates for sig-
nals that are compressible in terms of a certain orthonormal
basis. In Section 4 we describe the optimization problem
in detail and list some possible solution strategies. In Sec-
tion 5 we investigate the performance of our reconstruction
method. In Section 6 we explain the benefits of this scheme
in the context of remote wireless sensing, and we make con-
cluding remarks in Section 7.

2. MAIN RESULTS

Consider a vector f∗ = [f∗1 f
∗
2 . . . f

∗
n]T ∈ Rn and assume

that
∑n

i=1(f
∗
i )2 ≡ ‖f∗‖2 ≤ nB2 for a known constant

B > 0. Suppose that we are able to make k measurements
of f∗ in the form of noisy random projections. Specifically,
let Φ = {φi,j} be an n × k array of bounded, i.i.d. zero-
mean random variables of variance E[φ2

i,j ] = 1/n. Our
observations take the form

yj =
n∑

i=1

φi,jf
∗
i + wj , j = 1, . . . , k (1)

where w = {wj} are i.i.d. zero-mean random variables, in-
dependent of {φi,j}, with variance σ2. Our goal is to re-
cover an estimate of f∗ from these observations.

Define the risk of a candidate reconstruction f to be

R(f) = E

1
k

k∑
i=1

(
yj −

n∑
i=1

φi,jfi

)2


=
‖f∗ − f‖2

n
+ σ2.

The expectation here (and throughout the rest of the paper)
is with respect to Φ and w, the norm is the Euclidean dis-
tance, and we have used the fact that {φi,j} and {wj} are
independent random variables and E[φ2

i,j ] = 1/n. Assume
that both Φ and {yj} are available. Then we can compute

the empirical risk

R̂(f) =
1
k

k∑
j=1

(
yj −

n∑
i=1

φi,jfi

)2

which is an unbiased estimate of R(f). Our goal is to use
the empirical risk to obtain an estimator f̂ of f∗ and to
bound the resulting error E[‖f̂ − f∗‖2].

Our estimator is based on a complexity-regularized em-
pirical risk minimization and we use the Craig-Bernstein
concentration inequality [4] to control the estimation error
of the reconstruction process. The Craig-Bernstein inequal-
ity states that for random variables Uj the event E , defined
as

E ≡
k∑

j=1

(Uj − E [Uj ])
k

≥ t

kε
+
ε k var

(∑k
j=1

Uj

k

)
2(1− ζ)

satisfies

P (E) ≤ e−t

for 0 < εh ≤ ζ < 1 and t > 0, provided the random
variables Uj each satisfy the moment condition

E
[
|Uj − E[Uj ]|k

]
≤ k! var(Uj)hk−2

2
for some h > 0 and all integers k ≥ 2. For our purposes,
Uj =

[
(yj − φT

j f
∗)2 − (yj − φT

j f)2
]
, the excess risk for a

given projection. The moment condition obviously depends
on the nature of Φ and w. In this paper we focus on (nor-
malized) Rademacher projections, in which case each φi,j

is ±1/
√
n with equal probability, and assume that w is a

sequence of zero-mean Gaussian noises. Generalizations to
other random projections and noise models may be possible;
this would only require one to verify the moment conditions
required by the Craig-Bernstein inequality.

Suppose that we have a countable collectionF of candi-
date reconstruction functions, such that each f ∈ F satisfies
‖f‖2 ≤ nB2. Further, assume that assigned to each f ∈ F
is a non-negative number c(f) such that

∑
f∈F 2−c(f) ≤

1. Select a reconstruction according to the complexity-
regularized empirical risk minimization

f̂k = arg min
f∈F

{
R̂(f) +

c(f) log 2
kε

}
where ε > 0 is a constant that depends on the function
bound B and the noise variance σ2. Then we have the fol-
lowing oracle inequality.

Theorem 1 There exists a constant C1 > 0 such that

E

[
‖f̂k − f∗‖2

n

]
≤

C1 min
f∈F

{
‖f − f∗‖2

n
+
c(f) log 2 + 4

kε

}
. (2)



Our derivation of the oracle bound (2) is similar in na-
ture to the procedure used in [5], but a main contribution
of our work is the verification of the moment condition for
certain unbounded random variables. Detailed derivation of
the oracle bound, including a theoretical framework under
which unbounded noise can be handled in the context of the
moment condition, can be found in [6].

Suppose f∗ is compressible with respect to a certain
orthonormal basis (e.g., wavelet). We can obtain explicit
bounds on the error in terms of the number of random pro-
jections k and the degree to which f∗ is compressible. Let
f (m) denote the bestm-term approximation of f∗ in the ba-
sis. That is, if f∗ has a representation f∗ =

∑n
i=1 θiψi

in the basis {ψi}, then f (m) =
∑m

i=1 θ(i)ψ(i), where
coefficients and basis functions are re-ordered such that
|θ(1)| ≥ |θ(2)| ≥ · · · ≥ |θ(n)|. Assume that the average

squared error ‖f∗ − f (m)‖2/n ≡ 1
n

∑n
i=1(f

∗
i − f

(m)
i )2

behaves like

‖f∗ − f (m)‖2

n
= O(m−2α)

for some α ≥ 1. Now by choosing F to be a suitably quan-
tized collection of functions (represented in terms of the ba-
sis {ψi}), we have the following error bound.

Theorem 2 If

c(f) = 2 log(n)× {# non-zero coefficients of f}

then there exists a constant C2 > 0 such that

E

[
‖f̂k − f∗‖2

n

]
≤ C2

(
k

log n

) −2α
2α+1

. (3)

Note that the exponent −2α/(2α + 1) is the “usual” ex-
ponent governing the rate of convergence in nonparametric
function estimation. A stronger result is obtained if the sig-
nal is sparse, as stated in the following Corollary.

Corollary 1 Suppose that f∗ has at most m nonzero coef-
ficients. Then there exists a constant C ′

2 > 0 such that

E

[
‖f̂k − f∗‖2

n

]
≤ C ′

2

(
k

m log n

)−1

. (4)

Similar results hold if the signal is additionally contam-
inated with noise prior to the random projection process.

Corollary 2 Suppose our observation model takes the form

yj =
n∑

i=1

φi,j (f∗i + ηi) + wj , j = 1, . . . , k

where {ηi} are i.i.d. zero-mean Gaussian random variables
with variance σ2

s that are independent of {φi,j} and {wj}.
Then Theorems 1 and 2 and Corollary 1 hold with slightly
different constants C1, C2, C ′

2, and ε.

This result follows from the fact that the projected
noise term,

∑n
i=1 φi,jηi, is equivalent in distribution to a

Gaussian random variable given our choice of {φi,j} and
{ηi}. Further, this projected noise term is independent of
{φi,j} so it can be absorbed into the noise terms {wj}. This
results in a setup identical in form to the original observa-
tion model given in (1) where the only change is in the vari-
ance of the noise term. For a complete derivation of this
result, see [6].

3. ERROR BOUNDS FOR COMPRESSIBLE
SIGNALS

Suppose that f∗ is compressible in a certain orthonormal
basis {ψi}n

i=1. Specifically, let f (m) denote the bestm-term
approximation of f∗ in terms of {ψi}, and assume that the
error of the approximation behaves like

‖f − f (m)‖2

n
≤ C3m

−2α

for some α ≥ 1 and a constant C3 > 0.
Let us use the basis {ψi} for the reconstruction process.

Any vector f ∈ Rn can be expressed in terms of the ba-
sis {ψi} as f =

∑n
i=1 θiψi, where θ = {θi} are the co-

efficients of f in this basis. Let T denote the transform
that maps coefficients to functions, so that f = Tθ. Let
Θ denote the collection of all coefficient vectors satisfying
‖Tθ‖2 ≤ nB2 and whose components are uniformly quan-
tized in magnitude to n levels. Let F denote the set of all
functions of the form f = Tθ, θ ∈ Θ. Furthermore, if
f = Tθ, then let c(f) ≡ c(θ) = 2 log(n)

∑n
i=1 Iθi 6=0 =

2 log n‖θ‖0. It is easily verified that
∑

f∈F 2−c(f) ≤ 1 by
noting that each θ ∈ Θ can be uniquely encoded via a pre-
fix code consisting of 2 log n bits per non-zero coefficient
(log n bits for the locations and log n bits for the quantized
values) in which case the codelengths c(f) must satisfy the
Kraft inequality [7].

The oracle inequality

E

[
‖f̂k − f∗‖2

n

]
≤

Cmin
f∈F

{
‖f − f∗‖2

n
+
c(f) log 2 + 4

kε

}
can be written in terms of the new class of candidate recon-
structions as

E

[
‖f̂k − f∗‖2

n

]
≤

Cmin
θ∈Θ

{
‖θ − θ∗‖2

n
+
c(θ) log 2 + 4

kε

}



where f∗ = Tθ∗. For each integer m ≥ 1, let θ(m) denote
the coefficients corresponding to the best m-term approx-
imation of f∗ and let θ(m)

q denote the nearest element in
Θ. The maximum possible dynamic range for the coeffi-
cient magnitudes, ±

√
nB, is quantized to n levels, giving

‖θ(m)
q − θ(m)‖2 ≤ C4, for a constant C4 > 0. Thus, we

have

‖θ(m)
q − θ∗‖2 = ‖θ(m)

q − θ(m) − θ(m) − θ∗‖2

≤ ‖θ(m)
q − θ(m)‖2 +

2‖θ(m)
q − θ(m)‖ · ‖θ(m) − θ∗‖+

‖θ(m) − θ∗‖2

≤ C4 + 2m−α
√
nC3C4 + C3nm

−2α.

Now inserting θ(m)
q in place of θ in the oracle bound, noting

that c(θ(m)
q ) = 2m log n, and minimizing the upper bound

with respect to the choice of m, we obtain

E

[
‖f̂k − f∗‖2

n

]
≤ C2

(
k

log n

) −2α
2α+1

for a constant C2 > 0.
Suppose now that f∗ has only m nonzero coefficients.

In this case, we have

‖θ(m)
q − θ∗‖2 = ‖θ(m)

q − θ(m) − θ(m) − θ∗‖2

≤ ‖θ(m)
q − θ(m)‖2 +

2‖θ(m)
q − θ(m)‖ · ‖θ(m) − θ∗‖+

‖θ(m) − θ∗‖2

≤ C4

since ‖θ(m) − θ∗‖ = 0. Now the penalty term dominates in
the oracle bound and we obtain

E

[
‖f̂k − f∗‖2

n

]
≤ C ′

2

(
k

m log n

)−1

for a constant C ′
2 > 0.

4. OPTIMIZATION SCHEME

Let us assume that we wish to reconstruct our signal in terms
of the basis {ψi}. The reconstruction

f̂k = arg min
f∈F

{
R̂(f) +

c(f) log(2)
kε

}
is equivalent to f̂k = T θ̂k where

θ̂k = arg min
θ∈Θ

{
R̂(Tθ) +

c(θ) log(2)
kε

}
.

Thus, the optimization problem can then be written as

θ̂k = arg min
θ∈Θ

{
‖y − PTθ‖2 +

2 log(2) log(n)
ε

‖θ‖0
}

where P = ΦT , the transpose of the n×k projection matrix
Φ, y is a column vector of the k observations, and ‖θ‖0 =∑n

i=1 I{θi 6=0}.
The optimization problem above can be tackled using

a number of existing methods, including the Bound Opti-
mization technique proposed in in [8] and applied in in this
context in [6], or the Coordinate Descent method derived in
[9]. Both methods cited above result in a simple iterative
scheme where the optimization step involves a linear up-
date followed by a coordinate-wise (diagonal) thresholding
operation.

5. RESULTS

We tested the performance of our method on two examples.
In each case, the optimization problem was solved using
the Coordinate Descent method in [9]. If we define τ =
log(2) log(n)/ε, B = (PT )T (PT ), b = (PT )T y, and v =
Bθ, then the update rule for each component of θ̂k can be
written as:

θ̂new
k,i =

{
θ̂old

k,i + bi−vi

Bi,i
if |θ̂old

k,i + bi−vi

Bi,i
| ≥

√
2τ

Bi,i

0 otherwise

for i = 1 . . . n. Each such optimization step must be ac-
companied by an update of the vector v, computed using
the new value of θ̂. The algorithm terminates when the en-
tries uniformly satisfy |θ̂new

k,i −θ̂old
k,i | ≤ δ, for a small positive

tolerance δ.
For the first example, we consider a one-dimensional

signal being measured by equally-spaced sensors. The sig-
nal to be determined is the Stanford WaveLab Blocks signal
of length 210 = 1024, and each sensor measurement is cor-
rupted by zero-mean Gaussian noise.

Figure 1 shows the original noiseless signal, the noisy
signal as measured by the sensors, and the reconstruction
obtained for one realization of random basis elements and
noise. Most of the dominant signal features have been cap-
tured in and extracted from the limited number of observa-
tions. Also notice that the reconstruction shows no noise
artifacts like those seen in the actual sensor measurements.
The per-pixel squared reconstruction error for this example
is 0.24. Averaged over 50 trials, the per-pixel squared re-
construction error is 0.34 with standard deviation 0.08. The
threshold was set at τ = 1.17.

For the second example, we consider the problem of
sensing a distributed field (e.g., star map, presence or ab-
sence of a chemical agent) using a collection of n sensors
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Fig. 1. Simulation results for the Blocks signal of length
1024. Blocks signal (top), noisy sensor readings (middle),
reconstructed signal using 200 random projections of noisy
sensor readings (bottom). The sensor noise variance is σ2 =
0.05.

distributed uniformly over a two-dimensional region of in-
terest. Such signals might be sparse in the spatial measure-
ment (pixel) basis.

Figure 2 shows the original noisy field along side the re-
construction obtained from a limited number of random pro-
jections. Besides being significantly less noisy, the recon-
struction again exhibits all of the significant location infor-
mation found in the original signal. The per-pixel squared
reconstruction error for this example is 0.003. Averaged
over 50 trials, the per-pixel squared reconstruction error is
0.004 with standard deviation 0.005. The threshold was set
at τ = 0.41.

Noisy signal with noise variance 0.05
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Fig. 2. Simulation results for a 50× 50 signal that is sparse
in the pixel basis. Noisy sensor readings (left), signal re-
construction using 250 random projections of noisy sensor
readings (right). Spikes have amplitude 5 and the noise vari-
ance is σ2 = 0.05.

6. WIRELESS SENSING

Our theory and method above can be applied to wireless
sensing as follows. Consider the problem of sensing a dis-
tributed field (e.g., temperature, light, chemical) using a col-
lection of n wireless sensors distributed uniformly over a
region of interest. Such systems are often referred to as
sensor networks. The goal is to obtain an accurate, high-
resolution reconstruction of the field at a remote destination.
One approach to this problem is to require each sensor to
digitally transmit its measurement to the destination, where
field reconstruction is then performed. Alternatively, the
sensors might collaboratively process their measurements
to reconstruct the field themselves and then transmit the re-
sult to the destination (i.e., the nodes collaborate to com-
press their data prior to transmission). Both approaches
pose significant demands on communication resources and
infrastructure, and it has recently been suggested that non-
collaborative analog communication schemes offer a more
resource-efficient alternative [10, 11, 12].

Assume that the sensor data is to be transmitted to the
destination across an additive white Gaussian noise chan-
nel. Suppose the destination broadcasts (perhaps digitally)
a random seed to the sensors. Each node modifies this seed
in a unique way known to only itself and the destination
(e.g., this seed could be multiplied by the node’s address
or geographic position). Each node generates a pseudoran-
dom Rademacher sequence, which can also be constructed
at the destination. Then the nodes phase-coherently trans-
mit the random projections to the destination. This is ac-
complished by requiring each node to simply multiply its
reading by an element of its random sequence in each pro-
jection/communication step and transmit the result to the
destination via amplitude modulation. If the transmissions
from all n sensors can be synchronized so that they all ar-
rive in phase at the destination, then the averaging inherent
in the multiple access channel computes the desired inner
product. After receiving k projections, the destination can
employ the reconstruction algorithm above using a basis
of choice (e.g., wavelet). The communications procedure
is completely non-adaptive and potentially very simple to
implement. The collective functioning of the wireless sen-
sors in this process is more akin to an ensemble of phase-
coherent emitters than it is to conventional networking op-
erations. Therefore, we prefer the term sensor ensemble in-
stead of sensor network in this context.

A remarkable aspect of the sensor ensemble approach is
that the power required to achieve a target distortion level
can be very minimal. Let σ2

s and σ2
c denote the noise vari-

ance due to sensing and communication, respectively. Thus,
each projection received at the destination is corrupted by a
noise of total power σ2

s + σ2
c . The sensing noise variance

is assumed to be a constant and the additional variance due



to the communication channel is assumed to scale like the
inverse of the total received power

σ2
c ∝

1
n2P

where P is the transmit power per sensor. Note that al-
though the total transmit power is nP , the received power
is a factor of n larger as a result of the power amplification
effect of the phase-coherent transmissions [12]. In order to
achieve rates of distortion decay that we claim, it is suffi-
cient that the variance due to the communication channel
behaves like a constant. Therefore, we require only that
P ∝ n−2. This results in a rather surprising conclusion.
Optimal reconstruction is possible at the destination with to-
tal transmit power nP tending to zero as the density of sen-
sors increases. If conventional spatial point samples were
taken instead (e.g., if a single sensor is selected at random in
each step and transmits its measurement to the destination),
then the power required per sample would be a constant,
since only one sensor would be involved in such a trans-
mission. Thus, it appears that random projection sampling
could be much more desirable in wireless sensing applica-
tions.

7. CONCLUSIONS

We have shown that compressible signals can be accu-
rately recovered from random projections contaminated
with noise. The squared error bounds for compressible
signals are O((k/ log n)

−2α
2α+1 ), which is within a logarith-

mic factor of the usual nonparametric estimation rate, and
O((k/ log n)−1) for sparse signals. We demonstrated the
effectiveness of random projection sampling with several
examples. An interesting line of related and independent
work, that we became aware of while finishing this pa-
per, considers signal reconstruction from random projec-
tions corrupted by an unknown but bounded perturbation
and employs a theoretical approach quite different from ours
[13, 14]. One of the most promising potential applications
of our theory and method is to wireless sensing, wherein one
realizes a large transmission power gain by random projec-
tion sampling as opposed to conventional spatial point sam-
pling.
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