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Compressed Channel Sensing: A New Approach to
Estimating Sparse Multipath Channels

Waheed U. Bajwa, Jarvis Haupt, Akbar M. Sayeed, and Robert Nowak

Abstract—High-rate data communication over a multipath
wireless channel often requires that the channel response be
known at the receiver. Training-based methods, which probe
the channel in time, frequency, and space with known signals
and reconstruct the channel response from the output signals,
are most commonly used to accomplish this task. Traditional
training-based channel estimation methods, typically comprising
of linear reconstruction techniques, are known to be optimal
for rich multipath channels. However, physical arguments and
growing experimental evidence suggest that many wireless chan-
nels encountered in practice tend to exhibit a sparse multipath
structure that gets pronounced as the signal space dimension gets
large (e.g., due to large bandwidth or large number of antennas).
In this paper, we formalize the notion of multipath sparsity
and present a new approach to estimating sparse (or effectively
sparse) multipath channels that is based on some of the recent
advances in the theory of compressed sensing. In particular, it is
shown in the paper that the proposed approach, which is termed
as compressed channel sensing, can potentially achieve a target
reconstruction error using far less energy and, in many instances,
latency and bandwidth than that dictated by the traditional least-
squares-based training methods.

Index Terms—Channel estimation, compressed sensing, Dant-
zig selector, least-squares estimation, multiple-antenna channels,
orthogonal frequency division multiplexing, sparse channel mod-
eling, spread spectrum, training-based estimation.

I. I NTRODUCTION

A. Motivation and Background

In a typical scattering environment, a radio signal emit-
ted from a transmitter is reflected, diffracted, and scattered
from the surrounding objects, and arrives at the receiver as
a superposition of multiple attenuated, delayed, and phase-
and/or frequency-shifted copies of the original signal. This
superposition of multiple copies of the transmitted signal,
called multipath signal components, is the defining charac-
teristic of many wireless systems, and is both a curse and
a blessing from a communications viewpoint. On the one
hand, this multipath signal propagationleads to fading—
fluctuations in the received signal strength—that severely
impacts the rate and reliability of communication [1]. On
the other hand, research in the last decade has shown that
multipath propagation also results in an increase in the number
of degrees of freedom (DoF) available for communication,
which—if utilized effectively—can lead to significant gains
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in the rate (multiplexing gain) and/or reliability (diversity
gain) of communication [2]. The impact of fading versus
diversity/multiplexing gain on performance critically depends
on the amount of channel state information (CSI) available
to the system. For example, knowledge of instantaneous CSI
at the receiver (coherent reception) enables exploitationof
delay, Doppler, and/or spatial diversity to combat fading,while
further gains in rate and reliability are possible if (even partial)
CSI is available at the transmitter as well [1].

In practice, CSI is seldom—if ever—available to com-
munication systems a priori and the channel needs to be
(periodically) estimated at the receiver in order to reap the
benefits of additional DoF afforded by multipath propagation.
As such, two classes of methods are commonly employed
to estimate multipath channels at the receiver. Intraining-
based channel estimationmethods, the transmitter multiplexes
signals that are known to the receiver (henceforth referred
to as training signals) with data-carrying signals in time,
frequency, and/or code domain, and CSI is obtained at the
receiver from knowledge of the training and received signals.
In blind channel estimationmethods, CSI is acquired at the
receiver by making use of the statistics of data-carrying signals
only. Although theoretically feasible, blind estimation methods
typically require complex signal processing at the receiver and
often entail inversion of large data-dependent matrices, which
also makes them highly prone to error propagation in rapidly-
varying channels. Training-based methods, on the other hand,
require relatively simple receiver processing and often lead to
decoupling of the data-detection module from the channel-
estimation module at the receiver, which reduces receiver
complexity even further. As such, training-based methods are
widely prevalent in modern wireless systems [3] and we
therefore focus exclusively on them in the sequel; see [4] for
an overview of blind approaches to channel estimation.

One of the first analytical studies of training-based estima-
tion methods for multipath channels was authored by Cavers
in 1991 [5]. Since then, there has been a growing body
of literature devoted to the design and analysis of training-
based methods for various classes of channels. These works
often highlight two salient aspects of training-based methods,
namely,sensingand reconstruction. Sensing corresponds to
the design of training signals used by the transmitter to probe
the channel, while reconstruction is the problem of processing
the corresponding channel output at the receiver to recover
the CSI. The ability of a training-based method to accurately
estimate the channel depends critically on both the design of
training signals and the application of effective reconstruction
strategies. Much of the work in the channel estimation litera-
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ture is based on the implicit assumption of arich underlying
multipath environment in the sense that the number of DoF in
the channel are expected to scale linearly with the signal space
dimension (product of signaling bandwidth, symbol duration,
and minimum of the number of transmit and receive antennas).
As a result, training-based methods proposed in such works are
mainly comprised of linear reconstruction techniques, which
are known to be optimal for rich multipath channels, thereby
more or less reducing the problem of channel estimation to
that of designing optimal training signals for various channel
classes [5]–[12].

Numerous experimental studies undertaken by various re-
searchers in the recent past have shown though that wireless
channels associated with a number of scattering environments
tend to exhibitsparsestructures at high signal space dimen-
sion in the sense that majority of the channel DoF end up
being either zero or below the noise floor when operating
at large bandwidths and symbol durations and/or with large
plurality of antennas [13]–[18]. However, traditional training-
based methods that rely on linear reconstruction schemes at
the receiver seem incapable of exploiting the inherent low-
dimensionality of such sparse channels, thereby leading to
overutilization of the key communication resources of energy,
latency, and bandwidth. A number of researchers have tried to
address this problem in the recent past and proposed training
signals and reconstruction strategies that are tailored tothe
anticipated characteristics of sparse multipath channels[19]–
[27]. But much of the emphasis in these studies has been
directed towards establishing the feasibility of the proposed
sparse-channel estimation methods numerically rather than
analytically. A major drawback of this approach is that the
methods detailed in the previous investigations lack a quanti-
tative theoretical analysis of their performance in terms of the
reconstruction error.

B. Historical Developments

As is the case with so many other research problems in wire-
less communications, the area of sparse-channel estimation has
a history that dates back to the early nineties. Historically,
the problem of sparse-channel estimation using training-based
methods was first explored in the literature in the context of
underwater acoustic communications. Specifically, prompted
by the fact that typical underwater acoustic channels have
impulse responses with large delay and Doppler spreads
but only a few dominant echoes, an adjustable complexity,
recursive least-squares estimation algorithm that ignores the
weakest dimensions (“taps”) of the channel was proposed
in [19] for doubly-selective single-antenna channels using
single-carrier waveforms. Afterwards, inspired by the fact
that digital television channels and broadband channels in
hilly terrains also exhibit sparse structures, Cotter and Rao
proposed a sparse-channel estimation method based on the
matching pursuit (MP) algorithm [28] for frequency-selective
single-antenna channels using single-carrier waveforms [20],
[22]. Later, the MP-based sparse-channel estimation method of
[20] was extended to frequency-selective single- and multiple-
antenna channels using multi-carrier waveforms in [25] and

[23], respectively, and to doubly-selective single-antenna chan-
nels using single-carrier waveforms in [21], [27]. Here, one of
the main differences between the approaches of [21] and [27]
is that [21] attempts to exploit the sparsity of the channel in
the delay domain only.

In contrast to the MP-based approach of [20]–[23], [25],
[27], Raghavendra and Giridhar proposed a modified least-
squares (LS) estimator in [24] for sparse frequency-selective
single-antenna channels using multi-carrier waveforms. The
idea behind the approach in [24] was to reduce the signal space
of the LS estimator by using a generalized Akaike information
criterion to estimate the locations of nonzero channel taps.
Finally, a somewhat similar idea was employed most recently
in [26] for sparse frequency-selective single-antenna channels
using single-carrier waveforms. In particular, one of the key
differences between [24] and [26] is that [26] attempts to
estimate the locations of nonzero channel taps by transforming
the tap detection problem into an equivalent on-off keying
detection problem.

C. Scope of this Paper

By leveraging key ideas from the theory of compressed
sensing [29], various researchers have recently proposed new
training-based estimation methods for different classes of
sparse single- and multiple-antenna channels that areprovably
more effective than their LS-based counterparts in the limit
of large signal space dimension [30]–[38]. In particular, the
training-based methods detailed in [30], [34], [35], [38] have
been analytically shown to achieve a target reconstruction-
error scaling using far less energy and, in many instances,
latency and bandwidth than that dictated by the LS-based
methods. As in the case of previous research, the exact nature
of training signals employed by the proposed methods in [30]–
[38] varies with the type of signaling waveforms used for
sensing (e.g., single- or multi-carrier signaling waveforms) and
the class to which the underlying multipath channel belongs
(e.g., frequency- or doubly-selective channel). However,a
common theme underlying all these training-based methods is
the use of sparsity-inducing mixed-norm optimization criteria,
such as the basis pursuit [39], Dantzig selector [40], and lasso
[41], for reconstruction at the receiver. These criteria have
arisen out of recent advances in the theory of sparse signal
recovery, which is more commonly studied under the rubric
of compressed sensing these days. In the spirit of compressed
sensing, we term this particular approach to estimating sparse
multipath channels ascompressed channel sensing(CCS); the
analogy here being that CCS requires far fewer communication
resources to estimate sparse channels than do the traditional
LS-based training methods.

The goal of this paper is to complement this existing work
on sparse-channel estimation by providing a unified summary
of the key ideas underlying the theory of CCS. In order
to accomplish this goal, we focus on four specific classes
of multipath channels within the paper, namely, frequency-
and doubly-selective single-antenna channels, and nonselective
and frequency-selective multiple-antenna channels. For each of
these four channel classes, the discussion in the paper focuses
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on the nature of the training signals used for probing a sparse
channel, the reconstruction method used at the receiver for
recovering the CSI, and quantification of the reconstruction
error in the resulting estimate. In terms of modeling of the
sparse channels within each channel class, we use a virtual
representation of physical multipath channels that represents
the expansion of the time-frequency response of a channel
in terms of multi-dimensional Fourier basis functions. It is
worth noting though that the main ideas presented in the
paper can be generalized to channel models that make use
of a basis other than the Fourier one, provided the expansion
basis effectively exposes the sparse nature of the underlying
multipath environment and can be made available to the
receiver a priori. Finally, most of the mathematical claimsin
the paper are stated without accompanying proofs in order to
keep the exposition short and accessible to general audience.
Extensive references are made to the original papers in which
the claims first appeared for those interested in further details.

D. Organization

The rest of this paper is organized as follows. In Section II,
we review a widely-used modeling framework in the commu-
nications literature that provides a discretized approximation
of the time-frequency response of a physical channel. This
framework plays a key role in subsequent developments in the
paper since it not only exposes the relationship between the
distribution of physical paths within the angle-delay-Doppler
space and the sparsity of channel DoF, but also sets the
stage for the application of compressed sensing theory to
sparse-channel estimation. In Section III, we first formalize
the notion of sparse multipath channels by making use of
the modeling framework of Section II and then characterize
the performance of LS-based training methods for various
classes of sparse channels. In Section IV, we succinctly
summarize the performance advantages of CCS over tradi-
tional LS-based methods and provide a brief review of the
theory of compressed sensing. We devote the discussion in
Section V and Section VI to exploring the specifics of CCS for
sparse frequency-/doubly-selective, single-antenna channels
and sparse nonselective/frequency-selective, multiple-antenna
channels, respectively. Finally, we conclude in Section VII by
discussing some of the finer technical details pertaining tothe
results presented in the paper.

II. M ULTIPATH WIRELESSCHANNEL MODELING

A. Physical Model

Consider, without loss of generality, a multiple-antenna
channel with half-wavelength spaced linear arrays at the
transmitter and receiver. LetNT andNR denote the number
of transmit and receive antennas, respectively. It is customary
to model a multipath wireless channelH as a linear, time-
varying system [1], [42]. The corresponding (complex) base-
band transmitted signal and channel output are related as

H(x(t)) =

∫

R

H(t, f)X(f)ej2πftdf (1)

TABLE I
CLASSIFICATION OF WIRELESS CHANNELS ON THE BASIS OF CHANNEL

AND SIGNALING PARAMETERS

Channel Classification Wτmax Tνmax

Nonselective Channels ≪ 1 ≪ 1

Frequency-Selective Channels ≥ 1 ≪ 1

Time-Selective Channels ≪ 1 ≥ 1

Doubly-Selective Channels ≥ 1 ≥ 1

whereH(x(t)) is theNR-dimensional channel output,X(f) is
the (element-wise) Fourier transform of theNT -dimensional
transmitted signalx(t), and H(t, f) is the NR × NT time-
varying frequency response matrix of the channel. The matrix
H(t, f) can be further expressed in terms of the underlying
physical paths as

H(t, f) =

Np∑

n=1

βnaR(θR,n)aH
T (θT,n)e−j2πτnfej2πνnt (2)

which represents signal propagation overNp paths;1 here,(·)H

denotes the Hermitian operation andβn is the complex path
gain,θR,n the angle of arrival (AoA) at the receiver,θT,n the
angle of departure (AoD) at the transmitter,τn the (relative)
delay, andνn the Doppler shift associated with then-th path.
The NT × 1 vector aT (θT ) and theNR × 1 vector aR(θR)
denote the array steering and response vectors, respectively,
for transmitting/receiving a signal in the directionθT /θR and
are periodic inθ with unit period [45].2 We assume that the
channel is maximally spread in the angle space,(θR,n, θT,n) ∈
[−1/2, 1/2] × [−1/2, 1/2], while τn ∈ [0, τmax] and νn ∈
[− νmax

2 , νmax

2 ] in the delay and Doppler space, respectively.
Here,τmax andνmax are termed as the delay spread and (two-
sided) Doppler spread of the channel, respectively. Estimating
a channel havingτmaxνmax > 1 can often be an ill-posed
problem even in the absence of noise [46]. Instead, we limit the
discussion in this paper to underspread channels, characterized
by τmaxνmax ≪ 1, which is fortunately true of many wireless
channels [47,§ 14.2].3

Finally, throughout the paper we implicitly consider sig-
naling over wireless channels using symbols of durationT
and (two-sided) bandwidthW , x(t) = 0NT

∀ t 6∈ [0, T ] and
X(f) = 0NT

∀ f 6∈ [−W/2, W/2], thereby giving rise to a
temporal signal spaceof dimensionNo = TW [49]. Note
that these signaling parameters, together with the delay and
Doppler spreads of a channel, can be used to broadly classify
wireless channels as nonselective, frequency selective, time
selective, or doubly selective; see Table I for a definition of

1Time-varying frequency responses of multipath channels often correspond
to superposition of a small number of strong paths (specularscattering) and
a huge number of weak paths (diffuse scattering) [43]. From an analytical
viewpoint, as opposed to the channel measurement viewpoint, (2) accurately
captures the effects of both specular and diffuse scattering in the limit of large
Np (also, see [44]).

2The normalized angleθ is related to the physical angleφ (measured with
respect to array broadside) asθ = d sin(φ)/λ, whered is the antenna spacing
andλ is the wavelength of propagation; see [45] for further details.

3It is worth mentioning here though that part of the discussion in this
paper is also applicable to underwater acoustic communication channels, even
though they may not always be underspread [48].
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each of these classes. As noted earlier, we limit ourselves in the
sequel to primarily discussing frequency- and doubly-selective
channels in the single-antenna setting (NT = NR = 1) and to
nonselective and frequency-selective channels in the multiple-
antenna setting.

B. Virtual Representation

While the physical model (2) is highly accurate, it is
difficult to analyze and estimate owing to itsnonlinear
dependence on a potentially large number of parameters
{(βn, θR,n, θT,n, τn, νn)}. However, because of the finite
(transmit and receive) array apertures, signaling bandwidth,
and symbol duration, it can be well-approximated by a linear
(in parameters) counterpart, known as avirtual or canonical
channel model, with the aid of a four-dimensional Fourier
series expansion [42], [45], [50]–[52].

On an abstract level, virtual representation of a multi-
path channelH provides a discretized approximation of
its time-varying frequency responseH(t, f) by uniformly
sampling the angle-delay-Doppler space at the Nyquist rate:
(∆θR, ∆θT , ∆τ, ∆ν) = (1/NR, 1/NT , 1/W, 1/T ). Specifi-
cally, partition theNp paths into the following subsets:

SR,i = {n : θR,n ∈ (i/NR − ∆θR/2, i/NR + ∆θR/2]} ,

ST,k = {n : θT,n ∈ (k/NT − ∆θT /2, k/NT + ∆θT /2]} ,

Sτ,ℓ = {n : τn ∈ (ℓ/W − ∆τ/2, ℓ/W + ∆τ/2]} , and

Sν,m = {n : νn ∈ (m/T − ∆ν/2, m/T + ∆ν/2]} .

Then the virtual representation ofH is given by

H̃(t, f) =

NR∑

i=1

NT∑

k=1

L−1∑

ℓ=0

M∑

m=−M

Hv(i, k, ℓ, m) ×

aR

(
i

NR

)

aH
T

(
k

NT

)

e−j2π ℓ
W

fej2π m
T

t (3)

Hv(i, k, ℓ, m) ≈
∑

n∈SR,i∩ST,k∩Sτ,ℓ∩Sν,m

βn fNR
(i/NR − θR,n) ×

f∗
NT

(k/NT − θT,n) sinc(m − Tνn, ℓ − Wτn) (4)

and it approximatesH(t, f) in the sense [42], [45], [50]–[52]
∫

R

H(t, f)X(f)ej2πftdf ≈
∫

R

H̃(t, f)X(f)ej2πftdf.

Here, the smoothing kernelsfNR
(θR) and fNT

(θT ) in (4)
are the Dirichlet kernels,fN (θ) = 1

N

∑N−1
i=0 e−j2πiθ, while

the two-dimensionalsinc kernel is defined assinc(x, y) =
e−jπx sin(πx) sin(πy)/(π2xy). The approximation in (4) is
due to the sidelobes of the Dirichlet andsinc kernels induced
by the finite signaling parameters, and the approximation gets
more accurate with increasingT , W , NR, andNT .4

Note that due to the fixed angle-delay-Doppler sampling of
(2), which defines the spatio-temporal Fourier basis functions
in (3), H̃(t, f) is a linear channel representation that is
completely characterized by thevirtual channel coefficients

4Note that in the case of a doubly-selective single-antenna channel, the
virtual representation (3) is similar to the well-known exponential basis
expansion model [53,§ III-A].

{Hv(i, k, ℓ, m)}. From (3), the total number of these coeffi-
cients is given byD = NRNT L(2M+1), whereNR, NT , L =
⌈Wτmax⌉+ 1, andM = ⌈Tνmax/2⌉ represent the maximum
number of resolvableAoAs, AoDs, delays, and (one-sided)
Doppler shifts within the angle-delay-Doppler spread of the
channel, respectively.5 Further, the notation in (4) signifies
that each coefficientHv(i, k, ℓ, m) is approximately equal to
the sum of the complex gains of all physical paths whose
angles, delays, and Doppler shifts lie within anangle-delay-
Doppler resolution binof size ∆θR × ∆θT × ∆τ × ∆ν
centered around the sampling point(θ̂R,i, θ̂T,k, τ̂ℓ, ν̂m) =
(i/NR, k/NT , ℓ/W, m/T ) in the angle-delay-Doppler space;
we refer the reader to [51] for further details (also, see Fig. 1).
In other words, the virtual representatioñH(t, f) effectively
captures the underlying multipath environment comprising
of Np physical paths throughD resolvable paths, thereby
reducing the task of estimatingH to that of reconstructing
the virtual channel coefficients{Hv(i, k, ℓ, m)}.

III. SPARSEMULTIPATH WIRELESSCHANNELS

A. Modeling

The virtual representation of a multipath wireless channel
signifies that the maximum number of DoF in the channel is

D = NRNT L(2M + 1) ≈ τmaxνmaxNRNT TW (5)

which corresponds to the maximum number of angle-delay-
Doppler resolution bins in the virtual representation, and
reflects the maximum number of resolvable paths within the
four-dimensional channel spread. However, the actual oreffec-
tive number of DoF,d, in the channel that govern its capacity
and diversity corresponds to the number ofdominantvirtual
channel coefficients:d = |{(i, k, ℓ, m) : |Hv(i, k, ℓ, m)| > ǫ}|.
Here, ǫ is an appropriately chosen parameter whose value
depends upon the operating received signal-to-noise ratio
(SNR). An intuitive choice forǫ is the standard deviation
of the receiver noise, meaning only channel coefficients with
power above the noise floor contribute to the DoF. Trivially,
we haved ≤ D and, by virtue of (4),d = D if there are at
leastNp ≥ D physical paths distributed in a way within the
channel spread such that each angle-delay-Doppler resolution
bin is either populated by (i) at least one strong (specular)path,
and/or (ii) numerous weak (diffuse) paths whose aggregate
energy is above the noise floor (see Fig. 1), or it is in the
(close) proximity of another such resolution bin.

Much of the work in the existing channel estimation liter-
ature is based on the implicit assumption of a rich scattering
environment in which there are sufficiently many specular
and diffuse paths uniformly distributed within the angle-delay-
Doppler spread of the channel so thatd ≈ D for any choice
of the received SNR and the signaling parameters. Numerous
past and recent channel measurement campaigns have shown,
however, that propagation paths in many physical channels
tend to be distributed as clusters within their respective chan-
nel spreads [13]–[18]. Consequently, as we vary the spatio-
temporal signaling parameters in such channels by increasing

5With a slight abuse of notation, we define⌈Wτmax⌉ = 0 and
⌈Tνmax/2⌉ = 0 for Wτmax ≪ 1 andTνmax ≪ 1, respectively.
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(a) (b) (c)

Fig. 1. An idealized illustration of the virtual channel representation (VCR) and the channel sparsity pattern (SP). Each square represents a resolution bin
associated with a distinct virtual channel coefficient. Thetotal number of these squares equalsD. The shaded squares represent the SP,Sd, corresponding
to thed ≪ D dominant channel coefficients, and the dots represent the paths contributing to each dominant coefficient. (a) VCR and SPin delay-Doppler:
{Hv(ℓ, m)}Sd

. (b) VCR and SP in angle:{Hv(i, k)}Sd
. (c) VCR and SP in angle-delay-Doppler:{Hv(i, k, ℓ, m)}Sd

. The paths contributing to a fixed
dominant delay-Doppler coefficient,Hv(ℓo, mo), are further resolved in angle to yield the conditional SP inangle:{Hv(i, k, ℓo, mo)}Sd(ℓo,mo).

the number of antennas, signaling bandwidth, and/or symbol
duration, a point comes where∆θR, ∆θT , ∆τ , and/or ∆ν
become smaller than the interspacings between the multipath
clusters, thereby leading to the situation depicted in Fig.1
where not every resolution bin of size∆θR×∆θT ×∆τ×∆ν
contains significant contributions from physical paths.6 This
implies that wireless channels with clustered multipath compo-
nents tend to have far fewer thanD dominant virtual channel
coefficients when operated at large bandwidths and symbol
durations and/or with large plurality of antennas. We referto
such channels assparse multipath channelsand formalize this
notion of multipath sparsity in the following definition.

Definition 1 (d-Sparse Multipath Channels):Suppose that
Sd = {(i, k, ℓ, m) : |Hv(i, k, ℓ, m)| > ǫ} denotes the set of
indices of dominant virtual channel coefficients of a multipath
wireless channel for some appropriately chosenǫ. We say that
the channel iseffectivelyd-sparse if the number of its effective
DoF satisfiesd = |Sd| ≪ D. Similarly, we say that the channel
is exactlyd-sparse if the same holds forǫ = 0. In either case,
the corresponding set of indicesSd is termed as thechannel
sparsity pattern.

It is worth mentioning here that, even in the best of
scenarios, real-world multipath wireless channels can never be
exactlyd-sparse due to a multitude of reasons. Nevertheless,
analyzing training-based methods for exactly sparse channels
enables us to develop insight into the estimation of effectively
sparse channels. As an illustration, rearrange theD virtual
channel coefficients ofH by decreasing order of magnitude:
|Hv(π(1))| ≥ |Hv(π(2))| ≥ · · · ≥ |Hv(π(D))|. Now suppose
that thej-th largest rearranged coefficient obeys

∣
∣Hv(π(j))

∣
∣ ≤ R j−1/s (6)

for someR > 0 and s ≤ 1. In the literature, objects that
satisfy (6) are termed ass-compressibleand it is an easy
exercise to show thats-compressible objects are effectively
(R/ǫ)1/s-sparse for anyǫ > 0 [40]. In other words, results
obtained for exactlyd-sparse objects can always be extended
to s-compressible objects by takingd = (R/ǫ)1/s. As such,

6Note that Fig. 1 is an idealized representation in which theleakage effects
due to the Dirichlet andsinc kernels in (4) have been ignored.

we limit ourselves in the sequel to discussing exactlyd-
sparse channels; the understanding here being that the ensuing
analysis can be generalized to effectivelyd-sparse channels in
general ands-compressible channels in particular.

Finally, while statistical characterization of a sparse channel
H is critical from a communication-theoretic viewpoint, either
Bayesian (random) or non-Bayesian formulation ofH suffice
from the channel estimation perspective. In this paper, we
stick to the non-Bayesian paradigm and assume that both the
channel sparsity patternSd and the corresponding coefficients
{Hv(i, k, ℓ, m)}Sd

are deterministic but unknown.7

B. Sensing and Reconstruction

In wireless systems that rely on training-based methods for
channel estimation, the transmitted symbol takes the form

x(t) = xtr(t) + xdata(t) , 0 ≤ t ≤ T (7)

wherextr(t) and xdata(t) represent the training signal and
data-carrying signal, respectively. Because of the linearity of
H, and under the assumption ofxtr(t) being orthogonally
multiplexed with xdata(t) in time, frequency, and/or code
domain, the resulting signal at the receiver can often be parti-
tioned into two noninterfering components: one corresponding
to xtr(t) and the other corresponding toxdata(t). In order to
estimateH, training-based methods ignore the received data
and focus only on the training component of the received
signal, given by

ytr(t) = H(xtr(t)) + ztr(t) , 0 ≤ t ≤ T + τmax (8)

where ztr(t) is an NR-dimensional complex additive white
Gaussian noise (AWGN) signal that is introduced by the
receiver circuitry.

As a first step towards estimatingH, the (noisy) received
training signalytr(t) is matched filtered with the transmitted
waveforms at the receiver to obtain an equivalent discrete-time
representation of (8). The exact form of this representation
depends on a multitude of factors such as selectivity of the
channel (nonselective, frequency selective, etc.), type of the
signaling waveform used for sensing (single- or multi-carrier),

7We refer the reader to [54] for a Bayesian formulation of sparse channels.
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and number of transmit antennas. While this gives rise to a
large number of possible scenarios to be examined, each one
corresponding to a different combination of these factors,it
turns out that in each case elementary algebraic manipulations
of the matched-filtered output result in the following general
linear form at the receiver [30], [32], [34], [35]

[

y1 . . . yNR

]

︸ ︷︷ ︸

Y

=

√
E

NT
X

[

hv,1 . . . hv,NR

]

︸ ︷︷ ︸

Hv

+

[

z1 . . . zNR

]

︸ ︷︷ ︸

Z

. (9)

Here,E/NT is the average training energy budget per trans-
mit antenna(E being defined as:E =

∫ T

0
‖xtr(t)‖2

2dt), the
vectorshv,i, i = 1, . . . , NR, areNT L(2M + 1)-dimensional
complex vectors comprising of the virtual channel coefficients
{Hv(i, k, ℓ, m)}, and we let the AWGN matrixZ have zero-
mean, unit-variance, independent complex-Gaussian entries.
Thus, E is a measure of the training SNR at each receive
antenna. Finally, thesensing matrixX is a complex-valued
matrix having D/NR = NT L(2M + 1) columns that are
normalized in a way such that‖X‖2

F = D/NR, where‖ · ‖F

denotes the Frobenius norm. The exact form and dimensions
of X (and hence the dimensions ofY and Z) in (9) are
completely determined byxtr(t) and the class to whichH
belongs; concrete representations ofX corresponding to the
various training signals and channel configurations studied in
the paper can be found in Sections V and VI.

As noted in Section I-A, training-based channel estimation
methods are characterized by the two distinct—but highly
intertwined—operations of sensing and reconstruction. The
reconstruction aspect of a training-based method involves
designing either a linear or a nonlinear procedure that produces
an estimate ofHv at the receiver from the knowledge ofE ,X,
andY: Hest

v = Hest
v (E ,X,Y), where the notation is meant to

signify the dependence ofHest
v on E ,X, andY. The resulting

estimate also has associated with it a reconstruction errorgiven
by E

[
‖Hv − Hest

v ‖2
F

]
, whereE denotes the expectation with

respect to the distribution ofZ. The corresponding sensing
component at the transmitter involves probing the channel
with a training signal of fixed energy and temporal dimensions
that reduces this reconstruction error the most. Specifically, a
training signalxtr(t) has associated with it the concepts of
temporal training dimensions, defined asMtr = #{temporal
signal space dimensions occupied byxtr(t)}, and receive
training dimensions, defined asNtr = Mtr×NR, as a measure
of its spectral efficiency. Therefore, given fixed training en-
ergy budgetE and receive training dimensionsNtr dedicated
to xtr(t), the effectiveness of any particular training-based
method is measured in terms of the minimum reconstruction
error, min

xtr(t)
E

[
‖Hv − Hest

v ‖2
F

]
, achieved by that method.

Traditional training-based methods such as those in [5]–[12]
have been developed under the implicit assumption that the
number of DoF,d, in H is roughly the same as the maximum
possiblenumber of its DoF:d ≈ D. One direct consequence of
this assumption has been that linear procedures have become

the de-facto standard for reconstruction in much of the existing
channel estimation literature. In particular, with some notable
exceptions such as [19]–[27], many training-based methods
proposed in the past make use of the minimum least-squares
(LS) error criterion—or its Bayesian counterpart, the minimum
mean squared error criterion, for a Bayesian formulation of
H—to obtain an estimate ofHv from Y

HLS
v = arg min

H

∥
∥
∥
∥
∥
Y −

√

E
NT

XH

∥
∥
∥
∥
∥

2

F

. (10)

This is a well-known problem in the statistical estimation
literature [55] and its closed-form solution is given byHLS

v =
√

NT /E X†Y, whereX† is the Moore–Penrose pseudoinverse
of X. In order to ensure that (10) returns a physically meaning-
ful estimate—in the sense thatHLS

v equalsHv in the noiseless
setting—reconstruction based on the LS error criterion further
requires that the sensing matrixX has at least as many rows
asD/NR, resulting in the following form forHLS

v

HLS
v =

√

NT

E (XHX)−1XHY (11)

where it is assumed that the number of receive training
dimensionsNtr is such thatX has full column rank. It can be
shown in this case that the accompanying reconstruction error
of a LS-based channel estimation method is

E
[
∆

(
HLS

v

)]
=

trace
(
(XHX)−1

)
· NRNT

E (12)

where we have used the notation∆(H) = ‖Hv − H‖2
F in

the above equation. This expression can be simplified further
through the use of the arithmetic–harmonic means inequality,
resulting in the following lower bound for the reconstruction
error (see, e.g., [56, Th 4.7])

E
[
∆

(
HLS

v

)] (a)

≥ (D/NR)2 · NRNT

trace(XHX) · E
(b)
=

D · NT

E (13)

where the equality in(a) holds if and only if X has or-
thonormal columns, while(b) follows from the fact that
trace(XHX) = ‖X‖2

F = D/NR. Consequently, an optimal
training signal for LS-based estimation methods is the one that
leads toXHX = INT L(2M+1), and much of the emphasis in
the previously proposed LS-based training methods has been
on designing training signals that are not only optimal in the
reconstruction error sense, but are also spectrally efficient in
the receive training dimensions sense [5]–[12].

IV. COMPRESSEDCHANNEL SENSING: MAIN RESULTS

The preceding discussion brings forth several salient char-
acteristics of traditional training-based methods such asthose
in [5]–[12]. First, these methods more or less rely on LS-
based linear reconstruction strategies, such as the one in (11),
at the receiver to obtain an estimate ofHv. Second, because of
their reliance on linear reconstruction procedures, the training
signals used in these methods must be such that the resulting
sensing matrixX has at leastD/NR rows. As noted in
Table II, depending upon the type of signaling waveforms
used for training and the channel class to whichH belongs,
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this requirement often translates into the condition that the
number of receive training dimensions dedicated toxtr(t)
must be at least as large as the maximum number of DoF in
H: Ntr = Ω(D);8 see Sections V and VI for further details
on this condition. Third, regardless of the eventual choiceof
training signals, the reconstruction error in these methods is
given byE[∆(HLS

v )] = Ω(D · (NT /E)).
In the light of the above observations, a natural question

to ask here is:how good is the performance of traditional
LS-based training methods?In fact, if one assumes thatH
is not sparse(in other words,d = D) then it is easy to
argue the optimality of these methods [55]: (i)HLS

v in this
case is also the maximum-likelihood estimate ofHv, and
(ii) the reconstruction error lower bound (13) is also the
Cramer–Rao lower bound, which—as noted earlier—can be
achieved through an appropriate choice of the training signal.
However, it is arguable whether LS-based channel estimation
methods are also optimal for the case whenH is either
exactly or effectivelyd-sparse. In particular, note that exactly
d-sparse channels are completely characterized by2d parame-
ters, which correspond to the locations and values of nonzero
virtual channel coefficients. Our estimation theory intuition
therefore suggests that perhapsE[∆(Hest

v )] = Ω(d · (NT /E))
and, for signaling and channel configurations that require
Ntr = Ω(D) in the case of LS-based estimation methods,
Ntr = Ω(d) are the actual fundamental scaling limits in
sparse-channel estimation.

In the sequel, we present new training-based estimation
methods for six particular signaling and channel configurations
(see Table II) and show that our intuition is indeed correct
(modulo polylogarithmic factors). In particular, a key feature
of the proposed approach to estimating sparse multipath
channels—first presented in [30] and [32] for frequency-
and doubly-selective single-antenna channels, respectively, and
later generalized in [33]–[35], [37], [38] to other channel
classes—is the use of a sparsity-inducing mixed-norm op-
timization criterion for reconstruction at the receiver that
is based on recent advances in the theory of compressed
sensing [29]. This makes the proposed approach—termed as
compressed channel sensing (CCS)—fundamentally different
from the traditional LS-based training methods: the former
relies on a nonlinear reconstruction procedure while the latter
utilize linear reconstruction techniques. Note that a number
of researchers in the recent past have also proposed various
training-based methods for sparse multipath channels thatare
based on nonlinear reconstruction techniques [19]–[27]. The
thing that distinguishes CCS from the prior work is that
the CCS framework is highly amenable to (scaling) analysis.
Specifically, in order to give a summary of the results to come,
define theconditionalsparsity pattern associated with thei-th
resolvable AoA to beSd(i) = {(i, k, ℓ, m) : (i, k, ℓ, m) ∈ Sd}.
Then it is shown in the sequel that in the limit of large signal
space dimension:

[R1] The performance of CCS in terms of the reconstruc-
tion error is provably better than the LS-based train-

8Recall Landau’s notation:fn = Ω(gn) if ∃ co > 0, no : ∀n ≥ no, fn ≥
co gn; alternatively, we can also writegn = O(fn).

ing methods. The training signals and reconstruction
procedures specified by CCS for the signaling and
channel configurations studied in the paper ensure that
∆(Hccs

v ) = O(d · (NT /E) · logD) with high probability.
[R2] CCS is often more spectrally efficient than the LS-

based methods. Assume that the conditional sparsity
of each AoA is equal to the average AoA sparsity:
|Sd(i)| = d/NR, i = 1, . . . , NR. Then while LS-based
methods require thatNtr = Ω(D) for certain signal-
ing and channel configurations, CCS only requires that
Ntr = Ω(d×polylog factor) for the same configurations.

Conversely,[R1] and [R2] together imply that CCS achieves
a target reconstruction error scaling using far less energyand,
in many instances, latency and bandwidth than that dictated
by the traditional LS-based training methods.

Table II provides a compact summary of the CCS scal-
ing results as they pertain to the six signaling and channel
configurations studied in the paper and compares them to
the corresponding results for traditional LS-based training
methods. One thing to point out in this table is the CCS
condition No = Ω(d2 · log D) when using single-carrier
signaling waveforms for estimating single-antenna channels.
This conditionseemsto be nonexistent for LS-based methods.
Note, however, that in order to make the columns ofX as close
to orthonormal as possible—a necessary condition for the LS-
based reconstruction to achieve the lower bound of (13)—
traditional LS-based training methods implicitly requirethat
the temporal signal space dimensions be as large as possible:
No ր ∞. As such, the CCS condition is in fact a relaxation
of this implicit requirement for LS-based methods.

As is evident from the preceding discussion and analysis, the
scaling performance of CCS is a significant improvement over
that of traditional LS-based training methods when it comes
to sparse-channel estimation. And while we have purposely
avoided providing concrete details of the CCS framework
up to this point so as not to clutter the presentation, the
rest of the paper is primarily devoted to discussing the exact
form of training signals and reconstruction procedures used by
CCS for the configurations listed in Table II. However, since
CCS builds on top of the theoretical framework provided by
compressed sensing, it is advantageous to briefly review some
facts about compressed sensing before proceeding further.

A. Review of Compressed Sensing

Compressed sensing (CS) is a relatively new area of the-
oretical research that lies at the intersection of a number of
other research areas such as signal processing, statistics, and
computational harmonic analysis; see [57]–[59] for a tutorial
overview of some of the foundational developments in CS. In
order to review the theoretical underpinnings of CS, consider
the following classical linear measurement model

ri = ψT
i θ + ηi , i = 1, . . . , n (14)

where (·)T denotes the transpose operation,ψi ∈ Cp is a
knownmeasurement vector, θ ∈ Cp is an unknown vector, and
ηi ∈ C is either stochastic noise or deterministic perturbation.
This measurement model can also be written compactly using
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TABLE II
SUMMARY AND COMPARISON OF CCSRESULTS FOR THE SIGNALING AND CHANNEL CONFIGURATIONS STUDIED IN THE PAPERa

Channel Classification Signaling Waveform
Traditional LS-Based Methods Compressed Channel Sensingb,c

Recon. Error Condition Recon. Error Condition

Frequency-Selective Single-Antenna
(D = L)

Single-Carrier [30] � D
E

— � d
E
· log D No � d2 · log D

Multi-Carrier [30]–[32] � D
E

Ntr � D � d
E
· log D Ntr � d · log5 No

Doubly-Selective Single-Antenna
(D = L(2M + 1))

Single-Carrier [34] � D
E

— � d
E
· log D No � d2 · log D

Multi-Carrier [32]–[34] � D
E

Ntr � D � d
E
· log D Ntr � d · log5 No

Nonselective Multiple-Antenna
(D = NRNT )

[35] � D·NT

E
Ntr � D � d·NT

E
· log D Ntr � d · log D

d

Frequency-Selective Multiple-Antenna
(D = NRNT L)

Multi-Carrier [35], [38] � D·NT

E
Ntr � D � d·NT

E
· log D Ntr � d · log5 No

a Displayed using Hardy’s notation for compactness:fn � gn andfn � gn for fn = Ω(gn) andfn = O(gn), respectively.
b The results in the first column hold with probability that approaches one with increasing channel and signal space dimensions.
c The last two conditions in the second column are for the case when the conditional sparsity of each AoA equals the average AoA sparsity.

the matrix-vector representation:r = Ψθ + η. Here, the
measurement matrixΨ is comprised of the measurement
vectors as its rows and the goal is to reliably reconstructθ

from the knowledge ofr andΨ.
One of the central tenets of CS theory is that ifθ is sparse

(has only a few nonzero entries) or approximately sparse
(when reordered by magnitude, its entries decay rapidly), then
a relatively small number—typically much smaller thanp—of
appropriately designed measurement vectors can capture most
of its salient information. In addition, recent theoretical results
have established thatθ in this case can be reliably recon-
structed fromr by making use of either tractable mixed-norm
optimization programs [39]–[41], efficient greedy algorithms
[28], [60], or fast iterative thresholding methods [61], [62];
see [63] for the references of other relevant CS reconstruction
procedures. As one would expect, proofs which establish that
certain reconstruction procedures reliably reconstructθ in the
end depend only upon some property of the measurement
matrix Ψ and the level of sparsity (or approximate sparsity)
of θ. In particular, one key property ofΨ that has been
very useful in proving the optimality of a number of CS
reconstruction procedures is the so-calledrestricted isometry
property (RIP) [64].

Definition 2 (Restricted Isometry Property):Let Ψ be an
n × p (real- or complex-valued) matrix having unitℓ2-norm
columns. For each integerS ∈ N, we say thatΨ satisfies
the RIP of order S with parameterδS ∈ (0, 1)—and write
Ψ ∈ RIP (S, δS)—if for all θ : ‖θ‖0 ≤ S

(1 − δS)‖θ‖2
2 ≤ ‖Ψθ‖2

2 ≤ (1 + δS)‖θ‖2
2 (15)

where‖ · ‖2 denotes theℓ2-norm of a vector and‖ · ‖0 counts
the number of nonzero entries of its argument.

Note that the RIP of orderS is essentially a statement about
the singular values of alln×S submatrices ofΨ. And while no
algorithms are known to date that can explicitly check the RIP
for a given matrix in polynomial time, one of the reasons that
has led to the widespread applicability of CS theory in various
application areas is the revelation that certain probabilistic
constructions of matrices satisfy the RIP with high probability.
For example, let then× p matrix Ψ be such that either (i) its

entries are drawn independently from aN (0, 1
n ) distribution,

or (ii) its rows are first sampled uniformly at random (without
replacement) from the set of rows of ap×p unitary matrix with
entries of magnitudeO(1/

√
p) and then scaled by a factor of

√

p/n. Then, for everyδS ∈ (0, 1), it has been established that
Ψ ∈ RIP (S, δS) with probability exceeding1−e−O(n) in the
former case ifn = Ω(S · log p

S ) [65], while Ψ ∈ RIP (S, δS)

with probability exceeding1 − p−O(δ2

S) in the latter case as
long asn = Ω(S · log5 p) [66].9

As noted earlier, there exist a number of CS reconstruction
procedures in the literature that are based on the RIP charac-
terization of measurement matrices. The one among them that
is the most relevant to our formulation of the sparse-channel
estimation problem—and one that will be frequently referred
to in the sequel—goes by the name ofDantzig selector(DS)
[40]. In particular, there are three main reasons that we have
chosen to make the DS an integral part of our discussion on
the CCS framework. First, it is one of the few reconstruction
methods in the CS literature that are guaranteed to perform
near-optimally vis-à-vis stochastic noise—the others being
the risk minimization method of Haupt and Nowak [67]
and the lasso [41], which also goes by the name of basis
pursuit denoising [39]. Second, unlike the method of [67],
it is highly computationally tractable since it can be recast
as a linear program. Third, it comes with the cleanest and
most interpretable reconstruction error bounds that we know
for both sparse and approximately sparse signals. It is worth
mentioning here though that some of the recent results in the
literature seem to suggest that the lasso also enjoys many of
the useful properties of the DS, including the reconstruction
error bounds that appear very similar to those of the DS [68],
[69]. As such, making use of the lasso in practical settings
can sometimes be more computationally attractive because of
the availability of a wide range of efficient software packages,
such as GPSR [70] and SpaRSA [71], for solving it. However,
since a RIP-based characterization of the lasso that parallels
that of the DS does not exist to date, we limit ourselves in

9In fact, the actual condition in the latter case only requires that n =
Ω(S log2(p) log(S log p) log2(S)) [66]; for the sake of compactness, how-
ever, we use the lax requirementn = Ω(S · log5 p) in the paper.
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this paper to discussing the DS only. The following theorem,
which is a slight modification of the results of [40], states the
reconstruction error performance of the DS foranyθ ∈ Cp.10

Theorem 1 (The Dantzig Selector [40]):Let θ ∈ C
p be a

deterministic but unknown signal and letΨθ + η = r ∈ Cn

be a vector of noisy measurements, where then×p matrix Ψ

has unitℓ2-norm columns and the complex AWGN vectorη is
distributed asCN (0n, σ2In). Further, letΨ ∈ RIP (2S, δ2S)
for someδ2S < 1/3 and chooseλ =

√

2σ2(1 + a) log p for
any a ≥ 0. Then the estimateθDS obtained as a solution to
the optimization program

θDS = arg min
θ̃∈Cp

‖θ̃‖1 s.t. ‖ΨH(r − Ψθ̃)‖∞ ≤ λ (DS)

satisfies

‖θDS − θ‖2
2 ≤ c2

1 min
1≤m≤S

(

λ
√

m +
‖θ − θm‖1√

m

)2

(16)

with probability at least1−2
(√

π(1 + a) log p · pa
)−1

. Here,

‖ · ‖1 and ‖ · ‖∞ denote theℓ1- and ℓ∞-norm of a vector,
respectively,θm is the vector formed by setting all but them
largest (in magnitude) entries of the true signalθ to zero, and
the constantc1 = 16/ (1 − 3δ2S)

2.
In the sequel, we will often make use of the shorthand

notation θDS = DS(Ψ, r, λ) to denote a solution of the
optimization program (DS) that takes as inputΨ, r, and
λ. A few remarks are in order now concerning the perfor-
mance of (DS). First, note that (16) is akin to saying that
if Ψ ∈ RIP (2S, δ2S) then θDS more or less recoversS
largest (in magnitude) entries ofθ that are above the noise
floor σ2. In particular, (16) implies that: (i) Ifθ is S-sparse
then ‖θDS − θ‖2

2 = O(Sσ2 log p), which has roughly the
same scaling behavior as the usual parametric error ofSσ2

[55]; and (ii) If θ is s-compressible andS ≥ (R/σ)1/s

then ‖θDS − θ‖2
2 = O

(
Rs(σ2)1−s/2 log p

)
, which has the

same scaling behavior as the minimax error fors-compressible
objects [40]. Second, the probability deviation bound (16)can
be converted into a similar-looking bound on the expected
value of‖θDS−θ‖2

2 at the expense of some extra work. This is
due to the well-known fact that, for positive random variables
X , we haveE[X ] =

∫ t

0 Pr{X > t}dt. Third, although the
parametera in Theorem 1 affects the upper bound (16) and
the accompanying probability of failure differently, it does not
affect the scaling behavior of the reconstruction error. This is
because of the fact that the upper bound (16) increases only
linearly with increasinga, whereas the probability of failure
decreases exponentially with increasinga. An obvious choice
for a in this regard isa = 1, which results in the probability
of failure 2(

√
π log p · p)−1. Finally, note that the statement

of Theorem 1 assumes thatΨ ∈ RIP (2S, δ2S) almost surely.
However, if this is not true then in this case Theorem 1 simply
implies that (16) is satisfied with probability at least1 −
2 max

{
2(

√

π(1 + a) log p ·pa)−1, Pr{Ψ /∈ RIP (2S, δ2S)}
}

.
We are now ready to discuss the specifics of CCS for sparse
multipath channels.

10We refer the reader to the discussion following [56, Th. 2.13] for an
outline of the differences between Theorem 1 and the resultsstated in [40].

V. COMPRESSEDCHANNEL SENSING: SINGLE-ANTENNA

CHANNELS

A. Estimating Sparse Frequency-Selective Channels

For a single-antenna channel that is frequency-selective,the
virtual representation (3) of the channel reduces to

H̃(f) =

L−1∑

ℓ=0

Hv(ℓ)e−j2π ℓ
W

f (17)

and the corresponding received training signal is [cf. (8)]

ytr(t) ≈
L−1∑

ℓ=0

Hv(ℓ)xtr(t − ℓ/W ) +

ztr(t) , 0 ≤ t ≤ T + τmax. (18)

In general, two types of signaling waveforms are commonly
employed to communicate over a frequency-selective chan-
nel, namely, (single-carrier)spread spectrum(SS) waveforms
and (multi-carrier)orthogonal frequency division multiplexing
(OFDM) waveforms. We begin our discussion of the CCS
framework for sparse frequency-selective channels by focusing
first on SS signaling and then on OFDM signaling.

1) Spread Spectrum Signaling: In the case of SS signaling,
the training signalxtr(t) can be represented as

xtr(t) =
√
E

No−1∑

n=0

xng(t − nTc) , 0 ≤ t ≤ T (19)

whereg(t) is a unit-energychip waveform(
∫
|g(t)|2dt = 1),

Tc ≈ 1/W is the chip duration, and{xn} represents theNo-
dimensional spreading code associated with the training signal
that also has unit energy(

∑

n |xn|2 = 1). In this case, chip-
matched filtering the received training signal (18) yields the
discrete-time representation [30]

y =
√
E (x ∗ hv) + z =⇒ y =

√
E Xhv + z (20)

where ∗ denotes discrete-time convolution,hv ∈ CL is the
vector of virtual channel coefficients{Hv(ℓ)}, andx ∈ CNo

is comprised of the spreading code{xn}. Further, define
Ño = No + L − 1. Thenz is an AWGN vector distributed as
CN (0Ño

, IÑo
), while X is anÑo×L Toeplitz (convolutional)

matrix whose first row and first column can be explicitly

written as
[

x0 0T
L−1

]

and
[

xT 0T
L−1

]T
, respectively.

Note that (20) is the single-antenna version of the stan-
dard form (9). Therefore, from (13), the reconstruction error
scaling of LS-based training methods in this case is given by
E[∆(hLS

v )] = Ω(L/E). We now describe the CCS approach
to estimating frequency-selective channels using SS signaling,
which was first described in [30]. In particular, we show that
for d-sparse channels it leads to an improvement of a factor
of aboutL/d (modulo alog factor).

CCS -1 – SS Training and Reconstruction

Training: Pick the spreading code{xn}No−1
n=0 associated

with xtr(t) to be a sequence of independent and identi-
cally distributed (i.i.d.) Rademacher variables taking values
+1/

√
No or −1/

√
No with probability1/2 each.
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Reconstruction: Fix any a ≥ 0 and choose the parameter
λ =

√

2E(1 + a) log L. The CCS estimate ofhv is then given
as follows:hccs

v = DS(
√
E X,y, λ).

The following theorem summarizes the performance of CCS -1
in terms of the reconstruction error scaling.

Theorem 2:Pickδ2d ∈ (0, 1/3), c2 ∈ (0, δ2
2d/4), and define

c3 = 48/(δ2
2d − 4c2). Next, suppose that the number of

temporal signal space dimensionsNo (= TW ) ≥ c3 d2 log L.
Then, under the assumption that‖hv‖0 ≤ d, the CCS estimate
of hv satisfies

∆(hccs
v ) ≤ c2

0 ·
d

E · log L (21)

with probability ≥ 1 − 2 max
{

2
(
π(1 + a) log L · L2a

)−1/2
,

exp(− c2No

4d2 )
}

. Here, the absolute constantc0 > 0 is defined

asc0 = 4
√

2(1 + a)/(1 − 3δ2d).
Note that the frequency-selective channel beingd-sparse

simply means that‖hv‖0 ≤ d ≪ L. Therefore, the proof
of this theorem essentially follows from the statement of
Theorem 1 and [30, Th. 2] (also, see [56, Th. 3.5]), where
it was shown thatPr{X 6∈ RIP (2d, δ2d)} ≤ exp(− c2No

4d2 ) for
any δ2d ∈ (0, 1/3), providedNo ≥ c3 d2 log L.

Remark 1:Theorem 2 is stated above in its entire generality
and, in its current form, depends on three key parameters:
δ2d, c2, and a. Nevertheless, it is instructive to specify one
possible choice of these parameters so as to be a little more
concrete regarding the scaling performance of CCS -1. In
this regard, note that the first term in themax expression
in Theorem 2 is upperbounded byL−a for any a ≥ 1. It
therefore makes intuitive sense to choosea = 1 and pickc2

such that we haveexp(− c2No

4d2 ) ≤ L−1. This in turn requires
that c2 = δ2

2d/8 and therefore if one picksδ2d = 1/4 then
Theorem 2 implies that∆(hccs

v ) ≤ 1024 · d
E · log L with

probability exceeding1−2L−1 as long asNo ≥ 1536·d2 log L.
Note that explicit values of the numerical constants can also
be obtained in a similar manner for subsequent theorems in
the paper. It is worth pointing out here though that extensive
simulations carried out in [30]–[34], [36], [37] suggest that
actual values of the CCS numerical constants are in fact much
smaller than the ones predicted by the CCS theory.

2) OFDM Signaling: If OFDM signaling is used for
communication then the training signal takes the form

xtr(t) =

√
E

Ntr

∑

n∈Str

g(t)ej2π n
T

t , 0 ≤ t ≤ T (22)

where g(t) is simply a prototype pulse having unit energy,
Str ⊂ S = {0, 1, . . . , No−1} is the set of indices ofpilot tones
used for training, andNtr—the number of receive training
dimensions—denotes the total number of pilot tones in this
case,Ntr = |Str|, and is a measure of the spectral efficiency
of xtr(t). Finally, matched filtering the received training signal
(18) with the OFDM basis waveforms{g(t)ej2π n

T
t}Str

and
collecting the output into a vector again yields the standard
form [1]: y =

√
E Xhv + z. The difference here is that

X is now an Ntr × L sensing matrix that is comprised

of
{

1√
Ntr

[

1 ωn·1
No

. . . ω
n·(L−1)
No

]

: n ∈ Str

}

as its rows,

whereωNo
= e−j 2π

No , andz ∼ CN (0Ntr
, INtr

).11

Note that the form ofX in the case of OFDM signaling
imposes the condition thatNtr ≥ L for X to have full column
rank. In order to estimate a frequency-selective channel using
OFDM signaling, LS-based methods—such as [6]—therefore
require that Ntr = Ω(L) and, from (13), at best yield
E[∆(hLS

v )] = Ω(L/E). In contrast, we now outline the CCS
approach to this problem—described initially in [30]–[32]—
and quantify its advantage over traditional LS-based training
methods for sparse channels.

CCS -2 – OFDM Training and Reconstruction
Training: Pick Str—the set of indices of pilot tones—to

be a set ofNtr indices sampled uniformly at random (without
replacement) fromS = {0, 1, . . . , No − 1}.

Reconstruction: Same as in CCS -1 (but with the sensing
matrix X specified as above).

Below, we summarize the performance of CCS -2 in terms of
the reconstruction error scaling.

Theorem 3:SupposeNo, d > 2 and pick δ2d ∈ (0, 1/3).
Next, let the number of pilot tonesNtr ≥ 2c4d log5 No. Then
the reconstruction error ofhccs

v satisfies (21) with probability

at least1− 2 max
{

2
(
π(1+ a) log L ·L2a

)−1/2
, 10N

−c5δ2

2d
o

}

.
Here,c4, c5 > 0 are absolute numerical constants that do not
depend onNtr, No, or d.

The proof of this theorem follows trivially from Theorem 1
and the fact thatX in this case corresponds to acolumn
submatrixof a matrix whose (appropriately normalized) rows
are randomly sampled from anNo ×No unitary DFT matrix.
Therefore, from the definition of RIP and [66, Th. 3.3],
Pr{X 6∈ RIP (2d, δ2d)} ≤ 10N

−c5δ2

2d
o for any δ2d ∈ (0, 1/3),

providedNtr ≥ 2c4d log5 No.

B. Estimating Sparse Doubly-Selective Channels

In the case of a single-antenna channel that is doubly-
selective, the virtual representation (3) reduces to

H̃(t, f) =

L−1∑

ℓ=0

M∑

m=−M

Hv(ℓ, m)e−j2π ℓ
W

fej2π m
T

t (23)

and the received training signal can be written as

ytr(t) ≈
L−1∑

ℓ=0

M∑

m=−M

Hv(ℓ, m)ej2π m
T

txtr(t − ℓ/W ) +

ztr(t) , 0 ≤ t ≤ T + τmax . (24)

Signaling waveforms that are often used to communicate
over a doubly-selective channel can be broadly categorized
as (single-carrier) SS waveforms and (multi-carrier)short-
time Fourier (STF) waveforms, which are a generalization of
OFDM waveforms for doubly-selective channels [72], [73].
Below, we discuss the specifics of the CCS framework for
sparse doubly-selective channels as it pertains to both SS and
STF signaling waveforms.

11Note thatX has this particular form as long asT ≫ τmax [1], which
also impliesNo ≫ L.
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1) Spread Spectrum Signaling: The SS training signal
xtr(t) in the case of a doubly-selective channel has the same
form as in (19). The difference here is that the chip-matched-
filtered output in this case looks different from the one in (20).
Specifically, define agaiñNo = No+L−1. Then chip-matched
filtering the received training signal (24) yields [34]

yn =
√
E

L−1∑

ℓ=0

M∑

m=−M

Hv(ℓ, m)ej2π m
No

nxn−ℓ +

zn , n = 0, 1, . . . , Ño − 1. (25)

Nevertheless, it is established in [34,§ III-A] that this received
training data can be represented into the standard form (9) by
collecting it into a vectory ∈ CÑo and algebraically manipu-
lating the right-hand side of (25). That is,y =

√
E Xhv + z,

wherehv ∈ CL(2M+1) is the vector of channel coefficients
{Hv(ℓ, m)}, z ∼ CN (0Ño

, IÑo
), and the sensing matrixX is

an Ño × L(2M + 1) block matrix of the form

X =
[

X−M . . . X0 . . . XM

]

. (26)

Here, each blockXm has dimensions̃No × L and is of the
form Xm = WmT, whereWm is anÑo×Ño diagonal matrix
given byWm = diag(ω−m·0

No
, ω−m·1

No
, . . . , ω

−m·(Ño−1)
No

) andT

is anÑo ×L Toeplitz matrix whose first row and first column

are given by
[

x0 0T
L−1

]

and
[

xT 0T
L−1

]T
, respectively.

Note that under the assumption that the doubly-selective
channel is underspread(τmaxνmax ≪ 1), we have the condi-
tion TW ≫ τmaxνmaxTW ⇒ Ño > L(2M + 1). This—
combined with the form ofX—ensures that the sensing matrix
in this case has full column rank and training-based methods
can use the LS criterion (10) without further conditions, result-
ing in E[∆(hLS

v )] = Ω(L(2M +1)/E). Below, we describe the
CCS approach to estimating doubly-selective channels using
SS signaling, first presented in [34], and provide an upper
bound on the corresponding reconstruction error ford-sparse
channels that is significantly better thanΩ(L(2M + 1)/E).

CCS -3 – SS Training and Reconstruction
Training: Same as specified in the case of CCS -1.
Reconstruction: Fix any a ≥ 0 and choose the parameter

λ =
√

2E(1 + a) log L(2M + 1). The CCS estimate ofhv is
then given as follows:hccs

v = DS(
√
E X,y, λ).

Theorem 4:Pickδ2d ∈ (0, 1/3), c6 ∈ (0, δ2
2d/8), and define

c7 = 128/(δ2
2d − 8c6). Next, suppose that the number of

temporal signal space dimensionsNo ≥ c7 d2 log L(2M + 1).
Then, under the assumption that‖hv‖0 ≤ d, the CCS estimate
of hv satisfies

∆(hccs
v ) ≤ c2

0 ·
d

E · log L(2M + 1) (27)

with probability ≥ 1 − 2 max
{

2
(

π(1 + a) log L(2M + 1) ·
(
L(2M + 1)

)2a
)−1/2

, exp(− c6No

4d2 )
}

. Here, the numerical
constantc0 > 0 is the same as defined in Theorem 2.

Note that the key ingredient in the proof of this theorem
is characterizing the RIP of the sensing matrix given in (26).

Therefore, this theorem in essence is a direct consequence of
[34, Th. 2] (also, see [56, Th. 3.9]), where it was established
that Pr{X 6∈ RIP (2d, δ2d)} ≤ exp(− c6No

4d2 ) for any value of
the parameterδ2d ∈ (0, 1/3), providedNo ≥ c7 d2 log L.

2) STF Signaling: In the case of STF signaling, which is
a generalization of OFDM signaling to counteract the time
selectivity of doubly-selective channels [72], [73], the training
signalxtr(t) is of the form

xtr(t) =

√

E
Ntr

∑

(n,m)∈Str

g(t − nTo)e
j2πmWot, t ∈ [0, T ] (28)

where g(t) is again a prototype pulse having unit energy,
Str ⊂ S = {0, 1, . . . , Nt − 1} × {0, 1, . . . , Nf − 1} is
the set of indices of STF pilot tones used for training, and
Ntr—a measure of the spectral efficiency ofxtr(t)—denotes
the total number of pilot tones:Ntr = |Str|. Here, the
parametersTo ∈ [τmax, 1/νmax] and Wo ∈ [νmax, 1/τmax]
correspond to the time and frequency separation of the STF
basis waveforms{g(t−nTo)e

j2πmWot} in the time-frequency
plane, respectively, and are chosen so thatToWo = 1 [73].
Finally, the total number of STF basis waveforms available for
communication/training areNtNf = No, whereNt = T/To

andNf = W/Wo.
For sufficiently underspread channels, corresponding to

τmaxνmax < 0.01, it has been shown in [73] that matched
filtering the received training signal (24) with the STF basis
waveforms{g(t − nTo)e

j2πmWot}Str
yields

yn,m ≈
√

E
Ntr

Hn,m + zn,m , (n, m) ∈ Str (29)

where the STF channel coefficients are related toH̃(t, f)
as Hn,m ≈ H̃(t, f)

∣
∣
(t,f)=(nTo,mWo)

. As shown in [32] and
[34, § IV-A], collection of this matched-filtered output into a
vectory ∈ CNtr followed by simple manipulations yields the
standard formy =

√
E Xhv + z, wherez ∼ CN (0Ntr

, INtr
)

and theNtr × L(2M + 1) matrix X is comprised of
{ 1√

Ntr

[

ωn·M
Nt

ω
n·(M−1)
Nt

. . . ω−n·M
Nt

]

⊗
[

1 ωm·1
Nf

. . . ω
m·(L−1)
Nf

]

: (n, m) ∈ Str

}

as its rows.12 Consequently, traditional LS-based training
methods impose the conditionNtr = Ω(L(2M + 1)) in order
to satisfy the requirement thatX has full column rank in this
setting and yield—at best—E[∆(hLS

v )] = Ω(L(2M + 1)/E).
We now describe the CCS approach to estimatingd-sparse
doubly-selective channels using STF signaling, which not only
has a lower reconstruction error scaling than the LS-based
approach but is also spectrally more efficient in the limit of
large signal space dimension.

Remark 2:Note that the main difference between [32] and
[34, § IV-A] is that [32] choosesTo and Wo such that
ToWo > 1 and uses two sets of bi-orthogonal waveforms at
the transmitter and receiver. The overall effect of this being

12Here,⊗ is used to denote the Kronecker product; also, since we have
that To ∈ [τmax, 1/νmax] andWo ∈ [νmax, 1/τmax], this implies that
Nt ≥ 2M + 1 andNf ≥ L.
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that it makes the approximation in (29) more accurate at the
expense of some loss in spectral efficiency [72].

CCS - 4 – STF Training and Reconstruction
Training: Pick Str—the set of indices of pilot tones—to

be a set ofNtr indices sampled uniformly at random (without
replacement) fromS = {0, 1, . . . , Nt−1}×{0, 1, . . . , Nf−1}.

Reconstruction: Same as in CCS -3 (with the sensing
matrix X specified as above).

Theorem 5:SupposeNo, d > 2 and pick δ2d ∈ (0, 1/3).
Next, let the number of pilot tonesNtr ≥ 2c4d log5 No.
Then the reconstruction error ofhccs

v satisfies (27) with

probability exceeding1−2 max
{

2
(

π(1+a) logL(2M + 1) ·
(
L(2M +1)

)2a
)−1/2

, 10N
−c5δ2

2d
o

}

. Here, the numerical con-
stantsc4, c5 > 0 are the same as described in Theorem 3.

Note that [32] and [34, Th. 3] specify the conditions
under which the sensing matrixX arising in this setting
satisfies RIP, and Theorem 5 follows immediately from that
characterization. This concludes our discussion of the CCS
framework for single-antenna channels; see Table II for a
summary of the results presented in this section.

VI. COMPRESSEDCHANNEL SENSING:
MULTIPLE-ANTENNA CHANNELS

A. Estimating Sparse Nonselective Channels

The virtual representation of a nonselective multiple-input
multiple-output (MIMO) channel is of the form [cf. (3)]

H̃ =

NR∑

i=1

NT∑

k=1

Hv(i, k)aR

(
i

NR

)

aH
T

(
k

NT

)

︸ ︷︷ ︸

ARHT
vAH

T

. (30)

Here,AR andAT areNR×NR andNT×NT unitary matrices
(comprising of{aR( i

NR
)} and{aT ( k

NT
)} as their columns),

respectively, andHv =
[

hv,1 . . . hv,NR

]

is anNT × NR

matrix of virtual channel coefficients in which thei-th column
hv,i ∈ CNT consists of the coefficients{Hv(i, k)} associated
with the i-th resolvable AoA.

Generally, the training signal used to probe a nonselective
MIMO channel can be written as

xtr(t) =

√
E

NT

Mtr−1∑

n=0

xn g
(

t − n

W

)

, 0 ≤ t ≤ Mtr

W
(31)

whereg(t) is a unit-energy prototype pulse, the (vector-valued)
training sequence is denoted by{xn ∈ CNT } and has energy
∑

n ‖xn‖2
2 = NT , andMtr—the number of temporal training

dimensions—denotes the total number of time slots dedicated
to training in this setting. Trivially, matched filtering the
received training signalytr(t) = H̃xtr(t)+ztr(t) in this case
with time-shifted versions of the prototype pulse yields

ỹn =

√

E
NT

H̃xn + z̃n , n = 0, . . . , Mtr − 1 (32)

where{ỹn ∈ C
NR} is the (vector-valued) received training

sequence and the AWGN vectors{z̃n} are independently

distributed asCN (0NR
, INR

). As shown in [35,§ III], pre-
multiplying theỹn’s in this case withAH

R and row-wise stack-
ing the resulting vectors into anMtr × NR matrix Y yields

the standard linear form (9):Y =
√

E
NT

XHv +Z, where the

entries ofZ are independently distributed asCN (0, 1). Here,
X is anMtr × NT matrix of the form

X =
[

x0 x1 . . . xMtr−1

]T
A∗

T (33)

where (·)∗ denotes the conjugation operation. In order to
estimate nonselective MIMO channels, traditional LS-based
methods such as those in [9], [10] therefore require that
Mtr = Ω(NT ) so as to ensure thatX has full column rank and
produce an estimate that satisfiesE[∆(HLS

v )] = Ω(NRN2
T /E).

In particular, note that the conditionMtr = Ω(NT ) means that
LS-based methods in this case require the number of receive
training dimensions to satisfyNtr = MtrNR = Ω(NRNT ).
In contrast, we now describe the CCS approach to this
problem ford-sparse channels and quantify its performance in
terms of the reconstruction error scaling and receive training
dimensions. Before proceeding further, however, recall that the
conditional sparsity pattern associated with thei-th resolvable
AoA is Sd(i) = {(i, k) : (i, k) ∈ Sd}, and define themaximum
conditional AoA sparsity as̄d = maxi |Sd(i)|.

CCS - 5 – Training and Reconstruction

Training: Pick {xn, n = 0, . . . , Mtr − 1} to be a training
sequence of i.i.d. Rademacher vectors in which each entry
independently takes the value+1/

√
Mtr or −1/

√
Mtr with

probability1/2 each.
Reconstruction: Fix any a ≥ 0 and choose the parameter

λ =
√

2E(1 + a)(log NRNT )/NT . The CCS estimate of the
NT × NR matrix Hv is then given as follows:Hccs

v =[

DS(
√

E/NT X,y1, λ) . . . DS(
√

E/NT X,yNR
, λ)

]

.

Theorem 6:Pick δ2d̄ ∈ (0, 1/3), c8 ∈ (0, δ2
2d̄

(3− δ2d̄)/48),
and definec9 = 384 log (12/δ2d̄)/(3δ2

2d̄
− δ3

2d̄
− 48c8). Next,

let the number of training time slotsMtr ≥ c9d̄ log NT .
Then, under the assumption that

∑NR

i=1 ‖hv,i‖0 ≤ d, the CCS
estimate ofHv satisfies

∆(Hccs
v ) ≤ c2

0 ·
d · NT

E · log NRNT (34)

with probability exceeding1−2 max
{

2
(

π(1+a) log NRNT ·

(NRNT )2a
)−1/2

, exp(−c8Mtr)
}

. Here, the constantc0 > 0

is the same as in Theorem 2(with δ2d̄ in place ofδ2d).
The proof of this theorem is provided in [56, Th. 4.12],

and is based on [65, Th. 5.2] and a slight modification
of the proof of Theorem 1 in [40]. Before concluding this
discussion, it is worth evaluating the minimum number of
receive training dimensions required for the CCS approach to
succeed in the case of sparse nonselective MIMO channels.
From the structure of the training signal in CCS - 5, we
have thatNtr = MtrNR = Ω(d̄ NR · log NT /d̄) for CCS,
which—modulo the logarithmic factor—always scales better
than Ntr = Ω(NRNT ) for traditional LS-based methods. In
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particular, for the case when the scattering geometry is such
that the conditional AoA sparsity is equal to the average AoA
sparsity(d̄ = d/NR), we have from the previous arguments
that CCS requiresNtr = Ω(d · log NRNT /d).

B. Estimating Sparse Frequency-Selective Channels

From (3), the virtual representation of a frequency-selective
MIMO channel can be written as

H̃(f) =

L−1∑

ℓ=0

ARHT
v(ℓ)A

H
T e−j2π ℓ

W
f (35)

where the unitary matricesAR andAT are as given in (30),
and Hv(ℓ) =

[

hv,1(ℓ) . . . hv,NR
(ℓ)

]

is an NT × NR

matrix in which thei-th columnhv,i(ℓ) ∈ CNT consists of
the coefficients{Hv(i, k, ℓ)}. As in the case of single-antenna
channels, both SS and OFDM waveforms can be used to
communicate over a frequency-selective MIMO channel. For
the sake of this exposition, however, we limit ourselves to a
block OFDM signaling structure similar to the one studied in
[11, § IV-B] and [12, § IV].

Specifically, we assume that theNo-dimensional symbol
consists ofNt ≥ NT (vector-valued) OFDM symbols. Since
signaling using a block ofNt OFDM symbols is essentially
STF signaling with parametersTo = T/Nt andWo = Nt/T ,
we make use of the STF formulation developed in Section V to
carry out the analysis in this section. In particular, the training
signal in this case can be written using the notation in (28) as

xtr(t) =

√
E

NT

∑

(n,m)∈Str

xn,m g(t − nTo)e
j2πmWot (36)

whereStr ⊂ S = {0, 1, . . . , Nt−1}×{0, 1, . . . , Nf −1} here
is again the set of indices of pilot tones used for training, while
{xn,m ∈ CNT } is the (vector-valued) training sequence having
energy

∑

Str
‖xn,m‖2

2 = NT . The main difference here from
the single-antenna formulation is that we useMtr—instead of
Ntr—to denote the total number of pilot tones (equivalently,
the number of temporal training dimensions):Mtr = |Str|.13

From [73], matched filteringytr(t) = H(xtr(t)) + ztr(t)
in this case with{g(t − nTo)e

j2πmWot}Str
yields

yn,m =

√

E
NT

Hmxn,m + zn,m , (n, m) ∈ Str (37)

where the AWGN vectors{zn,m} are independently dis-
tributed asCN (0NR

, INR
), while the (matrix-valued) channel

coefficients are related tõH(f) asHm ≈ H̃(f)
∣
∣
f=mWo

. As in
the case of nonselective MIMO channels, we can pre-multiply
the received training vectorsyn,m’s with AH

R and row-wise
stack the resulting vectorsAH

R yn,m to yield anMtr×NR ma-
trix Y. Further, as in [35,§ IV], the right-hand side of (37) can
be manipulated to express this matrix into the standard form

(9): Y =
√

E
NT

XHv + Z. Here,Hv =
[

hv,1 . . . hv,NR

]

is theNT L×NR channel matrix in which thei-th column con-
sists of the coefficients{Hv(i, k, ℓ)} associated with thei-th

13Note that the number of temporal and receive training dimensions is the
same in the case of single-antenna channels.

resolvable AoA, whileX is anMtr×NT L matrix comprising
of

{[

1 ωm·1
Nf

. . . ω
m·(L−1)
Nf

]

⊗ xT
n,mA∗

T : (n, m) ∈ Str

}

as its rows.
Once again, the form of the sensing matrixX here dictates

that Mtr = Ω(NT L) for the traditional LS-based methods
such as those in [11], [12] to obtain a meaningful estimate of
Hv, and we have from (13) thatE[∆(HLS

v )] = Ω(NRN2
T L/E)

in that case. Note that in terms of the receive training
dimensions, this implies that the LS-based methods require
Ntr = Ω(NRNT L) for frequency-selective MIMO channels.
In contrast, we now provide the CCS approach to estimating
d-sparse channels using block OFDM signaling and quantify
its performance advantage over traditional methods. The fol-
lowing discussion once again makes use of the definition of
maximum conditional sparsity within the AoA spread of the
channel:d̄ = maxi |{(i, k, ℓ) : (i, k, ℓ) ∈ Sd}|.

CCS - 6 – OFDM Training and Reconstruction

Training: Pick Str to be a set ofMtr ordered pairs
sampled uniformly at random (without replacement) from
the setS = {0, 1, . . . , NT − 1} × {0, 1, . . . , Nf − 1} and
define the corresponding sequence ofMtr training vectors as
{xn,m =

√

NT /Mtr en+1 : (n, m) ∈ Str}, whereei denotes
the i-th standard basis element ofCNT .

Reconstruction: Fix any a ≥ 0 and choose the parameter
λ =

√

2E(1 + a)(log NRNT L)/NT . The CCS estimate of
the NT L × NR matrix Hv is then given as follows:Hccs

v =[

DS(
√

E/NT X,y1, λ) . . . DS(
√

E/NT X,yNR
, λ)

]

.

Theorem 7:SupposeNo, d̄ > 2 and pick δ2d̄ ∈ (0, 1/3).
Next, choose the number of pilot tonesMtr ≥ 2c4d̄ log5 No.
Then, under the assumption that

∑NR

i=1 ‖hv,i‖0 ≤ d, the CCS
estimate ofHv satisfies

∆(Hccs
v ) ≤ c2

0 ·
d · NT

E · log NRNT L. (38)

with probability at least1− 2 max
{

2
(

π(1+ a) log NRNT L ·

(NRNT L)2a
)−1/2

, 10N
−c5δ2

2d̄
o

}

. Here, the absolute numerical
constantsc4, c5 > 0 are the same as described in Theorem 3,
while c0 = 4

√

2(1 + a)/(1 − 3δ2d̄).
The proof of this theorem is omitted here for brevity, but

depends to a large extent on first characterizing the RIP
of the sensing matrixX arising in this setting using the
proof technique of [34, Th. 3] and then essentially follows
along the lines of the proof of Theorem 6 in [56]. One key
observation from the description of the training signal above
is that Ntr = Ω(d̄ NR · log5 NT Nf) for CCS. In particular,
for the case of conditional AoA sparsity being equal to the
average AoA sparsity (and sinceNt ≥ NT ), this implies
that CCS requiresNtr = Ω(d · log5 No) in this setting
as opposed toNtr = Ω(NRNT L) for traditional LS-based
training methods—a significant improvement in terms of the
training spectral efficiency when operating at large bandwidths
and with large plurality of antennas.
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VII. D ISCUSSION

There is a large body of physical evidence that suggests that
multipath signal components in many wireless channels tend
to be distributed as clusters within their respective channel
spreads. Consequently, as the world transitions from single-
antenna communication systems operating at small bandwidths
(typically in the megahertz range) to multiple-antenna ones
operating at large bandwidths (possibly in the gigahertz range),
the representation of such channels in appropriate bases starts
to look sparse. This has obvious implications for the de-
sign and implementation of training-based channel estimation
methods. Since—by definition—theeffectiveintrinsic dimen-
sion,d, of sparse multipath channels tends to be much smaller
than their extrinsic dimension,D, one expects to estimate them
using far fewer communication resources than that dictated
by traditional methods based on the LS criterion. Equally
importantly, however, sparsity of multipath channels alsohas
implications for the design and implementation of the commu-
nication aspects of a wireless system that is equipped with a
limited-rate feedback channel. First, if the channel-estimation
module at the receiver yields a sparse estimate of the channel
(something which LS-based reconstruction fails to accomplish)
then—even at a low rate—that estimate can also be reliably
fed back to the transmitter. Second, this reliable knowledge
of the channel sparsity structure at both the transmitter and
the receiver can be exploited by agile transceivers, such asthe
ones in [74], for improved communication performance.

In this paper, we have described a new approach to esti-
mating multipath channels that have a sparse representation in
the Fourier basis. The proposed approach is based on some of
the recent advances in the theory of compressed sensing and
is accordingly termed as compressed channel sensing (CCS).
Ignoring polylogarithmic factors, two distinct features of CCS
are: (i) it has a reconstruction error that scales likeO(d) as
opposed toΩ(D) for traditional LS-based methods, and (ii)
it requires the number of receive training dimensions,Ntr,
to scale likeNtr = Ω(d) for certain signaling and channel
configurations as opposed toNtr = Ω(D) for LS-based
methods. It is also worth pointing out here that the CCS results
presented in Section V-B using STF signaling waveforms have
been generalized in [33] to channel representations that make
use of a basis other than the Fourier one. Similarly, the CCS
results presented in Section VI-B have been generalized in
[38] to frequency-selective MIMO channels usingNt = 1
OFDM symbols and in [56,§ 4.5.2] to doubly-selective MIMO
channels using STF signaling waveforms.

Admittedly, there are several other theoretical and practical
aspects of CCS that need discussing but space limitations
forbid us from exploring them in detail in this paper. Below,
however, we briefly comment on some of these aspects. First,
while there is no discussion of the scaling optimality of CCS
in this paper, it has been shown in [30], [34] that its theoretical
performance for single-antenna sparse channels comes within
a (poly)logarithmic factor of an (unrealizable) training-based
method that clairvoyantly knows the channel sparsity pattern.
Somewhat similar theoretical arguments can be made to argue
the near-optimal scaling nature of CCS for multiple-antenna

sparse channels also. Second, extensive numerical simulations
carried out in [30]–[34], [36], [37] for a number of practically
relevant scenarios have established that the performance of
CCS is markedly superior to that of traditional methods based
on the LS criterion and of nontraditional methods based on
MUSIC and ESPRIT algorithms [75]. Note that the fact that
parametric methods such as MUSIC and ESPRIT are not opti-
mal for estimating sparse channels is hardly surprising. This is
because it is possible for a channel to have a small number of
resolvablepaths but still have a very large number of underly-
ing physicalpaths, especially in the case of diffuse scattering.
Third, as noted in Section III-A, one expects the representation
of real-world multipath channels in certain bases to be only
effectively sparse because of practical constraints such as
the leakage effect, diffuse scattering, and nonideal filters at
the transmitter and receiver. While our primary focus in this
paper has been on characterizing the scaling performance of
CCS for exactly sparse channels, it works equally well for
effectively sparse channels thanks to the near-optimal nature
of the Dantzig selector. Finally, and perhaps most importantly
for the success of the envisioned wireless systems, CCS
can be leveraged to design efficient training-based methods
for estimating sparsenetworkchannels—a critical component
of the emerging area of cognitive radio in which wireless
transceivers sense and adapt to the wireless environment for
enhanced spectral efficiency and interference management.
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