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ABSTRACT

Compressive Sampling is an emerging theory that is based
on the fact that a relatively small number of random pro-
jections of a signal can contain most of its salient informa-
tion. In this paper, we introduce the concept of Compressive
Wireless Sensing for sensor networks in which a fusion center
retrieves signal field information from an ensemble of spa-
tially distributed sensor nodes. Energy and bandwidth are
scarce resources in sensor networks and the relevant metrics
of interest in our context are 1) the latency involved in in-
formation retrieval; and 2) the associated power-distortion
trade-off. It is generally recognized that given sufficient prior
knowledge about the sensed data (e.g., statistical character-
ization, homogeneity etc.), there exist schemes that have
very favorable power-distortion-latency trade-offs. We pro-
pose a distributed matched source-channel communication
scheme, based in part on recent results in compressive sam-
pling theory, for estimation of sensed data at the fusion cen-
ter and analyze, as a function of number of sensor nodes, the
trade-offs between power, distortion and latency. Compres-
sive wireless sensing is a universal scheme in the sense that
it requires no prior knowledge about the sensed data. This
universality, however, comes at the cost of optimality (in
terms of a less favorable power-distortion-latency trade-off)
and we quantify this cost relative to the case when sufficient
prior information about the sensed data is assumed.

Categories and Subject Descriptors

E.4 [Data]: Coding and Information Theory—Data com-
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1. INRODUCTION
Sensor networking is an emerging technology that promises

an unprecedented ability to monitor the physical world via a
spatially distributed network of small and inexpensive wire-
less sensor nodes that have the ability to self-organize into a
well-connected network. A typical wireless sensor network,
as shown in Fig. 1, consists of a large number of sensor nodes,
spatially distributed over a region of interest, that observe
some (noisy) data. In many applications, a distant fusion
center (FC) retrieves relevant field information from the sen-
sor nodes. Energy and bandwidth are scarce resources in
such networks since communication from the sensor nodes
to FC generally takes place over a power and bandwidth con-
strained wireless channel. Consequently, a major challenge
in the design of sensor networks is developing schemes that
extract relevant information about the sensed data (sensor
field) at a desired fidelity at FC with least consumption of
network resources. In this regard, the relevant metrics of
interest are 1) the latency (or alternatively, bandwidth) in-
volved in information retrieval; and 2) the associated power-
distortion trade-off: the power Ptot consumed by the sensor
network in delivering relevant information to FC at the de-
sired distortion D.

In this paper, we introduce the concept of Compressive
Wireless Sensing (CWS) for energy efficient estimation (at
FC) of sensor data that contain some sort of structural reg-
ularity. CWS is based on a distributed matched source-
channel communication architecture and is inspired by re-
cent results in wireless communications [4, 5, 10, 1, 12] and
compressive sampling theory [2, 3, 8], and rests on the fact
that a relatively small number of random projections of a
signal can contain most of its salient information. CWS, in
essence, is a completely decentralized scheme for delivering
random projections of the sensor network data to FC in a
distributed and energy efficient manner and under the right
conditions, FC can recover a good approximation of the data
from these random projections. Three distinct features of
CWS are: 1) processing and communications are combined
into one distributed operation; 2) it requires almost no in-
network processing and communications; and 3) consistent



Figure 1: Sensor network with a fusion center (FC).
Circles denote sensor nodes. FC can communicate
to the network at a very high power whereas com-
munication channel from the network to FC is power
and bandwidth constrained.

field estimation is possible (Dց0 as node density increases),
even if little or no prior knowledge about the sensed data
is assumed, while Ptot grows at most sub-linearly with the
number of nodes in the network. Thus, CWS provides a
universal and efficient approach to distributed estimation of
sensor network data without putting strict constraints on
the underlying structure of sensed data.

1.1 Relationship to Previous Work
It is generally recognized that given sufficient prior knowl-

edge about the sensed data (e.g., statistical/topological char-
acterization or homogeneity of the sensor network data),
there exist schemes that have very favorable power-distortion-
latency (-bandwidth) trade-offs (see, e.g., [4, 5, 1, 6]). CWS,
however, is a universal scheme in the sense that it requires
no prior knowledge about the sensed data. Nevertheless,
this universality comes at the cost of optimality (in terms of
a less favorable power-distortion-latency trade-off). For ex-
ample, assuming no prior knowledge about the sensed data,
the theoretical analysis of CWS in Section 4 yields a power-
distortion-latency trade-off of the form1

D ∼ Ptot
−2α/(2α+1) ∼ L−2α/(2α+1) (1)

where α > 0 (which need not be known to the network
itself) quantifies the structural regularity of the sensor net-
work data (cf. Section 2). Note that this relation does
not mean that a fixed number of sensor nodes using more
power and/or latency can provide more accuracy. Rather,
distortion (D), power consumption (Ptot) and latency (L)
are functions of the number of nodes, and the above rela-
tion indicates how the three performance metrics behave as
the density of nodes increases. On the other hand, assuming
sufficient prior knowledge about the sensed data, we show in
Section 3 that there exists an efficient distributed estimation
scheme that achieves the distortion scaling of an ideal cen-
tralized estimator and has a power-distortion-latency trade-
off of the form

D ∼ Ptot
−2α ∼ L−2α (2)

Thus, in essence, this paper identifies a trade-off between
universality and optimality: CWS is universal for a broad
class of sensor fields but cannot reach the optimality of (2),

1We write an � bn when an = O(bn) and an ∼ bn if both
an � bn and bn � an

whereas an optimal distributed scheme, such as the one pre-
sented in Section 3, can fail miserably under false prior in-
formation (cf. Sections 4 and 5) and therefore, can never
be universal. CWS is, therefore, primarily a framework for
sensor networks having either little prior knowledge about
the sensed field or low confidence level about the accuracy
of the available knowledge.

Finally, most previous works in the area of sensor data es-
timation have focused on multihop communication schemes
and in-network data processing and compression [13, 9, 11,
15]. This requires a significant level of network infrastruc-
ture, and the theoretical approaches in the works above gen-
erally assume this infrastructure as given. Our approach,
in contrast to previous methods, eliminates the need for
in-network communications and processing and instead re-
quires phase synchronization among nodes, which imposes
a relatively small burden on network resources and can be
achieved by employing the distributed synchronization scheme
described in [12]. Thus, our proposed wireless sensing sys-
tem is perhaps more accurately viewed as a sensor ensemble
which is appropriately queried by an information retriever
(FC) to elicit the desired information about the sensed data.

1.2 Organization
The rest of this paper is organized as follows. In Section 2

we formally describe the problem considered in this paper
and develop the basic communication architecture of our
scheme. Section 3 describes an energy efficient distributed
estimation scheme that, under the assumption of sufficient
prior knowledge about the sensed data, achieves the distor-
tion scaling of an ideal centralized estimator. In Section 4,
we introduce the concept of CWS and analyze, as a function
of number of sensor nodes, the associated trade-offs between
power, distortion and latency. In Section 5, we make a com-
parison between CWS and the distributed scheme of Sec-
tion 3 using numerical results and show the basic trade-off
between universality and optimality. Finally, we summarize
our results and present concluding remarks in Section 6.

2. PROBLEM FORMULATION AND

APPROACH
In this section, we give an overview to the problem and

approach considered in this paper. In the following sections,
we shall elaborate on the technical details of the scheme. To
begin, consider a wireless sensor network with n nodes where
each node takes a noisy sample of the form

xj = x∗j + wj , j = 1, . . . , n (3)

and the errors {wj}nj=1 are independent, zero-mean Gaus-

sian random variables with variance σ2
w. We can consider

this data as a vector x ∈ R
n such that x = x∗ + w, where

x∗ ∈ R
n is the noiseless data vector and w ∼ N (0, σ2

wIn).
We further assume that |x∗j | ≤ B, j = 1, . . . , n, for some
known constant B > 0, which is determined by the sensing
range of the sensors.

It is a well known fact in the field of data compression,
evidenced by the success of familiar compression standards
such as JPEG, MPEG and MP3, that data in real world
often contain redundancies. Moreover, data collected at
nearby nodes in a dense sensor network is expected to be
highly correlated [14]. Therefore, it is quite reasonable to
assume that x∗ is compressible in the sense that it is well-



approximated by a linear combination of k vectors taken
from an orthonormal basis of R

n (e.g., smooth signals tend
to be compressible in the Fourier basis and piecewise smooth
signals tend to be compressible in a wavelet/wedgelet basis).

More precisely, let Ψ , {ψi}ni=1 be an orthonormal basis of

R
n. Denote by θi = ψTi x

∗ (projection of x∗ onto ψi) the co-
efficients of x∗ in this new basis. Relabel these coefficients
so that

|θ1| ≥ |θ2| ≥ · · · ≥ |θn| (4)

The best k-term approximation of x∗ in terms of Ψ is given
by

x∗(k) =
kX

i=1

θi ψi (5)

and we say that x∗ is α-compressible in Ψ (or that Ψ is the
compressing basis of x∗) if the average squared-error behaves
like

‚‚x∗ − x∗(k)
‚‚2

n
,

1

n

nX

j=1

“
x∗j − x

∗(k)
j

”2

= O
`
k−2α´ (6)

for some α > 0, where the parameter α governs the degree
to which x∗ is compressible with respect to Ψ. Note that
the ordering of coefficients in (4) may be a function of the
underlying signal x∗ and in such cases, could never be known
a priori.

Given x, the goal of the sensor network is to compute
a reconstruction bx of the noiseless data vector x∗ at the
FC with a small latency (L) and expected squared-error,

D = E [ 1
n

‚‚bx− x∗
‚‚2

], while at the same time consuming
minimal amount of total power Ptot.

Before proceeding further, we shall make the following
assumptions concerning the communications from the sensor
network to the FC:

1. Each sensor is equipped with a single isotropic an-
tenna.

2. The sensors are constrained to a maximum individual
transmit power of P .

3. The sensors communicate with FC over a narrowband
Additive White Gaussian Noise (AWGN) wireless chan-
nel of bandwidth W Hz at some carrier frequency fc,
where fc ≫ W , and each channel use is characterized
by transmission over a period of T = 1/W seconds.

4. Each sensor has a local oscillator synchronized to the
carrier frequency fc and the network is fully phase syn-
chronized in the sense that the sensor transmissions ar-
rive at the FC in a phase coherent fashion. This may
be achieved by employing the distributed synchroniza-
tion scheme described in [12].

5. Let dj , j = 1, . . . , n, be the distance between the sen-
sor at location j and FC. The FC is assumed to be
far away from the sensor network so that d1 ≈ · · · ≈
dn ≈ d and therefore, the path losses of all nodes are
identical.

6. There is no multipath fading, which would indeed be
the case in many remote sensing applications with static
sensor nodes that have a line-of-sight connection to the
FC.

Ideal Centralized Estimation: Let us first consider
an ideal centralized estimator in which the sensor measure-
ments {xj}nj=1 are assumed to be available at the FC noise-
free. The distortion scaling of this estimator would serve
as a benchmark for assessing the distortion related perfor-
mances of the distributed schemes presented in Sections 3
and 4.

Given x, a centralized estimator bxcen at the FC can be
easily constructed by projecting x onto the first k elements
of Ψ

bxcen =
kX

i=1

“
ψTi x

”
ψi

= x∗(k) +

kX

i=1

“
ψTi w

”
ψi (7)

which results in a bias/variance trade-off

Dcen = E

»
1

n

‚‚bxcen − x∗
‚‚2
–

� k−2α +

„
k

n

«
σ2
w (8)

where the first term is the squared bias and the second is the
variance. The minimum is attained by setting k ∼ n1/(2α+1),
resulting in

Dcen � n−2α/(2α+1) (9)

Next, we present a communication architecture for com-
puting projections of sensor network data onto any normal-
ized vector in R

n, which would act as a basic building block
of our proposed scheme.

2.1 Distributed Projections in Wireless Sen-
sor Networks

In this section, we develop the basic communication archi-
tecture that acts as a building block of CWS. At the heart
of our approach is an energy efficient, distributed method of
computing projections of the sensor network data onto any
normalized vector in R

n by exploiting the spatial averaging
inherent in a multiple access channel (MAC). To begin, we
first define the notion of a Sparsity Map.

Definition 1. Let q ∈ R
n and Sp : R

n → P({1, . . . , n}),
where P(X) means power set of X. We call Sp the sparsity
map of q if Sp(q) = {j ∈ {1, . . . , n} : qj 6= 0} and |Sp(q)| is
a counting measure on Sp(q).

Now, let ϕ ∈ R
n, where

‚‚ϕ
‚‚2

= 1, and υ = ϕTx∗ =Pn
j=1 ϕjx

∗
j be the projection of x∗ onto ϕ. Using the notion

of sparsity map, denote |Sp(ϕ)| = nϕ . Since
‚‚ϕ
‚‚2

= 1, this

implies |ϕj |2 ≈
‚‚ϕ
‚‚2
/nϕ = 1/nϕ ∀ j ∈ Sp(ϕ). Given x, we

assume that the goal of the sensor network is to compute an
estimate (bυ) of υ at the FC. One possibility is to nominate
a clusterhead in the network and then, assuming all the sen-
sor nodes know ϕ and have constructed routes which form a
spanning tree through the network to the clusterhead, sen-
sor nodes locally compute ϕjxj and aggregate these values
up the tree to obtain bυ =

Pn
j=1 ϕjxj at the clusterhead.

However, even if we ignore the communication cost of deliv-
ering bυ from the cluterhead to the FC, it is easy to see that
this scheme requires at least n transmissions.

Another, more promising, alternative is to exploit recent
results concerning uncoded coherent transmission schemes



Figure 2: A distributed communication architecture
for computing projections of sensor network data at
the fusion center.

[4, 5, 10, 1]. The proposed distributed communication archi-
tecture, illustrated in Fig. 2, involves phase-coherent, low-
power, analog transmission of weighted sample values di-
rectly from the nodes in the network to the FC via the
narrowband AWGN network-to-FC communication channel.
To begin with, assume all the nodes in the network have
knowledge of ϕ. Practical schemes of how the sensor net-
work might achieve this would be discussed in Section 3.2.
Each node multiplies its measurement xj with (

√
ρϕj) to

obtain mj =
√
ρϕjxj , where ρ > 0 is a scaling factor used

to satisfy sensors’ transmit power constraint P , and all the
nodes coherently tranmist their respective mj ’s in an ana-
log fashion over the network-to-FC communication channel.
Clearly, E[|mj |2] ≤ ρ (B2 + σ2

w)/nϕ if j ∈ Sp(x
∗) ∩ Sp(ϕ)

and E[|mj |2] = ρ σ2
w/nϕ if j ∈ Sp(x

∗)c ∩ Sp(ϕ). Thus,
E[|mj |2] ≤ ρ (B2 + σ2

w)/nϕ ∀ j ∈ Sp(ϕ) and mj ≡ 0 if
j /∈ Sp(ϕ). Hence, the average transmission power for each
sensor (∈ Sp(ϕ)) is given by

Pj ≤ ρ (B2 + σ2
w)/nϕ (10)

and to satisfy the individual sensor transmit power con-
straint, we need to take ρ = (nϕλP )/(B2 + σ2

w) for 0 <
λ ≤ 1 , resulting in Pj ≤ λP (≤ P ).

Because of the coherent transmission by the sensor nodes,
the network-to-FC communication channel is effectively trans-
formed into an AWGN MAC channel and the received signal
at the FC is given by

r =
nX

j=1

mj + z =
√
ρ

nX

j=1

ϕjxj + z

=
√
ρ ϕT (x∗ + w) + z =

√
ρ (υ + ew) + z (11)

where z ∼ N (0, σ2
z) is the channel additive white Gaussian

noise and ew ∼ N (0, σ2
w). Strictly speaking, the received sig-

nal from each node, mj , in the above expression should be
scaled by an attenuation constant, aj ∈ (0, 1), that depends
on the distance dj between the node and FC and the path
loss exponent. However, under the assumption of identi-
cal path losses, the aj ’s are nearly the same and we ignore
this uniform attenuation since it will uniformly increase the
required power per node by a constant factor to attain a
desired distortion.

In essence, the above setup corresponds to obtaining a
noisy projection of x onto ϕ at the FC that is scaled by

√
ρ

and given r, the FC can easily estimate υ as bυ = r/
√
ρ and

the resulting distortion is given by

Dυ = E
ˆ
|bυ − υ|2

˜
= σ2

w +
σ2
z

ρ

= σ2
w +

σ2
z(B

2 + σ2
w)

nϕλP
(12)

where the first term in the above expression is due to the
measurement noise and the second term is due to the com-
munication noise and the key question becomes: What is the
necessary and sufficient value of λ (and correspondingly of
ρ) to make the distortion in (12) as small as possible? This
question is answered in the proof of the following theorem.

Theorem 1. Given the observation model of (3), it is
possible to obtain an estimate (bυ) of the projection of sensor
network data onto any normalized vector in R

n, such that
Dυ ∼ σ2

w , by using only a fixed amount of total power, Pυ =
O (1) , independent of the number of nodes in the network
and the structure of the vector on which data is projected.2

Proof. To prove this theorem, observe that the first term
in (12) is unaffected by the proposed communication scheme
and the second term decays as 1/λ. For fastest distortion
reduction, both the terms in (12) must be of the same order.
That is,

σ2
w ∼ σ2

z(B
2 + σ2

w)

nϕλP
⇐⇒ λ ∼ σ2

z(B
2 + σ2

w)

nϕσ2
wP

(13)

Hence, the necessary and sufficient λ to obtain the optimal
distortion should be chosen as

λ ∼ σ2
z(B

2 + σ2
w)

nϕσ2
wP

∼ 1

nϕ
(14)

and from (12), this would result in Dυ ∼ σ2
w. Moreover,

since a total of nϕ nodes used the communication channel
during this distributed projection3, the necessary and suf-
ficient total power (Pυ) involved in obtaining bυ at the FC
would behave as

Pυ =
nX

j=1

Pj ≤ nϕ (λP ) ∼ σ2
z(B

2 + σ2
w)

σ2
w

= O (1) (15)

This completes the proof.

Remark 1. Given the observation model of (3) , it is easy
to see that Dυ ∼ σ2

w is the best that any (centralized or
distributed) scheme can hope to achieve in terms of distor-
tion and Theorem 1 shows that our distributed scheme can
achieve that by using only a fixed amount of power.

3. DISTRIBUTED ESTIMATION FROM

NOISY PROJECTIONS
In this section, using the communication architecture pre-

sented in Section 2.1 as a basic building block, we present
a completely decentralized scheme for efficient estimation of
sensor network data at the FC. The underlying assumption
is that the sensor nodes not only have a complete knowledge
of the basis in which x∗ is compressible but also the precise

2With a slight abuse of notation, ∼ here implies that both
quantities are ‘of the same order ’
3Recall that mj , and thus Pj , would be equal to zero for
j /∈ Sp(ϕ)



knowledge of the ordering of its coefficients in the compress-
ing basis, as in (4). Under this assumption, we analyze the
power-distortion-latency trade-offs in this scheme as a func-
tion of number of sensor nodes and show that the proposed
distributed scheme can achieve the optimal centralized dis-
tortion scaling of (9).

To begin with, let Ψ , {ψi}ni=1 be an orthonormal basis

of R
n such that

‚‚x∗ − x∗(k)
‚‚2
/n = O(k−2α), where x∗(k) =Pk

i=1 θi ψi (perhaps after re-labeling the indices i) and each
coefficient θi is computed as a projection of the form θi =
ψTi x

∗ =
Pn
j=1 ψijx

∗
j . The sensor network can compute k

projections of x onto {ψi}ki=1 by employing the scheme of
Section 2.1 in k consecutive channel uses. Thus, at the end
of k channel uses, each one corresponding to a projection of
x onto an element of Ψ, FC has access to the estimates of
k projection coefficients given by

bθi = ri/
√
ρi = θi + ψTi w + zi/

√
ρi , i = 1, . . . , k (16)

where zi ∼ N (0, σ2
z) is the MAC AWGN corresponding to

i-th channel use and ρi = (nψiλiP )/(B2 + σ2
w) , nψi =

|Sp(ψi)| and 0 < λi ≤ 1; resulting in Dθi = E [|bθi − θi|2] =
σ2
w + σ2

z/ρi . From these k projection coefficients, FC can
easily estimate x∗ as

bx =

kX

i=1

bθiψi = x∗(k) +

kX

i=1

“
ψTi w + zi/

√
ρi
”
ψi

= bxcen +
kX

i=1

(zi/
√
ρi)ψi = bxcen + ez (17)

where ez ∼ N
`
0, diag (σ2

z/ρ1, . . . , σ
2
z/ρk)

´
by virtue of the

fact that zi is independent of zj for i 6= j, and the resulting
distortion is given by

D = E

»
1

n

‚‚bx− x∗
‚‚2
–

= Dcen +
1

n

kX

i=1

σ2
z

ρi

� k−2α +

„
k

n

«
σ2
w +

1

n

kX

i=1

σ2
z

ρi
(18)

where the first two terms correspond to Dcen and the last
term is the distortion induced by k noisy MAC communica-
tions. The above relation governs the interplay between D,
n, k, α and λi’s. For fastest distortion reduction, all three
terms in (18) must scale (as a function of n) at the same
rate. That is,

k−2α ∼
„
k

n

«
σ2
w ∼ 1

n

kX

i=1

σ2
z

ρi
(19)

Analyzing the above expression shows that k must be cho-
sen, independently of {ρi}ki=1 , as k ∼ n1/(2α+1) and the
corresponding distortion at FC would scale as

D � n−2α/(2α+1) (20)

that has the same scaling behavior as Dcen . Moreover, since
a total of nψi nodes communicated during the i-th MAC
transmission, the total power consumed by the sensor net-
work during the entire reconstruction process is given by

Ptot =
kX

i=1

Pθi ≤
kX

i=1

nψi (λiP ) (21)

Let us call
Pk
i=1 nψiλi = Γ, then Ptot ≤ P Γ and the only

question that remains to be answered is how to choose λi’s
so that Γ is minimized, which in turns minimizes Ptot . The
answer to this question lies in the following theorem.

Theorem 2. Using the above distributed scheme for es-
timation of x∗ and given the observation model of (3), the
final distortion at the FC scales as given in (20) if and only
if

Γ � n−2α/(2α+1)

Moreover,

λi = σ2
z(B

2 + σ2
w)/(nψiσ

2
wP ) ∼ 1/nψi , i = 1, . . . , k

is the only set of λi’s that achieves the lower bound for Γ in
the sense that

Γ ∼ n−2α/(2α+1)

Proof. The proof of this theorem is given in the Ap-
pendix.

3.1 Power-Distortion-Latency Trade-offs
In this section, we present the power-distortion-latency

trade-offs involved in the proposed distributed estimation
scheme. Recall that in order to achieve the optimal distor-
tion scaling

D � n−2α/(2α+1) , (22)

the network had to employ k = n1/(2α+1) MAC transmis-
sions, each one corresponding to a projection of x onto an
element of Ψ, and under the assumption that the k projec-
tions shared the channel via Time Division Multiple Access
(TDMA), we get the following relation for the latency L
involved in information retrieval from the network4

L ∼ n1/(2α+1) (23)

Moreover, if we take λi ∼ 1/nψi , i = 1, . . . , k, then from
(21) and Theorem 2 we get the following relation for the
total power Ptot consumed by the network in information
retrieval

Ptot ≤ k
σ2
z(B

2 + σ2
w)

σ2
w

� n1/(2α+1) (24)

Hence, given the observation model of (3) and assuming
that the sensor network has sufficient prior knowledge about
the underlying signal structure (i.e., compressing basis of x∗

and the ordering of its coefficients in that basis), the pro-
posed distributed estimation scheme can achieve the opti-
mal centralized distortion scaling of (9) and from (22), (23)
and (24), the associated power-disortion-latency trade-off is
given by

D ∼ Ptot
−2α ∼ L−2α (25)

3.2 Communicating the Compressing Basis to
the Network

Assuming the designer of the sensor network has knowl-
edge of the compressing basis Ψ of x∗, we try to address
the issue of how to communicate the compressing basis (or

4The projections may equally well share the channel via Fre-
quency Division Multiple Access (FDMA) and that would
translate the latency requirements into the bandwidth re-
quirements.



a subset of it) to the sensor nodes – an assumption inherent
to the optimality of above scheme. Pre-storage of this in-
formation in the sensor nodes is not a viable option because
of possible node failures, changes in the structure of sensed
data etc. Moreover, pre-storage of the entire compressing
basis or a subset of it, {ψi}li=1, where 1 ≤ l ≤ n, in each
sensor node would require at least O (n) bits per sensor for
storage which might not always be feasible in large scale sen-
sor networks. Even pre-storage of only corresponding entries
of the k basis elements, {ψi,j}ki=1, in the j-th sensor node

would still require at least O
“
n1/(2α+1)

”
bits per sensor for

optimal distortion scaling.
Another, more feasible but not always practical, approach

to this problem is that the FC transmits this information to
the sensor nodes (over a separate FC-to-network communi-
cation channel) before the start of each projection. For the
case of ψi that has some sort of regularity in its structure
so that it does not require addressing each node individu-
ally (e.g. ψi = [ 1√

n
, . . . , 1√

n
]T ), this can be readily achieved

by broadcasting a few command signals from the FC to the
nodes. However, depending upon the structure of the nor-
malized vector, this approach may require the FC to be able
to address each sensor individually which again might not
be practical in large scale sensor networks. However, we
will show in the next section that among many other things,
compressive wireless sensing scheme can easily work around
this problem.

4. COMPRESSIVE WIRELESS SENSING
In Section 3, we proposed an efficient distributed esti-

mation scheme that achieves the optimal centralized distor-
tion scaling of (9) under the assumption that the network
(nodes and/or FC) has sufficient knowledge about the basis
in which x∗ is compressible. Generally speaking, however,
even if the destination knows the basis in which x∗ is com-
pressible, it is quite likely that it will not know ahead of time
the precise ordering of the coefficients of x∗ in this basis. As
an example, consider the following simple scenario. Suppose
x∗ is a spatially non-sparse vector of length n (|Sp(x∗)| = n)
with only one non-zero coefficient of amplitude

√
n in some

transform basis Ψ , {ψi}ni=1 such that
‚‚x∗

‚‚2
/n = 1 (i.e.,

x∗ is super sparse in Ψ). This is an example of the case
where we know the basis in which x∗ is compressible but
do not know the ordering of the coeffiecients. One naive
approach to this problem is to require each sensor to dig-
itally transmit its measurement to the destination, where
the reconstruction is then performed. Alternatively, all the
sensors might collaboratively process their measurements to
reconstruct x∗ in-network and then transmit the result to
the destination. Both approaches, however, while providing
us with consistent estimates, would require Ptot and L to be
at least ∼ n.

Another approach to this problem could be to use the dis-
tributed scheme described in Section 3. However, since the
network does not have a precise knowledge of the ordering
of coefficients, it would have to resort to random transform
domain sampling where the network computes a distributed
projection of the data onto ψi and i is selected uniformly
at random from the set {1, . . . , n}. Ignoring the distortion
due to the measurement noise, the squared reconstruction
error would be 0 at the FC if the spike in Ψ domain cor-
responds to ψi and 1 otherwise and the probability of not

finding the spike in k trials is
`
1 − 1

n

´k
, giving an average

squared-error of
`
1 − 1

n

´k · 1 + (k/n) · 0 =
`
1 − 1

n

´k
. If n is

large, we can approximate this by D =
`
1 − 1

n

´k ≈ e−k/n.
Therefore, for any k < n, we have D 6→ 0 as n → ∞ while
Ptot and L ∼ k. This simple example shows that the power-
distortion-latency tradeoff of (25) might break down if the
network does not have enough prior knowledge about the
sensed signal

Another more general, and perhaps relevant, example is a
situation in which the signal is piecewise constant. Signals of
this type do lie in a low-dimensional subspace of the wavelet
domain, but precisely which subspace depends on the loca-
tions of the changepoints in the signal, which of course is
unlikely to be known a priori. Broadly speaking, any sig-
nal that is generally smooth apart from some localized sharp
changes or edges will essentially lie in a low-dimensional sub-
space of a multiresolution basis such as wavelets or curvelets,
but the subspace will be function-dependent and thus, pre-
clude the use of methods, like the one of the previous sec-
tion, that require prior specification of the basis functions
to be used in the projection process. This is where the uni-
versality of compressive wireless sensing scheme, presented
in this section, comes into play. As we shall see, compres-
sive wireless sensing provides us with a consistent estimation
scheme (Dց 0 as node density increases), even if little or
no prior knowledge about the sensed data is assumed, while
Ptot grows at most sub-linearly with the number of nodes in
the network.

Recall that if υ = ϕTx∗ =
Pn
j=1 ϕjx

∗
j is the projection of

x∗ onto a normalized vector ϕ ∈ R
n then using the commu-

nication architecture described in Section 2.1 and consuming
only O(1) amount of power, the FC can obtain an estimate
of υ given by

bυ = ϕT (x∗ + w) + ez (26)

where ez ∼ N (0, σ2
z/ρ) is the scaled AWGN communication

noise and σ2
z/ρ ∼ σ2

w (cf. Theorem 1). Now, instead of pro-
jecting the sensor network data onto a subset of a determin-
istic basis of R

n, in Compressive Wireless Sensing (CWS),
the FC tries to reconstruct x∗ from noisy random projections
of the sensor network data. Specifically, let {φi ∈ R

n}ni=1 be
an independent and identically distributed (i.i.d) sequence
of Rademacher random vectors i.e., {φi,j}nj=1 = ±1/

√
n,

each with probability 1/2, and the FC tries to reconstruct
x∗ by projecting x onto k of these random vectors. Be-
cause the entries of the projection vector φi are generated
at random, observations of this form are called (noisy) ran-
dom projections of the signal. An important consequence of
using random Rademacher vectors is that each sensor can lo-
cally draw the elements of the random vectors {φi}ki=1 in an
efficient manner by using the seed of a pseudo-random gen-
erator and its (network) address. Similarly, given the seed
values and the number of nodes in the network, the destina-
tion can easily reconstruct the vectors {φi}ki=1. Therefore,
in CWS the FC does not need to convey any information to
the sensor nodes regarding the projection vectors.

After employing k random projections, the observations
at the FC take the form of

yi =
nX

j=1

φij(x
∗
j + wj) + ezi

= φTi (x∗ + w) + ezi , i = 1, . . . , k, (27)



where w = [w1 . . . wn]T , and {wj}nj=1 and {ezi}ki=1 are i.i.d.
zero-mean Gaussian random variables, independent of {φi,j},
with variances σ2

w and σ2
z/ρi ∼ σ2

w respectively. Notice that
the observations above are equivalent (in distribution) to
observations of the form

yi = φTi x
∗ + ηi , i = 1, . . . , k, (28)

where {ηi} are i.i.d zero-mean Gaussian random variables
independent of {φi,j} with variance σ2 ∼ σ2

w (since E[|ezi|2] ∼
σ2
w ∀ i). This result follows directly from [8], where the

equivalence of {φTi w+ezi} and {ηi} (in distribution) and the
independence of {ηi} and {φi,j} is proved.

Given a countable collection X of candidate reconstruc-
tion functions, such that each ex ∈ X satisfies |exj | ≤ B for all
entries j = 1, . . . , n, the CWS estimate of x∗, bxk, is obtained
as a solution of

bxk = arg min
ex∈X


bR(ex) +

c(ex) log 2

kǫ

ff
(29)

where c(ex) is a non-negative number assigned to each ex ∈
X such that

P
ex∈X 2−c(ex) ≤ 1, ǫ > 0 is a constant that

depends on the function bound B and the noise variance σ2

as described in [8], and bR(ex) is the empirical risk defined as

bR(ex) =
1

k

kX

i=1

 
yi −

nX

j=1

φi,jexj
!2

. (30)

If we assume that we can find a basis in which the signal
x∗ is α-compressible, then we can use this compressing basis
in the reconstruction and define c(ex) in terms of it. Thus,
the optimization problem becomes

bθk = arg min
θ∈Θ


‖y − ΦTTθ‖2

2 +
2 log(2) log(n)

ǫ
‖θ‖0

ff
(31)

where θ is the representation of ex in the compressing basis,
ΦT is the transpose of the n× k matrix of projection vector
elements, and T is the transform that takes ex ∈ X to the
compressing domain such that ex = Tθ. As shown in [8], for
α-compressible x∗, such an estimate would satisfy

D = E

»‖bxk − x∗‖2

n

–
�
„

k

logn

«−2α/(2α+1)

, (32)

while if x∗ is truly sparse (has only m nonzero coefficients
in the compressing basis), then

D = E

»‖bxk − x∗‖2

n

–
�
„

k

m log n

«−1

(33)

4.1 Power-Distortion-Latency Trade-offs
Recall that in order to achieve the optimal distortion scal-

ing of (32) and (33), the network had to employ k MAC
transmissions, each one corresponding to a projection of x
onto a random vector, and consuming O(1) power. There-
fore, the latency L and total power Ptot involved in infor-
mation retrieval from the network is given by

L ∼ k (34)

Ptot ∼ k (35)

Therefore, ignoring log factors, the power-distortion-latency
trade-off for the case when x∗ is α-compressible is given by

D ∼ Ptot
−2α/(2α+1) ∼ L−2α/(2α+1), (36)

Figure 3: A truly sparse signal in the DCT domain.
Measuring directly in the DCT domain leads to a
better reconstruction, but CWS also yields a con-
sistent estimate.

and by

D ∼ Ptot
−1 ∼ L−1 (37)

when it is truly sparse.
Comparing these trade-offs with the one achievable us-

ing the estimation scheme of Section 3 yields some inter-
esting insight. Regardless of the compressibility of x∗, the
best P-D trade-off that one can hope to achieve using CWS
is D ∼ Ptot

−1. On the other hand, if enough knowledge
about the compressing basis of x∗ is available a priori, one
can employ the scheme of Section 3 and do much better,
D ∼ Ptot

−2α. Therefore, given sufficient prior knowledge
about the signal, CWS can be far from optimal but under
circumstances where there is little or no knowledge available
about x∗, CWS should be the estimation scheme of choice
as discussed at the start of this section.

5. NUMERICAL RESULTS
In this section we present some numerical results to demon-

strate the tradeoff between the universality of compressive
wireless sensing and the optimality of sampling in the rele-
vant subspace of a sparse signal, assuming that the relevant
subspace is known a priori. For all examples in this section,
the signal components are scaled to take values in the range
±B, where B = 2. Further, each sensor measurement is con-
taminated with zero-mean additive Gaussian measurement
noise with variance σ2

w = 0.02 and ρi is chosen so that each
projection has zero-mean additive Gaussian communication
noise with effective variance of σ2

z/ρi = 0.02.
The original signals are of size 256 × 256 = 65536 pixels,

and the reconstruction is performed using k = 1600 projec-
tions which are either random in the CWS case or specified
elements of a given basis in the “assumed subspace” case.
For each example, the “assumed subspace” is taken to be



Figure 4: A signal that is approximately sparse in
the Haar Wavelet domain. The low DCT and CWS
Wavelet reconstructions have the same asymptotic
distortion rate.

a low frequency segment of the Discrete Cosine Transform
(DCT) domain. Specifically, the lowest

√
k = 40 coefficients

in each dimension of the DCT domain are measured, and
the reconstruction is carried out by using these measured
coefficients and setting unmeasured coefficients to zero.

The first example, shown in Fig. 3, is a signal that con-
sists of 25 nonzero low-frequency components in the DCT
Domain (the lowest five coefficients in each dimension are
nonzero). The original signal and the signal corrupted with
noise are shown in the top row. The bottom row shows two
reconstructions - one is the estimate obtained by measuring
the k lowest frequency components in the DCT domain, and
the other is a reconstruction obtained from k random pro-
jections using the DCT basis as the reconstruction basis.
Direct sampling of the DCT domain leads to an estimate
with lower MSE, as expected, but the CWS reconstruction
estimate is also consistent with the original image and ex-
hibits MSE below the measurement noise variance.

The second example, shown in Fig. 4, is a piecewise con-
stant image with a boundary that is approximately sparse
in the Haar Wavelet Domain. The original image is shown
along with the lowest frequency DCT reconstruction in the
top row. The bottom row shows two reconstructions ob-
tained from random projections. The interesting point to
note here is that the same set of k random projections can
be used to obtain several reconstructions of the signal, sim-
ply by using different bases in the reconstruction algorithm.
In this case, CWS gives consistent estimates of the actual
signal using two different domains (Haar and DCT).

For this example, notice that the MSE of CWS-Haar re-
construction is comparable to that of the “assumed sub-
space” reconstruction. This is because the “assumed sub-
space” case achieves D ∼ Ptot

−2α, and for piecewise con-
stant signals represented in the DCT domain, 2α = 1/2, so

Figure 5: Another signal that is sparse in the DCT
domain, but only part of the signal energy is in the
directly observed frequencies. CWS performs much
better than direct frequency sampling, illustrating
the universality of CWS and the cost of directly
measuring an incorrect subspace.

D ∼ Ptot
−1/2. On the other hand, CWS yields a power-

distortion relation of D ∼ Ptot
−2α/(2α+1). But the approxi-

mation error exponent for piecewise constant functions rep-
resented in a wavelet basis is 2α = 1, so D ∼ Ptot

−1/2 in
this case as well.

The last example, shown in Fig. 5, illustrates the univer-
sality of CWS. In this case the signal of interest is sparse in a
low-frequency subspace of the DCT domain, but only a por-
tion of this subspace is contained in the lowest k frequency
components that are directly observed. This situation might
arise when the sensors are being used to estimate a commu-
nication signal, but the frequency band in which the signal is
present is not completely known a priori. The original signal
and the signal with measurement noise are shown in the top
row. The bottom row shows two estimates, one using the
low-frequency DCT measurements and the other obtained
from random projections using the DCT domain for recon-
struction. The “assumed subspace” approach fails in this
case because the subspace being measured does not contain
a sufficient amount of the signal energy, while CWS is able to
identify the actual subspace and produce an estimate with
MSE lower than the measurement noise variance.

6. CONCLUSIONS
In this paper, we have introduced and analyzed the con-

cept of Compressive Wireless Sensing for energy efficient es-
timation (at FC) of sensor data that is compressible in some
basis of R

n and analyzed, as a function of the number of sen-
sor nodes, the associated power-distortion-latency tradeoffs.
CWS is a universal scheme in the sense that it provides us
with a consistent field estimation (Dց0 as node density in-
creases), even if little or no prior knowledge about the sensed



data is assumed, while Ptot grows at most sub-linearly with
the number of nodes in the network. This universality, how-
ever, does come at the cost of optimality in terms of a less
favorable power-disortion-latency trade-off which is a direct
consequence of not having sufficient prior knowledge about
sensed data, forcing us to probe the entire n-dimensional
space using random projections instead of focusing our en-
ergy on the subspace of interest. Nevertheless, because of
this precise reason, CWS has the ability to capture part of
signal under all circumstances, whereas projecting the sensor
network data onto some subspace, when not enough infor-
mation is available, can result in a distortion much greater
than the one achievable by CWS, as evidenced by the results
of Section 5. Therefore, we contend that CWS should be the
estimation scheme of choice in cases when either little prior
knowledge about the sensed field is available or confidence
level about the accuracy of the available knowledge is low.
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APPENDIX

A. PROOF OF THEOREM 2
Recall thatD � n−2α/(2α+1) requires k−2α ∼

`
k
n

´
σ2
w ∼

1
n

Pk
i=1

σ2

z

ρi
, resulting in k ∼ n1/(2α+1) and

k σ2
w ∼

kX

i=1

σ2
z/ρi ⇐⇒

kX

i=1

1

nψiλi
∼ k

σ2
wP

σ2
z(B2 + σ2

w)

(38)
Therefore, the statement of the theorem can be proved by
finding a solution of the following optimization problem

min Γ =

kX

i=1

nψiλi

s.t.
kX

i=1

1

nψiλi
= k

σ2
wP

σ2
z(B2 + σ2

w)

From arithmetic-geometric-harmonic means inequality [7],
we have that

1

k

kX

i=1

nψiλi ≥ kPk
i=1

1
nψi

λi

(39)

and since
Pk
i=1

1
nψi

λi
is constrained to be k

σ2

wP

σ2
z(B

2+σ2
w)

, we

get

Γ =
kX

i=1

nψiλi ≥ k
σ2
z(B

2 + σ2
w)

σ2
wP

(40)

Moreover, the inequality in (39) reduces to an equality if
and only if [7]

nψ1
λ1 = · · · = nψkλk =

σ2
z(B

2 + σ2
w)

σ2
wP

(41)

Thus, by putting k = n−2α/(2α+1) in (40), we get the first
part of theorem and (41) implies that {λi = σ2

z(B
2 +

σ2
w)/(nψiσ

2
wP ) ∼ 1/nψi}ki=1 is the only set of λi’s that

achieves the lower bound for Γ.


