
SPARSE DICTIONARY LEARNING FROM 1-BIT DATA

Jarvis D. Haupt, Nikos D. Sidiropoulos, and Georgios B. Giannakis

Department of Electrical and Computer Engineering
University of Minnesota, Minneapolis MN

ABSTRACT
This work examines a sparse dictionary learning task – that of fit-
ting a collection of data points, arranged as columns of a matrix,
to a union of low-dimensional linear subspaces – in settings where
only highly quantized (single bit) observations of the data matrix en-
tries are available. We analyze a complexity penalized maximum
likelihood estimation strategy, and obtain finite-sample bounds for
the average per-element squared approximation error of the estimate
produced by our approach. Our results are reminiscent of traditional
parametric estimation tasks – we show here that despite the highly-
quantized observations, the normalized per-element estimation error
is bounded by the ratio between the number of “degrees of freedom”
of the matrix and its dimension.

Index Terms— Sparse dictionary learning, complexity regular-
ization, maximum likelihood estimation

1. INTRODUCTION

Our problem of interest here is, fundamentally, an estimation
task – we aim to estimate mn real-valued elements {X∗i,j} for
i = 1, . . . ,m and j = 1, . . . , n, denoted collectively as the matrix
X∗ ∈ Rm×n, from a total of mn observations corresponding to one
per entry of the matrix. Such estimation tasks are, of course, trivial
without further qualifications; here rather than observe the elements
of X∗ directly, we obtain only highly quantized (1-bit) observations,
one per matrix entry. The question we address here is, can one still
obtain a consistent estimate of X∗ in these settings?

We establish below that the answer is affirmative whent the ma-
trix X∗ exhibits some form of intrinsic low-dimensional structure.
Generally speaking, we are interested here in settings where the
number of parameters or “degrees of freedom” required to specify
or accurately model X∗ is many fewer than the ambient or extrinsic
dimension mn. Our particular focus here will be on sparse dictio-
nary models for X∗, where we assume that the unknown matrix X∗

can be expressed as a product of anm×pmatrix D∗ (called a dictio-
nary) and a p×nmatrix A∗ of coefficients comprised of n columns
each having k < kmax < p nonzero elements. Note that even though
the matrix has mn elements, the number of degrees of freedom as-
sociated with this parameterization is onlyO(m·p+‖A∗‖0), where
‖A∗‖0 denotes the number of non zeros in A∗.

Our main results here establish that (under assumptions to be
formalized) we can obtain an estimate X̂ from the quantized data
that satisfies ‖X∗ − X̂‖2F /mn = O ((m · p+ ‖A∗‖0)/mn) with
high probability (over the randomness in our observation model).
That the error rate exhibit characteristics of the well-known para-
metric estimation error rate is intuitively pleasing; that such rates are
achievable from the highly quantized data is, perhaps, surprising.
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Our investigation here is in the spirit of 1-bit compressed sens-
ing works in the sparse inference literature, which examine tasks
of sparse vector estimation from one-bit compressive measurements
[1–7], though our approach here is not “compressive” per se since
the number of observations is equal to the dimension of the object
we aim to estimate. Closely related to ours is the recent work [8],
which examined matrix completion tasks from a subset of highly
quantized measurements of a matrix. We adopt here an observa-
tion model somewhat reminiscent of the observation model of [8]
(although our approach here is based on full, not compressive, mea-
surements), and our estimation approach is based on a maximum-
likelihood strategy, as in [8]. That said, while the authors of [8]
analyzed a convex program for their matrix completion estimation
task, here we examine the sparse dictionary learning task which is
well-known to be jointly non-convex in its parameters. Indeed, our
proposed estimation strategy here is non-convex (in fact, it is combi-
natorial); in practice, one could solve our proposed estimation prob-
lem via greedy methods or convex relaxation, along the lines of ex-
isting efforts in sparse dictionary learning [9–13]. Several recent
works that have established identifiability conditions for greedy [14]
and convex [15–17] approaches to the dictionary learning problem.

Our analysis approach is based on techniques from complex-
ity penalized maximum likelihood estimation, following along the
lines of [18–23], as well as prior work employing such techniques
in sparse inference tasks [24]. The complexity penalized max-
imum likelihood formulation is closely related to the minimum
description length (MDL) principle [25]; in that sense, we note [26]
that proposed MDL formulations for several dictionary learning
tasks (but without theoretical performance guarantees, as is our
focus here). Finally, we note several prior efforts that examined
quantization as a form of bandwidth constraint in parametric estima-
tion tasks [27–31], and investigated conventional (non-complexity-
penalized) maximum likelihood estimation approaches, as well as
universal approaches that were agnostic to the distribution of the
underlying noises that contaminate each observation.

The remainder of this paper is organized as follows. Follow-
ing the formalization of our problem in Section 2, we provide our
main theoretical result, and its implication for the sparse dictionary
learning task, in Section 3. The proof of our main result, along with
several intermediate lemmata, are provided in Section 4. We briefly
discuss a few conclusions in Section 5.

2. PROBLEM FORMULATION

The dictionary-based factorization model described above repre-
sents an ideal decomposition; in practical settings, rather than the
data adhering exactly to such a model, it is more likely only well-
approximated by the assumed model. The model “mismatch” in
these cases could arise because of true modeling error, or some form
of stochastic noise present in the data, or both. Here, we explicitly



model such nonidealities via the quantities

Yi,j = X∗i,j −Wi,j , i ∈ [m], j ∈ [n],

where the {Wi,j}i∈[m],j∈[n] are iid continuous zero-mean real scalar
random variables1, and where [n] = {1, 2, . . . , n} denotes the set of
non-negative integers less than or equal to n. For w ∈ R, we denote
by fW (w) and FW (w) the (common) probability density function
and cumulative distribution function (cdf), respectively, of the Wi’s.
We use the shorthand Y to denote the collection {Yi,j}i∈[m],j∈[n].

Rather than observe X∗ (or even Y, for that matter) directly,
here we assume that we obtain observations that are each quantized
to a single bit. Specifically, we make observations of the form

Zi,j = 1{Yi,j≥0} =

{
1, if Wi,j ≤ X∗i,j
0, otherwise , (1)

for i ∈ [m] and j ∈ [n], so that the collection of observations
{Zi,j}i∈[m],j∈[n] (denoted here by Z, for shorthand) comprises a to-
tal of mn bits. Note that the independence of the {Wi,j}i∈[m],j∈[n]

implies that the elements of Z are also independent.
Given this model, each Zi,j is easily seen to be a Bernoulli ran-

dom variable. We denote π(X∗i,j) , Pr(Zi,j = 1) = Pr(Wi,j ≤
X∗i,j) = FW (X∗i,j) where, as discussed above, FW denotes the
cdf of the modeling error terms, and denote the joint pmf of Z by
pπ(X∗)(z) =

∏
i∈[m],j∈[n] pπ(X∗

i,j)
(zi,j), where z is shorthand for

{zi,j}i∈[m],j∈[n], and each scalar pmf is given by pπ(X∗
i,j)

(zi,j) =[
FW (X∗i,j)

]zi,j [1− FW (X∗i,j)
]1−zi,j , for zi,j ∈ {0, 1} and i ∈

[m], j ∈ [n].

3. MAIN RESULT

Our inference approach here will be based on a variant of the max-
imum likelihood approach, in which we regularize the negative log-
likelihood of each candidate reconstruction with a term that quan-
tifies its “complexity,” so that more complicated candidates have a
larger cost in the overall objective function. Our approach will be
to construct a rich set of candidate reconstructions X where each
X ∈ X exhibits the type of structure that we assume is present in
the data X∗, but where the class X contains candidate reconstruc-
tions requiring varying numbers of parameters to specify. Then,
we construct the corresponding penalties for each of the elements
of X to encourage simple estimates over more “complicated” esti-
mates. Formally, we construct a countable collection X of candi-
date reconstructions for X∗, and assign to each X ∈ X a penalty,
pen(X) > 0, such that ∑

X∈X

2−pen(X) ≤ 1. (2)

The condition (2) is the well-known Kraft Inequality from coding
theory; using this interpretation we have that for any X we may
satisfy the condition (2) by constructing any binary prefix code over
X . With this, we are in position to state our main result.

Theorem 3.1. Suppose that the elements of the unknown matrix X∗

are bounded in amplitude, so that maxi∈[m],j∈[n] |X∗i,j | ≤ Xmax

for some finite Xmax > 0, and let X be a countable collection of
candidate reconstructions X with corresponding penalty functions
pen(X) satisfying (2), constructed so that each X ∈ X is comprised
of elements satisfying the uniform bound maxi∈[m],j∈[n] |Xi,j | ≤

1The minus sign on the Wi,j ’s is merely a modeling convenience here.

Xmax. Collect a total of mn independent random 1-bit observa-
tions Z = {Zi,j}i∈[m],j∈[n] of X∗ according to the model (1),
where the density fW associated with the modeling errors satisfies
infx∈[−Xmax,Xmax] fW (x) > 0. There exists a positive (finite) con-
stant λmin = λmin(Xmax, fW ), such that for any λ > λmin and
any δ ∈ (0, 1), the penalized maximum likelihood estimate

X̂ = arg min
X∈X

{
− log pπ(X)(Z) + λ · pen(X)

}
(3)

satisfies the oracle error bound

‖X∗ − X̂‖22
mn

≤ (4)

c ·
[

min
X∈X

{
c′
‖X∗ −X‖22

mn
+
λ · pen(X)

mn

}
+

2λ log( 1
δ
)

mn log 2

]
,

with probability at least 1 − 2δ. Here, c, c′ > 0 are finite constants
that depend only on the signal amplitude bound Xmax, and proper-
ties of the density fW and distribution FW of the error terms2.

In the context of our sparse dictionary learning problem, we state
an implication of this result as a corollary.

Corollary 3.1. Suppose X∗ is an m × n matrix that satisfies the
uniform entry-wise amplitude bound maxi,j |X∗i,j | ≤ Xmax/2, and
which admits a factorization of the form X∗ = D∗A∗, where the
dictionary D∗ is m × p for p < n and has elements uniformly
bounded by 1 in amplitude, and the coefficient matrix A∗ is p × n
is sparse with nonzero entries uniformly bounded by some constant
Amax > 0 in amplitude.

Consider candidate reconstructions X of the form X = DA,
where for a sufficiently large integer q > 2, each element Di,j
takes values on one of (mn)q possible uniformly discretized val-
ues in the range [−1, 1], and A is such that each nonzero element
Ai,j takes values one of (mn)q possible uniformly discretized val-
ues in the range [−Amax, Amax]. Take X to be the set of all such
candidate reconstructions, and let the penalty function be given by
pen(X) = q ·mp · log(mn) + (q + 1) · ‖A‖0 · log(mn).

If observations of X∗ are acquired via the model (1), then for X
constructed as above (with q sufficiently large) we have that for any
δ ∈ (0, 1) and any λ sufficiently large (exceeding a constant, that
does not depend on the problem dimensions) the complexity penal-
ized estimate (3) obtained as above satisfies

‖X∗ − X̂‖22
mn

� λ
(
p log(mn)

n
+
‖A∗‖0 log(mn)

mn
+

log( 1
δ
)

mn

)
with probability at least 1 − 2δ. Here, the notation � suppresses
leading (finite) constants, for clarity of exposition.

We provide a sketch of a proof of the corollary below, but first,
it is interesting to note the implications of this result in terms of the
estimability of the problem parameters. Namely, to ensure the terms
in the bound above are small, it is sufficient that n � p log(mn),
suggesting the number of columns in the matrix should exceed (by
a logarithmic factor) the number of columns in the dictionary repre-
sentation; mn � ‖A∗‖0 log(mn), so that the total number of mea-
surements exceed (by a logarithmic factor) the number of nonzero
elements in the coefficient matrix; and, of course, that mn be large
relative to log( 1

δ
). Note that if each column of A∗ has exactly k

non zeros, the condition mn � ‖A∗‖0 log(mn) is satisfied when
m � k log(mn), which is reminiscent of sample complexities in
other sparse inference tasks (e.g., in compressed sensing [32, 33]).

2In particular, the assumption that infx∈[−Xmax,Xmax] fW (x) > 0 en-
sures that c < ∞; see the proof for the specific form of the constants here.



Proof. (Sketch) For a candidate X = DA, we encode each element
of D using q log(mn) bits, so a total of q ·mp · log(mn) bits suffice
to encode D. Further, we encode each nonzero element of A using
log(pn) < log(mn) bits to denote its location, and q log(mn) bits
for its amplitude, so matrices A having ‖A‖0 nonzero entries can
be described using no more than ‖A‖0(q + 1) log(mn) bits. The
overall code for X is the code for D concatenated with the code for
A, so pen(X) = q ·mp · log(mn) + (q+ 1) · ‖A‖0 · log(mn) bits
suffice. Such codes are prefix codes, so satisfy (2).

Now, suppose that the true parameter is X∗ = D∗A∗, and con-
sider an estimate of the form X∗Q = D∗QA

∗
Q whose corresponding

D∗Q and A∗Q denote the closest quantized surrogates of the parame-
ters D∗ and A∗, and such that ‖A∗‖0 = ‖A∗Q‖0. It is easy to show
that X∗Q is an element of X when q is sufficiently large (in par-
ticular, for q sufficiently large the quantization error is sufficiently
small, so that the entries of X∗Q are no larger than Xmax in ampli-
tude). Now, evaluating the oracle bound (4) at this particular can-
didate estimate, it is straightforward to show that the approximation
error ‖X∗ − X∗Q‖2F = O(A2

max/(mn)2q−3), which is dominated
by the log( 1

δ
)/mn term when the constant q is sufficiently large.

Further, pen(X∗Q) = q ·mp · log(mn)+(q+1) · ‖A∗‖0 · log(mn).
The result follows.

4. USEFUL LEMMATA AND PROOF OF THEOREM 3.1

We begin with a few preliminaries. Let p(z) and q(z) be the (joint)
probability mass functions of two discrete random variables taking
values in a set Z , the elements of which may be scalar or multivari-
ate. The Kullback-Leibler divergence (or KL divergence) of q from
p is denoted D(p‖q) and given by

D(p‖q) =

{ ∑
z∈Z p(z) log

(
p(z)
q(z)

)
, if p� q

+∞, otherwise
,

where log is the natural log. The notation p� q means that the dis-
tribution associated with p(z) is absolutely continuous with respect
to the distribution associated with q(z); here, this condition holds if
p(z) = 0 for all z at which q(z) = 0. When p(z) and q(z) each
take the form of a product, so that p(z) =

∏n
i=1 pi(zi) and q(z) =∏n

i=1 qi(zi), where each pi(zi) and each qi(zi) is the pmf of a scalar
random variable Zi taking values in a set Zi, the KL divergence of
q from p can be expressed as a sum, as D(p‖q) =

∑n
i=1 D(pi‖qi),

where D(pi‖qi) =
∑
zi∈Zi p(zi) log (pi(zi)/qi(zi)).

4.1. Lemmata

Our first lemma establishes conditions under which the KL diver-
gence between two univariate Bernoulli pmf’s can be bounded by
quadratic functions of the difference of their parameters.

Lemma 4.1. Let pπ and pπ̃ be Bernoulli pmfs whose parameters are
bounded away from 0 and 1, in the sense that there exist constants
c` and cu, such that 0 < c` ≤ π, π̃ ≤ cu < 1. Then,

2(π − π̃)2 ≤ D(pπ̃‖pπ) ≤
1

2
max

{
1

c`(1− c`)
,

1

cu(1− cu)

}
(π − π̃)2.

Proof. First, note that the condition that each of the pmfs be
bounded away from 0 and 1 implies that pπ̃ � pπ , so that the
KL divergence is finite. Now, fix π ∈ [c`, cu] and let π̃ =
π + ∆, where ∆ ∈ [c` − π, cu − π]. With this, we have

D(pπ̃‖pπ) = D(pπ+∆‖pπ); we introduce the shorthand notation
g(∆) , D(pπ+∆‖pπ), leaving the dependence on π implicit. Here,

we have g(∆) = (π+∆) log
(
π+∆
π

)
+(1−π−∆) log

(
1−π−∆

1−π

)
.

Now, on the domain ∆ ∈ [c` − π, cu − π] we have that gπ(∆) is
twice differentiable with respect to ∆, where

g′(∆) ,
d

d∆
g(∆) = log

(
π + ∆

π

)
− log

(
1− π −∆

1− π

)
, (5)

and

g′′(∆) ,
d2

d∆2
g(∆) =

1

(π + ∆)(1− π −∆)
. (6)

It is easy to see that the denominator of (6) satisfies 0 <
min {c`(1− c`), cu(1− cu)} ≤ (π + ∆)(1 − π −∆) ≤ 1/4, so

that overall 4 ≤ g′′(∆) ≤ max
{

1
c`(1−c`)

, 1
cu(1−cu)

}
. Together,

these results imply that there exist upper and lower quadratic bounds
for gπ(∆) of the form g(0) + g′(0)∆ + 2∆2 ≤ g(∆) ≤ g(0) +

g′(0)∆ + 1
2

max
{

1
c`(1−c`)

, 1
cu(1−cu)

}
∆2. Now, since g(0) = 0

(a property of KL divergence) and g′(0) = 0 via (5), the quadratic
upper and lower bounds follow. The same analysis holds (and the
same bounds result) for any other choice of π ∈ [c`, cu].

Our next lemma establishes that, under certain conditions, the
variance of a Bernoulli log-likelihood ratio can be upper-bounded in
terms of the KL divergence of the corresponding pmf’s.

Lemma 4.2. As in the setting of Lemma 4.1, let pπ and pπ̃ be
Bernoulli pmfs whose parameters are bounded away from 0 and 1,
in that there exist constants c` and cu, such that 0 < c` ≤ π, π̃ ≤
cu < 1. For Z distributed according to pπ̃ (denoted Z ∼ pπ̃),

varZ∼pπ̃

(
log

pπ̃(Z)

pπ(Z)

)
≤

1

2
max

{
1

c`(1− c`)
,

1

cu(1− cu)

}
D(pπ̃‖pπ).

Proof. Our analysis borrows some of the essential ideas from the
proof of Lemma 4.1. Namely, we begin by fixing π ∈ [c`, cu]
and letting π̃ = π + ∆, where ∆ ∈ [c` − π, cu − π]. Now,
for shorthand we let g(∆) = varZ∼pπ̃ (L(Z)), with L(Z) =(

log pπ̃(Z)
pπ(Z)

)
, again leaving the dependence on π implicit to simplify

the notation. By the variance formula g(∆) = EZ∼pπ̃
[
L2(Z)

]
−

(EZ∼pπ̃ [L(Z)])2. In terms of the notation we employ here, we have

g(∆) = (π + ∆) log2
(
π+∆
π

)
+ (1 − π − ∆) log2

(
1−π−∆

1−π

)
−(

(π + ∆) log
(
π+∆
π

)
+ (1− π −∆) log

(
1−π−∆

1−π

))2

. Now, it is

straightforward (though somewhat tedious) to verify that g(∆) is
twice differentiable on the domain ∆ ∈ [c` − π, cu − π], with
g′(0) = 0, and g′′(∆) ≤ 2

π(1−π)
. This, along with the fact

that g(0) = 0 implies that the quadratic upper bound g(∆) ≤
max

{
1

c`(1−c`)
, 1
cu(1−cu)

}
∆2 holds. Now, by Lemma 4.1 we have

∆2 ≤ (1/2)D(pπ+∆‖pπ), so

g(∆) ≤ 1

2
max

{
1

c`(1− c`)
,

1

cu(1− cu)

}
D(pπ+∆‖pπ).

The same analysis applies for each choice of π ∈ [c`, cu].

Finally, we provide (without proof) a lemma establishing that
the quadratic difference in Bernoulli parameters can be related to an
`2 distance between the actual parameters we aim to estimate.



Lemma 4.3. Let π and π̃ be related to underlying parametersX and
X̃ via π = FW (X) and π̃ = FW (X̃), where FW (·) is the cdf of a
continuous random variable with density fW . If |X|, |X̃| ≤ Xmax,

C2
` (X − X̃)2 ≤ (π − π̃)2 ≤ C2

u(X − X̃)2,

where the bounding constants are C` = infx∈[−Xmax,Xmax] fW (x)
and Cu = supx∈[−Xmax,Xmax] fW (x).

4.2. Proof of Main Result

For any fixed X ∈ X , we define the empirical risk of X in terms
of its negative log-likelihood, as r̂X(Z) , − log pπ(X)(Z) =
−
∑
i∈[m],j∈[n] log pπ(Xi,j)(Zi,j). We define the excess em-

pirical risk associated with X as r̂X,X∗(Z) , r̂X(Z) −
r̂X∗(Z). Likewise, we define the theoretical risk of X ∈
X as rX , EZ∼pπ(X∗)

[r̂X(Z)], and the theoretical excess
risk rX,X∗ , EZ∼pπ(X∗)

[r̂X,X∗(Z)]. Thus, we have that
r̂X,X∗(Z) − rX,X∗ = −

∑
i∈[m],j∈[n](Ui,j − E[Ui,j ]), where

Ui,j , − log
(
pπ(x∗i,j)

(Zi,j)/pπ(xi,j)(Zi,j)
)

.
Now, we use a result obtained by Craig [34] in his proof of Bern-

stein’s Inequality, which for our purposes here may be stated as fol-
lows: let Ui,j , i ∈ [m], j ∈ [n], be independent random variables
each satisfying the moment condition, that for some h > 0,

E
[
|Ui,j − E[Ui,j ]|k

]
≤ var(Ui,j)

2
k! hk−2,

for k ≥ 2. For any τ > 0 and 0 ≤ εh ≤ c < 1, the probability that∑
i∈[m],j∈[n]

(Ui,j − E [Ui,j ]) ≥
τ

ε
+
ε
∑
i∈[m],j∈[n] var (Ui,j)

2(1− c) (7)

is no larger than e−τ . In order to use the result (7) here we first must
verify that the Ui,j’s satisfy the moment condition. To this end, we
will use the (easy to verify) fact that bounded random variables with
|Ui,j − E[Ui,j ]| ≤ β satisfy the moment condition with h = β/3.

Here, the assumption |Xi,j |, |X∗i,j | ≤ Xmax ensures that for all
i ∈ [m], j ∈ [n], 0 < c` ≤ π(Xi,j), π(X∗i,j) ≤ cu < 1 with
c` , FW (−Xmax) and cu , FW (Xmax). Thus, we may define

β , max

{
log

(
1

4c`(1− c`)

)
, log

(
1

4cu(1− cu))

)}
so that the moment condition is satisfied for the Ui,j’s here with the
choice h = β/3. Next, we use Lemma 4.2 to obtain that for each
i ∈ [m], j ∈ [n], var(Ui,j) ≤ γD(pπ∗

i,j
‖pπi,j ), where

γ ,
1

2
max

{
1

c`(1− c`)
,

1

cu(1− cu)

}
.

It follows that
∑
i∈[m],j∈[n] var(Ui,j) ≤ γD(pπ∗‖pπ). Using this,

along with the fact that E
[∑

i∈[m],j∈[n] Ui,j
]

= −D(pπ∗‖pπ), we
have (by (7)) that the excess empirical risk satisfies

Pr

(
r̂X,X∗(Z) +

τ

ε
≤
[
1− ε γ

2(1− c)

]
D(pπ(X∗)‖pπ(X))

)
≤ e−τ

for any τ > 0 and 0 ≤ εβ/3 ≤ c < 1. Now, let a = γε/2(1−εβ/3)
and restrict that 0 < ε < 6/(3γ + 2β) to ensure that a < 1. Letting
δ = exp(−τ) we have that for any fixed X ∈ X and any δ ∈ (0, 1),

Pr

(
r̂X,X∗(Z) +

log( 1
δ
)

ε
≤ (1− a)D(pπ(X∗)‖pπ(X))

)
≤ δ.

If we let δX = δ · 2−pen(X) and apply the union bound, we obtain
that for all X ∈ X ,

(1− a)D(pπ(X∗)‖pπ(X)) ≤ r̂X,X∗(Z) +
pen(X) log 2 + log( 1

δ
)

ε
(8)

with probability at least 1− δ.
Recalling the definition of the excess empirical risk, we see that

X̂ , arg min
X∈X

{
− log pπ(X)(Z) +

pen(X) log 2

ε

}
(9)

minimizes the upper bound of (8). This implies, in particular, that

(1−a)D(pπ(X∗)‖pπ(X̂)) ≤ r̂X̂∗,X∗(Z)+
pen(X̂∗) log 2 + log( 1

δ
)

ε
(10)

with probability at least 1−δ, where the right-hand side is evaluated
at X̂∗ , minX∈X

{
D(pπ(X∗)‖pπ(X)) + pen(X) log 2

ε

}
. We apply

Bernstein’s inequality once again to
∑
i∈[m],j∈[n](Ũi,j − E[Ũi,j ]),

where Ũi,j = r̂X̂∗,X∗(Z) to obtain that for any δ ∈ (0, 1),
r̂X̂∗,X∗(Z) ≤ log( 1

δ
)/ε + (1 + a)D(pπ(X∗)‖pπ(X̂∗)) with prob-

ability at least 1 − δ. Combining this with (10) (via another union
bound) we have the estimate (9) is such that for any δ ∈ (0, 1),

(1− a)D(pπ(X∗)‖pπ(X̂)) ≤
2 log( 1

δ
)

ε

+(1 + a) min
X∈X

{
D(pπ(X∗)‖pπ(X)) +

pen(X) log 2

ε

}
with probability at least 1−2δ. Finally, we define λ , log(2)/ε, and
use Lemma 4.3 and some straightforward bounding to obtain that for
any λ > log(2)(3γ + 2β)/3, with probability at least 1− 2δ,

‖X∗ − X̂‖2F ≤
(

1

2C2
`

)
·
(

1 +
6γ

2β + 3γ

)
×[

min
X∈X

{
γC2

u‖X∗ −X‖2F + λpen(X)
}

+
2λ log( 1

δ
)

log 2

]
.

5. CONCLUSIONS

We conclude with a few brief comments. First, while our approach
was discussed here in the context of a sparse dictionary-based esti-
mation task, our analysis may be extended to other structured data
approximation tasks; thus, it follows that our framework may be ap-
plied to problems of non-negative matrix factorization, structured
sparse dictionary learning, low-rank matrix approximation, etc., in
settings where the observations are quantized entry-wise, as here.
Further, we note that the framework developed here can also be ex-
tended to treat settings where the observations may be quantized to
any number L ≥ 2 of levels. Indeed, this modification could be ac-
counted for here by replacing the Bernoulli distributions with anal-
ogous categorical distributions, whose parameters would implicitly
depend on the thresholds chosen to specify the quantization levels
(the simple form of quantization employed here utilized an implicit
threshold of value 0 for each of the observations). Finally, it is inter-
esting to note that, even though we formulated our problem in terms
of a matrix approximation task, our approach here was essentially
agnostic to the actual data configuration (such notions only come in
when constructing X and the corresponding penalties). Thus, the
framework proposed here may also be applied to analogous tasks of
higher-order tensor approximation from 1-bit data. We defer further
investigations of these extensions to future efforts.
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