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ABSTRACT

The theory of compressed sensing shows that samples in the form
of random projections are optimal for recovering sparse signals in
high-dimensional spaces (i.e., finding needles in haystacks), pro-
vided the measurements are noiseless. However, noise is almost al-
ways present in applications, and compressed sensing suffers from
it. The signal to noise ratio per dimension using random projec-
tions is very poor, since sensing energy is equally distributed over
all dimensions. Consequently, the ability of compressed sensing to
locate sparse components degrades significantly as noise increases.
It is possible, in principle, to improve performance by “shaping” the
projections to focus sensing energy in proper dimensions. The main
question addressed here is, can projections be adaptively shaped to
achieve this focusing effect? The answer is yes, and we demonstrate
a simple, computationally efficient procedure that does so.

Index Terms— sparse approximation, compressed sensing, re-
construction, adaptive sampling

1. INTRODUCTION

Surprising mathematical findings and stunning practical results have
propelled compressed sensing into the signal processing limelight
and have had a profound effect on our understanding of signal ac-
quisition and sampling. Consider a signal that can be represented
(exactly or approximately) by a sparse representation (the superpo-
sition of a small number of basis vectors). The basic idea of com-
pressed sensing is that if one takes samples in the form of projec-
tions of the signal and if these projections are incoherent with the
basis vectors, then the sparse representation can be recovered from a
small number of such samples (roughly proportional to the number
of components in the sparse representation) provided the observa-
tions are noise-free [1,2]. In addition, compressed sensing remains
stable in the presence of random noise; i.e., the recovery degrades
gracefully, but markedly, as the noise level is increased [3,4]. This
paper investigates the noise sensitivity phenomenon and proposes an
improved approach based on adaptive sensing.

Incoherence between the projection vectors and the signal ba-
sis vectors is essential to compressed sensing, and is required for
successful recovery from a small number of non-adaptive samples.
The incoherence condition guarantees that one “spreads” the sensing
energy over all the dimensions of the coordinate system of the ba-
sis. In essence, each compressive sample deposits an equal fraction
of sensing energy in every dimension, making it possible to locate
the sparse components without sensing directly in each and every
dimension, which would require a number of samples equal to the
length of the signal. When the observations are corrupted by noise,

This work was partially supported by the DARPA Analog-to-
Information Program.

G. M. Raz

GMR Research and Technology
Concord, MA 01742-3819 USA

however, the signal to noise ratio (SNR) per dimension is necessarily
much lower using this approach than if we had used all sensing en-
ergy to probe a single coordinate. Thus, noise can make the recovery
of the sparse components much more difficult.

It is intuitively clear that focused samples can be tremendously
helpful. Indeed, if a genie were to provide the locations of the sparse
signal components a priori, then we would know that the optimal
samples would be projections on to the corresponding basis vectors
themselves, maximizing the SNR per sample. Without a genie, it
is sensible to attempt to recover the locations directly so that subse-
quent samples can be focused into the correct subspace. The poten-
tial advantages of an adaptive projection scheme are demonstrated
in [5], but this procedure does not scale well with problem dimen-
sion. Here we propose a different adaptive strategy for which the
shaping of the projections can be computed in time linear in the
length of the signal, and therefore is no more computationally de-
manding than standard compressed sensing. Begin with an incoher-
ent projection sample, which should provide a crude indication of
potential locations for the sparse components. Now, use this infor-
mation to shape the next projection so that it is a bit less incoher-
ent and a bit more focused on these potential locations. Repeat this
procedure until the projections are mostly focused on one location,
which hopefully corresponds to an actual signal component. Keep
iterating this process, with the previously identified components re-
moved, until no additional significant components are found.

The remainder of the paper is organized as follows. A brief
review of traditional (non-adaptive) compressive sensing is given
in Section 2. In Section 3 we describe our strategy for projec-
tion focusing that is based on a general-purpose Bayesian model
for sparse components and an (approximate) entropy-maximizing
projection shaping at each step. Computational experiments in Sec-
tion 4 demonstrate that significant performance gains are possible
through this adaptive procedure, especially when the signal is very
sparse and the SNR per dimension is low. Finally, some conclusions
are discussed in Section 5.

2. COMPRESSIVE SENSING REVIEW

Compressive sensing (CS) describes a collection of methods by
which sparse high-dimensional signals can be accurately and effi-
ciently recovered from a small (relative to the dimension) number
of observations. CS employs a sampling model which is a natural
generalization of conventional point sampling. Each observation of
an m-sparse vector & € R" is described by

Y (t) = () x4+ W(t), (1

fort = 1,2,...,k, where the sampling vector ¢(¢) € R" is cho-
sen by and known to the observer and satisfies ||@(t)||2 = 1, and
W(t) ~ N (0,0%,) is independent of ¢(t).



The earliest contributions to CS considered noiseless settings
where the sampling vectors {¢(t)}f—, were a collection of random
vectors whose entries were drawn independently according to some
distribution (e.g., Gaussian). In these settings, it was shown that
Basis Pursuit (identifying the vector with minimum ¢; norm' that
agrees with the observations) efficiently recovers any m-sparse sig-
nal with overwhelming probability, provided the number of obser-
vations satisfies £ > C'mlogn where C' is some constant that does
not depend on the problem dimension [1,2]. In practice, it has been
observed that between 3m and 5m samples often suffice.

In settings where sampling noise is present, the provable perfor-
mance of CS degrades markedly. The Basis Pursuit approach does
not apply directly in this setting, and one possible estimation strat-
egy is to minimize the weighted sum of a squared error term and a
complexity term, given by
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@), = arg min Sly — ®gl3 + rllgll, 2)

where y is a vector of the observations {y(t)}f_,, ® is a matrix
with rows given by the corresponding ¢(t), and 7 is an appropriate
tolerance. Other similar strategies have been proposed and analyzed,
yielding estimates that satisfy
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where C' is a constant that depends on the noise power, and the ex-
pectation is over the distribution of the noise and the projection vec-
tors [3,4]. It is interesting to note that this bound is meaningful only
when the number of observations is at least O(m log n). This is sim-
ilar to the number of observations required in the noise-free setting
— the difference here is that the error decays relatively slowly after
this point.

3. ADAPTIVE PROJECTIONS FOR SPARSE RECOVERY

In this section we present an adaptive projection algorithm target-
ing problems where the signal is very sparse (e.g., described by a
small number of components). The proposed approach consists of
a greedy procedure that attempts to recover the signal sequentially,
component-by-component, and is inspired by our earlier work [6]
where we considered a parametric model. In this work we use a
related model for which it is easy to use a Bayesian approach to es-
timate the parameters. In [6] this is done using non-adaptive random
projections. Here we propose a technique to adapt the projections
based on previous observations, in order to significantly improve the
estimation performance. We first describe our methodology when
the signal has a single non-zero component, and later we generalize
this approach for sparse signals with multiple non-zero components.

3.1. A Single Needle in the Haystack

Let x € R", n € N be a vector with at most one non-zero en-
try. The adaptive projection procedure proposed follows a Bayesian
style approach, and so we have a generative model for the signal .
Let ¢ index the sequential sampling process. At step ¢, define the
random variable L(t) € {1,...,n}, with probability mass function
pi(t) = Pr(L(t) = 4). Thatis, L(¢) is a discrete random variable
over the indices of the signal, modeling that entry ¢ is nonzero with

IThe £; norm is defined by ||a|j; £
component of @x.

1 |zs|, where x; is the ith

probability p;(t). Conditional on the value of L(t) the amplitude
of the non-zero signal component is modeled as a Gaussian random
variable, A(t)|L(t) = i ~ N(ui(t),o3(t)). Thus, our model has
the form
X(t)=(0,...,0,A(t),0...,0),

where only the entry L(t) of X (¢) is non-zero. We assume  is a
realization of random variable X (¢). Notice that the distribution
is parameterized by three quantities: p(t) 2 (p1(t),...,pn(t)),

p(t) = (ua(t),..., pa(t), and o%(t) = (03 (1), ..., 02(t)). Ini-
tially, when ¢ = 0 and no samples have been taken, we start with
a uniform prior on the location, and zero mean distribution for the
conditional amplitude, specifically p(0) = (1/n,...,1/n), n(0) =
(0,...,0) and o*(0) 2 (03,...,02), where o8 > 0. This prior
distribution is updated in a Bayesian manner as samples are acquired,
giving rise to the model at step ¢, as described above.

Recall the observation model in (1). Using Bayes rule we can
update the posterior distribution, and straightforward calculations
yield the following update rules
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where y(t) is a realization of Y (¢), and in the update of p(¢t + 1) we
omit the explicit expression of the normalization constant.

The choice of the projection vectors ¢(t) is critical for good per-
formance. If we are constrained not to use adaptive projections it is
known that random projections are as uniformly informative as pos-
sible. These can be, for example, Rademacher random vectors (n-
vectors comprised of i.i.d. random variables taking values +1/1/n
with equal probability). However, if that constraint is removed and
adaptivity is allowed, then one can use information gleaned from
previous samples to “focus” the projection vectors, leading to better
performance.

We propose the following methodology: define the “shaped”
random projection

#(t+1) = (Vp1(t) B, Vp2(t) B, . ., \/pn(t) Bn)

where {B;} are i.i.d. random variables, taking value +1 with equal
probability. Note that since 7", pi(t) = 1 (because p is a discrete
probability distribution) we have ||¢(¢)]|2 = 1. If at time ¢ we are
very confident that 7 is the only non-zero entry of x, that is p;(t) is
close to 1, then the shaped projection vector is going to put a large
amount of mass on that entry. While this may appear intuitively rea-
sonable, there is also a principled rationale for this particular shaping
procedure, namely it is an attempt to make observation Y (¢) as in-
formative as possible.

A way of characterizing the information content of Y (¢) is to
compute its differential entropy, as defined in [7]. In other words we
want to find ¢(t + 1) solving

arg max H(hTX(t) +W(t+1)), )

h:||h|l2=1

where H(-) is the differential entropy and X (¢) is a random vari-
able distributed according our generative model at step t. In other



Table 1. Empirical probabilities of successful support identification for the adaptive procedure and standard random projections (using one
step of OMP). For high noise levels (small S), more than 15 times as many random projections are needed for OMP to match the performance

of the adaptive procedure.

S 10 5.0 2.0 1.5 1.0 0.9 0.8 0.5 0.3 0.1

Average k' 16.46 | 17.09 | 20.23 | 21.84 | 26.56 | 27.79 | 30.01 | 39.94 | 58.46 | 153.9
P,(Adaptive, k") || 0.989 | 0.985 | 0.960 | 0.963 | 0.952 | 0.953 | 0.969 | 0.977 | 0.978 | 0.995
P,(OMP, k') 0.018 | 0.020 | 0.016 | 0.015 | 0.030 | 0.021 | 0.022 | 0.025 | 0.030 | 0.028
P,(OMP, 5k") 0.485 | 0.412 | 0.412 | 0.379 | 0.392 | 0.397 | 0.387 | 0.384 | 0.386 | 0.419
P,(OMP, 10k") 0.944 | 0.927 | 0.856 | 0.860 | 0.836 | 0.808 | 0.812 | 0.774 | 0.761 | 0.783
P,(OMP, 15k") 0.993 | 0.994 | 0.982 | 0.981 | 0.967 | 0.966 | 0.962 | 0.938 | 0.910 | 0.891
P,(OMP, 30%") 1.000 | 1.000 | 1.000 | 1.000 | 0.998 | 1.000 | 1.000 | 0.998 | 0.994 | 0.993

words X (t) reflects our knowledge of x at time ¢. Now note that
under our model h” X (t) is distributed as a Gaussian mixture with
n components (recall that at most one entry of X (¢) is non-zero). In
particular the density of h” X (t) is

2
exp (_ (x — hipi(t)) ) .
2mh? o? 2k} o7 (t)
There is no closed form expression for the differential entropy of a
Gaussian mixture. Instead, using the fact that the conditional differ-
ential entropy is a lower bound for the differential entropy [7], and
conditioning on the selection of the mixture component, we obtain

H(h" X (1)) > %IOg (27T6H(h?o-i2(t))pi(t)> .

=1

Replacing the entropy in (4) by the lower bound yields

d(t+1) arg max % log <27re H(h?o’? (t))Pi(t))

h:||h|2=1 i=1

argmax Y  p;(t)log(h?) .
hel[hf2=1 ;

It is easily shown that ¢; (¢ + 1) = ++/p:(t), which motivates our
choice of projection vectors.

When a budget of k projective observations is allowed one can
use the above algorithm to collect all the observations, and the fi-
nal estimate can be computed from the posterior (different estimates
should be used, to minimize the desired cost function). If opti-
mizing mean squared error, then the best estimate is simply Zr =

(1 (K)p1(K); - - s pin (K)pn (K))-

3.2. Multiple Needles in the Haystack

Here we describe a modification of the procedure above when mul-
tiple entries of the signal are active (i.e.,  might have more than a
single non-zero entry). The idea is to search for the significant en-
tries of « one at the time, using the previously developed method.
Once an entry is found, no more observation energy is allocated to
it. As time proceeds one gets closer to the single needle model.

The procedure starts exactly as in the single spike case, and pro-
ceeds until one entry of p(t) exceeds a threshold, say 0.9. As this
point we infer there is significant signal value in the corresponding
location, and proceed by measuring that entry directly using a pro-
jection vector that is just a singleton. The observed value becomes
our estimate for the signal value at that location. We then restart the
entire estimation procedure, but zero-out in p(¢ + 1) the entry that

we just measured. All the other entries of p(¢ + 1) are equal (uni-
form prior). The procedure is iterated until the observation budget
is expended. Unlike in the single needle model it is important to
measure each detected entry directly because model mismatch often
makes the estimates obtained directly from the algorithm inaccurate.

4. EXPERIMENTAL COMPARISON

In this section we demonstrate the benefits of our proposed adap-
tive procedure relative to traditional random projections in several
recovery tasks. First, we show that our adaptive procedure can iden-
tify true signal components much more effectively than orthogonal
matching pursuit (OMP) [8] applied to standard (non-adaptive) ran-
dom projection observations. To achieve comparable performance,
OMP requires as many as 15-30 times as many observations as
the adaptive procedure. Second, we demonstrate that our adaptive
sampling procedure often yields lower average reconstruction errors
than standard random projections, and the benefit becomes more
pronounced as the noise power increases. For all experiments, we
considered target signals € R", n = 23, with m = 15 nonzero
entries of the same amplitude (with random signs) at random loca-
tions, and we enforced ||||2 = 1. Noise power is quantified by the

SNR, S £ ||z||?/no?,.

4.1. Support Identification

First we demonstrate the effectiveness of the adaptive procedure in
support identification. For a fixed SNR, we generated a target sig-
nal as above and ran the adaptive procedure until one of the entries
of the posterior probability vector exceeded 0.9. The required num-
ber of observations (k') was recorded, along with the index of the
maximum of the posterior vector (the estimate of the support). For
comparison we obtained support estimates using one index-selection
step of OMP? applied to collections of non-adaptive random projec-
tion observations (using n-vectors with i.i.d. +1/4/n entries). The
number of non-adaptive observations for each of the OMP trials was
amultiple of ¥". Each experiment was termed a success if the support
estimate contained the index of at least one true signal component.
The average number of observations required (Average k') for one
step of the adaptive procedure and the empirical probabilities of suc-
cess (Ps) for each setting were determined by averaging over 1000
trials.

The results are given in Table 1. We see that adaptive sampling
clearly outperforms random sampling, and in some cases up to 30
times as many random samples are required to achieve the detection

2The OMP index-selection step identifies the index ¢ (or indices, in the
case of a tie) for which |r;| = max; |r;| 2 ||7||co. where 7 = & y.
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Fig. 1. MSE comparisons between reconstructions obtained from
adaptive samples and random projections (solid and dashed lines,
respectively) for S = 10 and S = 1.0.

performance of the adaptive method. It is also interesting to note
that the adaptive procedure consistently identified true components
of the signal with less than 5% error for each SNR considered. The
increasing noise power essentially affected only the number of ob-
servations needed for the algorithm to converge to a true component.

4.2. Signal Reconstruction

Next we demonstrate the advantage of adaptive samples over random
projections for signal reconstruction. To ascertain the effectiveness
of the sampling procedure (independent of the reconstruction algo-
rithm) we reconstruct in each case using (2) followed by debiasing.
In addition, we eliminated the dependence of (2) on the regulariza-
tion parameter by clairvoyantly selecting the value that gave the re-
construction with the lowest mean-square error (MSE). We used the
GPSR (Gradient Projection for Sparse Reconstruction) software [9]
to efficiently perform the optimization.

Fixing the number of observations k, we ran each sampling pro-
cedure to obtain the associated sampling matrices and observation
vectors. Estimates £ = Z(«a) were obtained for 41 distinct values of
7, given by 7 = || ®T y|| 0, where o ranged from 0 to 1 uniformly
in increments of 0.025, and for each estimate the mean-square error
|2 () — 2|3 was computed.® The error associated with a given sam-
pling procedure was chosen to be the minimum error achieved over
all tested values of a.. This entire procedure was performed 40 times
for each value of k, and the resulting minimum MSE’s were aver-
aged. The results of this experiment for two different noise levels
(S = 10 and S = 1.0) are shown in Fig. 1(a) and (b), respectively.

The data in Table 1 suggest that the adaptive procedure sequen-
tially identifies true components of the signal, and the number of
observations for each discovery depends on the SNR. Thus, it is nat-
ural to predict that the reconstruction error of the adaptive procedure
will qualitatively match the best approximation error of the target
signal. Since all of the nonzero entries have the same amplitude, the
(noise-free) approximation error will decay linearly in the number
of components that are identified — retaining 7' components gives a
squared approximation error of 1 — T'(1/m). For the low noise set-
ting simulated in Fig. 1(a), the data in Table 1 suggest that one true
signal component is identified for every 16.5 observations, resulting
in a predicted MSE of 1 — (k/16.5)(1/m) and full signal recovery
after (16.5)(15) = 250 observations. This agrees with the observed
behavior except that as the SNR decreases, the slope of the error
decay changes with the instantaneous SNR, explaining the “flatten-

3 As noted in [9], choosing 7 = ||®7 y|| o guarantees an all-zero solution
while 7 = 0 gives the least-squares solution, so this parametrization covers
the entire usable range of parameter values.

ing” of the curve. The same behavior is exhibited in the higher-noise
setting.

The reconstruction errors using random projections exhibit a dif-
ferent behavior. When the SNR is high the performance is well-
predicted by noiseless CS results — the reconstruction error decays to
zero exponentially in the number of observations, provided enough
observations are collected to ensure that certain submatrices of the
observation matrix are well-conditioned. This explains the transi-
tional error behavior for traditional compressed sensing that is appar-
ent in Fig. 1(a). As the noise level increases, the rate of error decay
becomes only polynomial in the number of observations (see (3)).
It is also interesting to note that when the number of observations is
less than about 50 in Fig. 1(a) and 100 in Fig. 1(b), the adaptive pro-
cedure succeeds at identifying some of the true signal components
while the best reconstructions using random projections have MSE
comparable to the all-zero solution.

5. CONCLUSIONS AND OPEN PROBLEMS

This paper presented a novel adaptive scheme for compressive sens-
ing and demonstrated that it improves performance in many situa-
tions compared to non-adaptive random projection methods, provid-
ing evidence that while non-adaptive random projections are effec-
tive in noiseless situations, adaptivity can be very helpful in real-
world problems. We compared our approach with the adaptive pro-
jection method of [5], and although the performance of the latter is
competitive, it is only computationally feasible for relatively small
problem sizes, making it intractable for the settings considered in
this paper. Currently, we are investigating methodologies with prov-
able performance, in the spirit of [6], which also provides evidence
that adaptive sampling can outperform compressed sensing in noisy
conditions.
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