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ABSTRACT

Compressive sampling (CS) refers to a generalized sampling
paradigm in which observations are inner products between an un-
known signal vector and user-specified test vectors. Among the at-
tractive features of CS is the ability to reconstruct any sparse (or
nearly sparse) signal from a relatively small number of samples,
even when the observations are corrupted by additive noise. How-
ever, the potential of CS in other signal processing applications is
still not fully known. This paper examines the performance of CS
for the problem of signal detection. A generalized restricted isome-
try property (GRIP) is introduced, which guarantees that angles are
preserved, in addition to the usual norm preservation, by CS. The
GRIP is leveraged to derive error bounds for a CS matched filtering
scheme, and to show that the scheme is robust to signal mismatch.

Index Terms— Signal detection

1. INTRODUCTION

Compressive sampling (CS) is a generalization of conventional
point-sampling in which samples are inner products between an un-
known signal vector and a set of user-defined test vectors. Recent
theoretical results establish CS as a universal sampling procedure,
in the sense that for certain random ensembles of test vectors, CS is
an effective way to encode the salient information in any sparse (or
nearly sparse) signal. Further, these projection samples can be used
to estimate the unknown signal to a controllable mean-squared error,
even in the presence of noise [1–4]. These results are remarkable
since the number of samples required for reconstruction can be far
fewer than the ambient dimension in which the signal vector is ob-
served. For this reason CS has been proposed as a viable candidate
in many practical applications, such as wideband communications
monitoring systems, where the goal is to detect and/or intercept com-
munication signals over a frequency range so large that conventional
Nyquist sampling is technologically impossible.

In this paper, we consider a problem in which the goal is to re-
liably detect the presence of a signal vector from observations cor-
rupted by additive noise. We consider a generalized sampling model
where the observations are described by inner products between the
unknown vector and user-specified test vectors, subject to the condi-
tion that the number of observations is much less than the ambient
signal dimension. On one hand, given a priori knowledge of the
target signal structure and accurate characterization of the noise, op-
timal sampling schemes can be designed based on classical matched
filtering results. For example, if the noise is Gaussian and indepen-
dent across observations then matching the test vectors to the signal
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is the best approach. Additionally, this “matched sampling” is ro-
bust to signal mismatch in the sense that if the target signal is only
approximately known, the achievable error performance degrades
gracefully as a function of the quality of the approximation. Despite
these desirable properties, one obvious problem with this approach
is that since it requires specialized observations (matched to a given
signal), the observations cannot be reused effectively, for example,
to detect whether a second (different) signal is present.

In contrast, we propose a detector that collects a set of universal
samples, obtained without prior knowledge of the signal structure.
We first establish that any signal can be detected from such samples,
but with lower reliability than in the known signal case (matched
filtering). However, assuming that at a later time through some aux-
iliary channel, information about the nature of a signal of interest
(which may have been present when the samples were collected) is
obtained, a stronger result is possible. Specifically, we show that uni-
versal samples, together with this “future knowledge,” can be used
in a matched filtering approach to reliably detect any sparse signals
with error performance and robustness comparable to the ideal case.

The fundamental idea of CS matched filtering has arisen previ-
ously in the study of various dimensionality reduction problems. For
example, in [5], an investigation of projection sampling to speed up
kernel methods led to a bound on the difference between the inner
product of two vectors and the inner product between their projec-
tions by what is essentially a CS ensemble. More recently, the au-
thors of [6] arrive at the same result in bounding the performance of a
scheme which estimates linear functions from CS observations. For
our purposes we formulate a generalized restricted isometry property
(GRIP) with which we will establish the stated results. In addition,
we point out that GRIP may provide additional discriminating power
compared to these existing results, and may provide a means to an-
alyze the performance of CS detection in the presence of a strongly
correlated interferer.

To clarify the exposition in the following sections, we make a
brief summary of notation here. We use bold-face capital letters (A)
to denote matrices. Vectors will be written using bold-face lower-
case letters (f ) or superscripted upper-case letters (e.g., A(j), which
denotes the jth row vector of the matrix A), and the ith component
of f ∈ Rn is given by f(i) for i ∈ {1, . . . , n}. We define the
support of a vector as supp(f) , {i ∈ {1, . . . , n} : f(i) 6=
0}, and when |supp(f)| ≤ m ∈ N we say that f is m-sparse.
The inner product of two vectors f , g ∈ Rn is given by 〈f , g〉 ,∑n

i=1 f(i)g(i). The notation ‖f‖2 , 〈f , f〉 denotes the standard
Euclidean distance, also called the energy of f .

The remainder of the paper is organized as follows. The sam-
pling model is defined in Section 2, which also provides an overview
of CS reconstruction theory and the notion of restricted isometry.
The ideal detector is examined in Section 3.1, a universal detec-



tor using CS is analyzed in Section 3.2, and our proposed future-
knowledge sparse signal detection scheme is presented and analyzed
in Section 3.3. Simulation results are presented and discussed in
Section 4, and some concluding remarks are made in Section 5.

2. PRELIMINARIES

Suppose that an observer is allowed to make only a limited number
of noisy observations of an unknown vector f ∈ Rn, where each
observation is the inner product between the signal vector f and a
sampling vector chosen by and known to the observer. These pro-
jection samples are described by

yj =
〈
A(j), f

〉
+ wj , (1)

for j = 1, . . . , k, where k < n, A(j) ∈ Rn are the sampling
vectors, and {wj} is a collection of independent and identically
distributed (i.i.d.) N (0, σ2) noises. We will employ this sampling
model, which is a natural generalization of conventional point sam-
pling where each A(j) would be a vector whose entries are all zero
except for the entry corresponding to the desired sample location.
In general, it is common to impose a unit energy restriction on the
sampling vectors.

Compressive sampling (CS) refers to the case where the repre-
sentation of f in some orthonormal basis (e.g., wavelet) is m-sparse
and the measurement vector ensemble {A(j)}k

j=1 satisfies a special
restricted isometry property, which is formally stated below. In this
setting, an estimate f̂k can be obtained from {yj , A

(j)}k
j=1 that sat-

isfies

E

[
‖f̂k − f‖2

n

]
≤ C

(
k

m log n

)−1

,

where C is a constant that depends on σ2, and the expectation is
over the distribution of the noise (and the test vectors if they are ran-
domly generated) [3, 4]. This result implies that CS nearly achieves
the parametric estimation rate in expectation, and hence is almost as
effective (within a log factor) as sampling the nonzero locations of
f directly.

The success of CS reconstruction relies on the fact that certain
sampling vector ensembles exhibit a degree of incoherence with any
sparse signal. This roughly says that an ensemble of CS measure-
ments preserves the distances between all sparse vectors. This con-
cept is formalized in [7] using the restricted isometry constant, de-
fined below.

Definition 1 (Restricted Isometry Constant) Let A be a k × n
matrix. For a subset T ⊂ {1, . . . , n}, let AT denote the k × |T |
submatrix formed by retaining the columns indexed by the elements
of T . The restricted isometry constant is the smallest number εS such
that

(1− εS)
k

n
‖fT ‖

2 ≤ ‖AT fT ‖
2 ≤ (1 + εS)

k

n
‖fT ‖

2 (2)

holds for all sets T with |T | ≤ S and all vectors fT ∈ R|T |.

This property implies that the matrix A approximately preserves the
length of any m-sparse vector f where m ≤ S. We say that a ma-
trix A satisfies a restricted isometry property (RIP) of order S if (2)
holds for some constant εS ∈ (0, 1). Prior work verified that matri-
ces whose entries are i.i.d. realizations of certain random variables
satisfy a RIP with constant εS = 1/2 with very high probability
when k is on the order of S [1, 2].

The analysis in later sections uses a generalized restricted isom-
etry property (GRIP), given by the following Theorem (see [8] for a
complete proof).

Theorem 1 (GRIP) If a matrix A satisfies satisfies RIP of order S
with εS ≤ 1/3, then for any sparse vectors f and g supported on T
and separated by an acute angle α (i.e., 〈f , g〉 = ‖f‖‖g‖ cos(α)),
then

(1− εS)
k

n
‖fT ‖‖gT ‖ cos [(1 + θS)α]

≤ 〈AT fT , AT gT 〉 ≤ (1 + εS)
k

n
‖fT ‖‖gT ‖ cos [(1− θS)α],

where θS = θ(εS) = c
√

εS with a small constant c > 0.

This result is established by showing that RIP implies relative angle
preservation, which means that for two vectors f and g separated by
an acute angle α, the image angle α̂ between Af and Ag satisfies
(1− θ)α ≤ α̂ ≤ (1 + θ)α, for a small value θ ∈ (0, 1).

The proof of Theorem 1 proceeds using a key observation from
[9]. In that work, it is shown that approximate preservation of the
lengths of the vectors {f , g, f − g} (collectively, the triangle de-
fined by the vectors f and g) along with a set of properly-chosen
“stabilizing vectors” is sufficient to guarantee that the heights of the
triangle defined by f and g are approximately preserved. Relative
angle preservation follows. The final step in establishing Theorem 1
is to show that RIP implies relative length preservation of all of the
required stabilizing vectors.

It is worthwhile to comment that similar bounds to the ones we
obtain in Section 3.3 can be derived using the results in [5, 6]. How-
ever, for those results, relative angle preservation is only possible
if ε in proportion to α. In contrast, GRIP guarantees relative an-
gle preservation for a fixed ε. This key difference will be discussed
again in Section 5, in the context of an interesting extension of the
detection problem.

3. PROJECTION SAMPLING AND SIGNAL DETECTION

3.1. Signal Detection From Matched Samples

In accordance with the model defined in (1), we let f ∈ Rn be the
signal to be detected, y ∈ Rk is the vector of observations, and A is
a k × n matrix whose rows are the vectors A(j). The observations
when the signal is absent are noise only, independent, and distributed
as

H0 : P0(yj) =
1√

2πσ2
exp

(
−

y2
j

2σ2

)
,

and when the signal is present, the observations are independent and
distributed as

H1 : P1(yj) =
1√

2πσ2
exp

[
−

(
yj − 〈Aj , f〉

)2

2σ2

]
,

for j = 1, . . . , k.
Using standard techniques from classical detection theory, it is

straightforward to show that the optimal test statistic in this setting
is of the form yT Af , which means that for some threshold τ , the
detector decides that the signal is present if yT Af > τ and de-
cides the signal is absent otherwise. Define the total probability of
error PERROR to be the sum of the false alarm probability PFA (the
probability that the detector announces the signal is present when it
is not) and the miss probability PM (the probability that the detec-
tor announces the signal is not present when it is). We would like



to optimize this total error by balancing the contributions from each
error term. From [10], this optimal error obeys PERROR ≤

∏k
j=1 Γ∗j ,

where Γ∗j = minλ∈[0,1] Γj(λ) and

Γj(λ) =

∫ ∞

−∞
P λ

0 (yj)P
1−λ
1 (yj)dx.

In this case, we have PERROR ≤ exp
(
−‖Af‖2/8σ2

)
. If the rows

of A are given by f̂/‖f̂‖ for some approximation f̂ such that
〈f , f̂〉 ≥ 0, then

PERROR ≤ exp
[
−knS cos2 (α)/8

]
, (3)

where α is the angle between f and f̂ , and S = ||f ||2/nσ2 is the
signal to noise ratio (SNR). This result illustrates the robustness of
the detector that employs matched sampling – the error performance
degrades gracefully as the quality of the approximation decreases
(i.e., as α increases).

3.2. Arbitrary Signal Detection From Compressive Samples

We now consider the problem of detecting an arbitrary but unknown
signal in the presence of additive white Gaussian noise. Again let
f ∈ Rn denote the signal vector. Since the signal is unknown we
cannot match the samples to it, so instead we compressively sample.
That is, we assume that the entries of the test functions A(j) defined
in (1) are i.i.d. N (0, 1/n). Under the null hypothesis, observations
will be noise only, independent, and distributed as

H0 : P0(yj) =
1√

2πσ2
exp

(
−

y2
j

2σ2

)
.

Because the sum of independent Gaussian random variables is itself
Gaussian, the presence of the signal amounts to a variance shift in the
observations, which under the alternative hypothesis are independent
and distributed as

H1 : P1(yj) =
1√

2π (σ2 + ‖x‖2/n)
exp

(
−

y2
j

2 (σ2 + ‖x‖2/n)

)
,

for j = 1, . . . , k. In this setting, it is straightforward to show that
the optimal detector is an energy detector of the form ‖y‖2. Again
we follow the approach in [10] to obtain

PERROR ≤

[
exp (1/2)

√
log (1 + S)

S(1 + S)1/S

]k

. (4)

This result shows that any unknown signal f can be reliably detected
using CS without actual knowledge of f .

3.3. Sparse Signal Detection From Compressive Samples

The previous two sections illustrated the performance of detectors
on two ends of a spectrum. On one end, we see that certain ensem-
bles of test functions are sufficient to detect arbitrary but unknown
signals with a rate that is exponential in the number of observations,
but only polynomial in SNR, as shown in (4). On the other hand,
some useful knowledge of the signal to be detected results in a robust
detector whose error probability decays exponentially in the number
of observations and in SNR as shown in (3). Here we examine a
CS matched filtering approach that exploits the sparsity of the signal
to be detected and some amount of future knowledge to offer both

universality and robustness, as well as error an probability that is
exponential in both the number of observations and the SNR.

We proceed by utilizing the form of the ideal detector, but in-
stead of correlating the observation vector with the projection of the
true signal (yT Af ) we instead correlate the observation vector with
the projection of an approximation of the true signal. Specifically, let
f̂ denote our approximation of f obtained through a “future knowl-
edge” channel. We will examine the error performance of the detec-
tor given by yT Af̂ . Again, we assume that the approximation f̂ is
aligned with the true signal f so that 〈f , f̂〉 ≥ 0 (i.e., α is acute).

We examine the error performance by considering the distri-
bution of the test statistic T = yT Af̂ directly. Under the null
hypothesis, T ∼ N

(
0, ||Af̂ ||2σ2

)
, and when the signal is present,

T ∼ N
(
〈Af , Af̂〉, ||Af̂ ||2σ2

)
. Thus, the error probabilities

are obtained by integrating tails of the appropriate Gaussian dis-
tributions. Now assume that the vectors f and f̂ are sufficiently
sparse and that the matrix A satisfies GRIP with constants ε
and θ. We use the distributions that give the worst separation
and error behavior by choosing those with the lowest mean and
highest variance. Thus, under the null hypothesis we have T ∼
N

(
0, (1 + ε)(k/n)||f̂ ||2σ2

)
, and when the signal is present, T ∼

N
(
(1− ε)(k/n)‖f‖‖f̂‖ cos [(1 + θ)α], (1 + ε)(k/n)||f̂ ||2σ2

)
,

where α denotes the acute angle between f and f̂ . For a positive
detection threshold τ < (1 − ε)(k/n)‖f‖‖f̂‖ cos [(1 + θ)α] we
utilize a bound on the the integral of Gaussian tails [11] to obtain

PFA ≤
1

2
exp

[
−τ2

2σ2(1 + ε)(k/n)||f̂ ||2

]
and

PM ≤ 1

2
exp

−
(
(1− ε)(k/n)‖f‖‖f̂‖ cos [(1 + θ)α]− τ

)2

2σ2(1 + ε)(k/n)||f̂ ||2

 .

Setting τ = (1/2)(1 − ε)(k/n)‖f‖‖f̂‖ cos [(1 + θ)α] makes the
two errors equal, giving

PERROR ≤ exp

[
− (1− ε)2(k/n)‖f‖2 cos2 [(1 + θ)α]

8σ2(1 + ε)

]
= exp

[
−kS

8

(1− ε)2 cos2 [(1 + θ)α]

1 + ε

]
,

valid for all angles for which τ = (1/2)(1 −
ε)(k/n)‖f‖‖f̂‖ cos [(1 + θ)α] is positive.

When ε and θ are small, this bound is approximately given by
PERROR ≤ exp

[
−kS cos2 (α)/8

]
. Comparing this approximation

with (3), we see that the only difference is a factor of n in the rate.
This arises because the amount of signal energy captured by each
CS observation of the signal f , in expectation, is given by ‖f‖2/n,
while optimal sampling captures the full signal energy ‖f‖2. The
loss by a factor of n illustrates the price to be paid for the universality
that CS provides.

4. SIMULATION RESULTS

In this section we examine the dependence of the minimum proba-
bility of error on the number of observations and SNR for the detec-
tors that employ CS. To illustrate the robustness of the CS matched



filter detector we consider two approximations, the best one-term
approximation of f and f itself. For the realizations used in the
simulations, the quality of the one term approximation f̂ is such that
cos (α) = 0.85.

In the first simulation, n = 1000 and f ∈ Rn is a vector
with three nonzero entries chosen at random, but normalized so that
‖f‖2 = 1. For each detector, and for each value of k (the num-
ber of observations), 4000 realizations of the test statistic for the
signal-absent and signal-present cases were computed, each using a
randomly generated sampling matrix [with i.i.d. N (0, 1/n) entries]
and noise vector [with i.i.d. N (0, 0.025) entries]. For each case, we
used the empirical histograms of the distributions under H0 and H1

to computed the minimum total error probability.
The results are shown in Fig. 1, where the curves drawn with di-

amond markers indicate the theoretical bounds, and the curves with
x markers show the simulation results. Errors corresponding to the
energy detector, CS matched filter with approximate knowledge, and
CS matched filter with exact knowledge are drawn using the dash-
dot, dashed, and solid lines, respectively. We see that the empirical
results agree with the theory.
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Fig. 1. Empirical probability of error vs. number of observations for
a fixed SNR.

The second simulation illustrates the scaling behavior with re-
spect to SNR. Again, n = 1000, and this time the number of ob-
servations was fixed at 100. For each value of σ2, 1000 realizations
of sampling matrices with i.i.d. N (0, 1/n) entries and vectors of
i.i.d. N (0, σ2) additive noise were generated, and test statistics for
each hypothesis were computed. The minimum average probability
of error was again determined empirically. The results depicted in
Fig. 2 illustrate that the theoretical results again agree with the pre-
dicted error behavior. It is interesting to note that the dependence
of the detector performance on the quality of approximation is no-
ticeable in both simulations – the better approximation yields faster
error decay.

5. CONCLUSIONS AND EXTENSIONS

The theory and simulations above showed that a universal CS
matched filtering scheme is an effective way to detect any sparse sig-
nal with both the robustness and the exponential error performance
of the ideal detector. A relevant extension of the problem examined
here would be to determine the performance of CS matched filtering
in the presence of an interferer ξ that is close to the true signal (i.e.,
the angle between the signal and interferer is small, but nonzero).
The GRIP may provide additional insight into this problem because
it guarantees a relative bound on projected angles, so that for a fixed
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Fig. 2. Empirical probability of error vs. SNR for a fixed number of
observations.

ε, the images of the signal and interferer will remain angularly sepa-
rated. In contrast, the existing bounds [5,6] imply additive deviation
bounds on the projected angle, and would require decreasing ε in
proportion to α to guarantee angular separation. A complete analy-
sis of this case is left for future work.
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