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Abstract—Recent breakthrough results in compressive sensing (CS)
have established that many high dimensional signals can be accurately
recovered from a relatively small number of non-adaptive linear obser-
vations, provided that the signals possess a sparse representation in some
basis. Subsequent efforts have shown that the performance of CS can be
improved by exploiting structure in the locations of the nonzero signal
coefficients during inference, or by utilizing some form of data-dependent
adaptive measurement scheme during the sensing process. Our previous
work established that an adaptive sensing strategy specifically tailored
to signals that are tree-sparse can significantly outperform adaptive
and non-adaptive sensing strategies that are agnostic to the underlying
structure in noisy support recovery tasks. In this paper we establish
corresponding fundamental performance limits for these support recovery
tasks, in settings where measurements may be obtained either non-
adaptively (using a randomized Gaussian measurement strategy moti-
vated by initial CS investigations) or by any adaptive sensing strategy.
Our main results here imply that the adaptive tree sensing procedure
analyzed in our previous work is nearly optimal, in the sense that no
other sensing and estimation strategy can perform fundamentally better
for identifying the support of tree-sparse signals.

I. INTRODUCTION

Consider the task of inferring a (perhaps very high-dimensional)
vector x ∈ Rn. Compressive sensing (CS) prescribes collecting non-
adaptive linear measurements of x by “projecting” it onto a collection
of n-dimensional “measurement vectors.” Formally, CS observations
may be modeled as

yj = 〈aj ,x〉+ wj = aTj x+ wj , for j = 1, 2, . . . ,m, (1)

where aj is the j-th n-dimensional measurement vector and wj
describes the additive error associated with the j-th measurement,
which may be due to modeling error or stochastic noise. Initial
breakthrough results in CS established that sparse vectors x having
no more than k < n nonzero elements can be exactly recovered (in
noise-free settings) or reliably estimated (in noisy settings) from a
collection of only m = O(k logn) measurements of the form (1)
using, for example, ensembles of randomly generated measurement
vectors whose entries are iid realizations of certain zero-mean random
variables (e.g., Gaussian) – see, for example, [1].

While many of the initial efforts in CS focused on purely ran-
domized measurement vector designs and considered recovery of
arbitrary sparse vectors, several powerful extensions to the original
CS paradigm have been investigated in the literature. One such
extension allows for additional flexibility in the measurement process,
so that information gleaned from previous observations may be
employed in the design of future measurement vectors. Formally, such
adaptive sensing strategies are those for which the j-th measurement
vector aj is obtained as a (deterministic or randomized) function
of previous measurement vectors and observations {a`, y`}j−1

`=1 , for
each j = 2, 3, . . . ,m. Non-adaptive sensing strategies, by contrast,
are those for which each measurement vector is independent of all
past (and future) observations. Adaptive sensing techniques have been
shown beneficial in sparse inference tasks, enabling an improved
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resilience to measurement noise relative to techniques based on non-
adaptive measurements (see, for example, [2]–[10] as well as the
summary article [11] and the references therein).

Another powerful extension to the canonical CS framework corre-
sponds to the exploitation of additional structure that may be present
in the locations of the nonzeros of x. To formalize this notion, we
first define the support S = S(x) of a vector x = [x1 x2 . . . xn]

T

as S(x) , {i : xi 6= 0}, and note that, in general, the support of a
k-sparse n-dimensional vector corresponds to one of the

(
n
k

)
distinct

supports of {1, 2, . . . , n} of cardinality k. The term structured
sparsity describes a restricted class of sparse signals whose supports
may occur only on a (known) subset of these

(
n
k

)
distinct supports.

Generally speaking, knowledge of the particular structure present in
the object being inferred can be incorporated into sparse inference
procedures, and for certain types of structure this can result either
in a reduction in the number of measurements required for accurate
inference, or improved estimation error guarantees, or both (see, e.g.,
[12], [13], as well as the recent survey article [14]).

The authors’ own previous work [15] was the first to identify
and quantify the benefits of using adaptive sensing strategies that
are tailored to certain types of structured sparsity, in noisy sparse
inference tasks. Specifically, the work [15] established that a simple
adaptive compressive sensing strategy for tree-sparse vectors could
successfully identify the support of much weaker signals than what
could be recovered using non-adaptive or adaptive sensing strategies
that were agnostic to the structure present in the signal being acquired.
Subsequent efforts by other authors have similarly identified benefits
of adaptive sensing techniques tailored to other forms of structured
sparsity in noisy sparse inference tasks [8], [9], [16]. The aim of this
effort is to establish the optimality of the procedure analyzed in [15],
by identifying the fundamental performance limits associated with
the task of support recovery of tree-sparse signals from noisy linear
measurements.

II. ADAPTIVE CS FOR TREE SPARSE SIGNALS

Tree sparsity essentially describes the phenomenon where the
nonzero elements of the signal being inferred exhibit clustering
along paths in some known underlying tree. For the purposes of
our investigation here, we formalize the notion of tree sparsity as
follows. Suppose that the set {1, 2, . . . , n} that indexes the elements
of x ∈ Rn is put into a one-to-one correspondence with the nodes
of a known tree of degree d ≥ 1 having n nodes, which we refer
to as the underlying tree. We say that a vector x is k-tree sparse
(with respect to the underlying tree) when the indices of the support
set S(x) correspond, collectively, to a rooted connected subtree of
the underlying tree. In the sequel we restrict our attention to n-
dimensional signals that are tree sparse in a known underlying binary
tree (d = 2), though our approach and main results can be generalized
to underlying trees having degree d > 2.

Tree sparsity arises naturally in the wavelet coefficients of many
natural signals including, in particular, natural images, and this fact
has motivated several investigations into CS inference techniques
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that exploit or leverage underlying tree structure in the signals
being acquired [12], [13], [17]–[21]. Motivated by these efforts – in
particular [21] – the essential aim of the authors own prior work [15]
was to assess the performance of such approaches in noisy settings.
For completeness, we summarize the main results of that work here.

Let us assume, for simplicity, that the signal x being acquired
is tree sparse in the canonical (identity) basis, though extensions
to signals that are tree sparse in any other orthonormal basis (e.g.,
a wavelet basis) are straightforward. Noisy observations of x are
obtained according to (1) by projecting x onto a sequence of
adaptively designed measurement vectors, each of which corresponds
to a basis vector of the canonical basis, and we assume that each
measurement vector has unit norm. Now, to simplify the description
of the procedure, we introduce some slightly different notation to
index the individual observations. Specifically, rather than indexing
observations by the order in which they were obtained as in (1), we
instead index each measurement according to the index of the basis
vector onto which x is projected, or equivalently here, according to
the location of x that was observed. To that end, let us denote by y(j)
the measurement obtained by projecting x onto the vector ej having
a single nonzero in the j-th location for any j ∈ {1, 2, . . . , n}.

Now, begin by specifying a threshold τ ≥ 0, and by initializing
a support estimate Ŝ = ∅ and a data structure Q (which could be
a stack, queue, or simply a set) to contain the index corresponding
to the root of the underlying tree. While the data structure Q is
nonempty, remove an element ` from Q, collect a noisy measurement
y(`) by projecting x onto e`, and perform the following hypothesis
test. If |y(`)| ≥ τ , add the indices corresponding to the children of
node ` in the underlying tree to the data structure Q and update the
support estimate to include the index `; on the other hand, if |y(`)| <
τ , then keep Q and Ŝ unchanged. The procedure continues in this
fashion, at each step obtaining a new measurement and performing
a corresponding hypothesis test to determine whether the amplitude
of the coefficient measured in that step was significant. When the
overall procedure terminates it outputs its final support estimate Ŝ,
which essentially corresponds to the set of locations of x for which
the corresponding measurements exceeded τ in amplitude.

The main result of [15] quantifies the performance of this type
of sensing strategy when measurements are noisy. We provide a
restatement of that result1 here as a Lemma, for a generalized scenario
where we assume that we obtain r ≥ 1 measurements (each with its
own independent additive noise) at each step of the procedure and
these replicated measurements are averaged prior to performing the
hypothesis test at each step.

Lemma II.1. Let x be a k-tree sparse vector for some k ≥ 2,
and consider acquiring x using the adaptive tree sensing procedure
described above, where r ≥ 1 measurements are obtained in each
step and averaged to reduce the effective measurement noise prior
to each hypothesis test. Choose δ ∈ (0, 1) and sparsity parameter
k′ ∈ N (intended to be an upper bound on the sparsity level), and
set the threshold τ =

√
2 (σ2/r) log (4k′/δ). If x is k-tree sparse

for some k ≥ 2, the sparsity parameter k′ ≤ βk for some β ≥ 1,
and the amplitudes of the nonzeros of x satisfy

|xi| ≥

√
8

[
1 + log

(
4β

δ

)]
·

√(
σ2

r

)
log k, (2)

for every i ∈ S(x) then with probability at least 1− δ the following
are true: the algorithm terminates after collecting m ≤ r(2k + 1)

1We note that we have not attempted to optimize constants in our derivation
of Lemma II.1, opting instead for simple expressions that better illustrate the
scaling behavior with respect to the problem parameters.

measurements, and the support estimate Ŝ produced by the procedure
satisfies Ŝ = S(x).

Note that when m ≤ r(2k + 1) we have that 1/r ≤ 3k/m
provided k ≥ 1. It follows from the corollary that when the
sparsity parameter k′ does not overestimate the true sparsity level
by more than a constant factor (i.e., β ≥ 1 is a constant), then a
sufficient condition to ensure that the support estimate produced by
the repeated-measurements variant of the tree sensing procedure is
correct with probability at least 1−δ, is that the nonzero components
of x satisfy

|xi| ≥

√
24

[
1 + log

(
4β

δ

)]
·

√
σ2

(
k

m

)
log k, (3)

for all i ∈ S(x). Identifying whether any other procedure can accu-
rately recover the support of tree-sparse signals having fundamentally
weaker amplitudes is the motivation for our present effort.

III. PROBLEM STATEMENT

As stated above, our specific focus here is on establishing fun-
damental performance limits for the support recovery task – that
of identifying the locations of the nonzeros of x – in settings
where x is k-tree sparse, and when observations may be designed
either non-adaptively (e.g., measurement vectors whose elements are
random and iid, as in traditional CS) or adaptively based on previous
observations. We formalize this problem here.

1) Signal Model: Let Tn,k denote the set of all unique supports for
n-dimensional vectors that are k-tree sparse in the same underlying
binary tree with n nodes2. Our specific focus will be on classes of
k-tree sparse signals, with 2 ≤ k ≤ (n+ 1)/2, where each k-sparse
signal x has support S(x) ∈ Tn,k, and for which the amplitudes of all
nonzero signal components are greater or equal to some non-negative
quantity µ. Formally, for a given underlying tree, fixed sparsity level
k, and Tn,k as described above, we define the signal class

Xµ;Tn,k ,
{
x ∈ Rn : xi = αi1{i∈T}, |αi| ≥ µ > 0, T ∈ Tn,k

}
,

(4)
where 1{B} denotes the indicator function of the event B. In the
sequel, we choose to simplify the exposition by denoting the signal
class Xµ;Tn,k using the shorthand notation Xµ,k.

2) Sensing Strategies: We examine the support recovery task
under both adaptive and non-adaptive sensing strategies. Here, when
considering performance limits of non-adaptive sensing, we consider
observations obtained according to the model (1), where each aj ,
j = 1, 2, . . . ,m, is an independent random vector, whose elements
are iidN (0, 1/n) random variables which ensures that each measure-
ment vector has norm one in expectation; that is, E

[
‖aj‖22

]
= 1 for

all j = 1, 2, . . . ,m. Our investigation of adaptive sensing strategies
focuses on observations obtained according to (1), using measurement
vectors satisfying ‖aj‖22 = 1, for j = 1, 2, . . . ,m, and for which aj
is allowed to explicitly depend on {a`, y`}j−1

`=1 for j = 2, 3, . . . ,m,
as described above.

Overall, as noted in [10], we can essentially view any (non-
adaptive, or adaptive) sensing strategy in terms of a collection
M of conditional distributions of measurement vectors aj given
{a`, y`}j−1

`=1 for j = 2, 3, . . . ,m. We adopt this interpretation here,
denoting by Mm,na the specific sensing strategy based on non-
adaptive Gaussian random measurements described above, and by
Mm be the collection of all adaptive (or non-adaptive) sensing

2For technical reasons, we further assume that the underlying trees are
nearly complete, meaning that all levels of the underlying tree are full with
the possible exception of the last (i.e., the bottom) level, and all nodes in any
partially full level are as far to the left as possible.
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strategies based on m measurements, where each measurement vector
is exactly norm one (with probability one).

3) Observation Noise: In each case, we model the noises asso-
ciated with the linear measurements as a sequence of independent
N (0, σ2) random variables. We further assume that each noise wj is
independent of the present and all past measurement vectors {a`}j`=1.
For the non-adaptive sensing strategies we examine here, noises will
also be independent of future measurement vectors, though by design,
future measurement vectors generally will not be independent of
present noises when adaptive sensing strategies are employed.

4) The Support Estimation Task: An estimator ψ takes as its input
a collection of measurement vectors and associated observations,
{aj , yj}mj=1, denoted by {Am,ym} in the sequel (for shorthand), and
outputs a subset of the index set {1, 2, . . . , n}. Overall, we denote
a support estimate based on observations Am,ym obtained using
sensing strategy M by ψ(Am,ym;M).

Now, under the 0/1 loss function d(S1, S2) , 1{S1 6=S2} defined
on elements S1, S2 ⊆ {1, 2, . . . , n}, the (maximum) risk of an
estimator ψ based on sensing strategy M over the set Xµ,k is

RXµ,k (ψ,M) , sup
x∈Xµ,k

Ex [ d(ψ(Am,ym;M), S(x)) ]

= sup
x∈Xµ,k

Prx (ψ(Am,ym;M) 6= S(x)) , (5)

where Ex and Prx denote, respectively, expectation and probability
with respect to the joint distribution P(Am,ym;x) , Px(Am,ym)
of the quantities {Am,ym} that is induced when x is the true signal
being observed.

Now, we define the minimax risk R∗Xµ,k,M associated with the
class of distributions {Px : x ∈ Xµ,k} induced by elements x ∈ Xµ,k
and the classM of allowable sensing strategies as the infimum of the
(maximum) risk over all estimators ψ and sensing strategies M ∈M;
that is,

R∗Xµ,k,M , inf
ψ;M∈M

RXµ,k (ψ,M), (6)

= inf
ψ;M∈M

sup
x∈Xµ,k

Prx (ψ(Am,ym;M) 6= S(x)) .

Note that when the minimax risk is bounded away from zero,
so that R∗Xµ,k,M ≥ γ for some γ > 0, it follows that for any
particular estimator ψ and sensing strategy M ∈ M employed,
there will always be at least one signal x ∈ Xµ,k for which
Prx (ψ(Am,ym;M) 6= S(x)) ≥ γ.

A. Summary of Our Contributions

We state the results here as theorems, and refer the readers to the
full version of this paper [22] for detailed proofs. Our first main
result analyzes the support recovery task for tree-sparse signals in a
non-adaptive sensing scenario.

Theorem III.1. Let Xµ,k be the class of k-tree sparse n-dimensional
signals defined in (4) where 2 ≤ k ≤ (n + 1)/2, and consider
acquiring m measurements of x ∈ Xµ,k using the non-adaptive
(random, Gaussian) sensing strategy Mm,na. If

µ ≤
√

1− 2γ

4
·
√
σ2
( n
m

)
log(k), (7)

for some γ ∈ (0, 1/3) then the minimax risk R∗Xµ,k,Mm,na defined
in (6) obeys the bound R∗Xµ,k,Mm,na

≥ γ.

Our second main result concerns support recovery in scenarios
where adaptive sensing strategies may be employed.

Theorem III.2. Let Xµ,k be the class of k-tree sparse n-dimensional
signals defined in (4) where 2 ≤ k ≤ (n + 1)/2, and consider

TABLE I: Summary of necessary conditions for exact support re-
covery using non-adaptive or adaptive sensing strategies that obtain
m measurements of k-sparse n-dimensional signals that are either
unstructured or tree sparse in an underlying binary tree.

Sparsity Model

Sampling Strategy
Non-adaptive Sensing Adaptive Sensing

√
σ2
(
n
m

)
logn

√
σ2
(
n
m

)
log k

Unstructured Sparsity
[24], [25] [26] (when m > n)

√
σ2
(
n
m

)
log k

√
σ2
(
k
m

)
Tree Sparsity

Theorem III.1 Theorem III.2

acquiring m measurements of x ∈ Xµ,k using any sensing strategy
M ∈Mm. If

µ ≤ (1− 2γ)

√
σ2

(
k

m

)
, (8)

for some γ ∈ (0, 1/3) then the minimax risk R∗Xµ,k,Mm
defined in

(6) obeys the bound R∗Xµ,k,Mm
≥ γ.

Table I depicts a summary of our main results in a broader context.
Overall, we compare four distinct scenarios corresponding to a tax-
onomy of adaptive and non-adaptive sensing strategies for recovering
k-sparse signals under assumptions of unstructured sparsity and tree
sparsity. For each, we identify (up to an unstated constant) a critical
value of the signal amplitude parameter, say µ∗, such that for the
support recovery task the minimax risk over the class Xµ,k will
necessarily be bounded away from zero when µ ≤ µ∗.

The results of Theorem III.2, summarized in the lower-right corner
of Table I, address our overall question – the simple adaptive tree
sensing procedure described above is indeed nearly optimal for
estimating the support of k-tree sparse vectors, in the following
sense: Lemma II.1 describes a technique that accurately recovers
(with probability at least 1−δ, where δ can be made arbitrarily small)
the support of any k-tree sparse signal from m ≤ r(2k+1) measure-
ments, provided the amplitudes of the nonzero signal components all
exceed cδ ·

√
σ2 (k/m) log k for some constant cδ . On the other hand,

for any estimation strategy based on any adaptive or non-adaptive
sensing method, support recovery will fail (with probability at least
γ) to accurately recover the support of some signal or signals in a
class comprised of k-tree sparse vectors whose nonzero components
exceed cγ ·

√
σ2 (k/m) in amplitude, for a constant cγ .

IV. EXPERIMENTAL EVALUATION AND DISCUSSION

In this section we provide some experimental results to illustrate
the performance improvements that can be achieved in the support
recovery task using the adaptive tree sensing procedure. We evaluate
four different sensing and support estimation strategies – a non-
adaptive CS strategy based on the Lasso estimator; non-adaptive
CS using a group-Lasso estimator, with groups designed to enforce
tree-structure; the adaptive CS procedure of [23]; and the adaptive
tree sensing procedure described above – intended to be illustrative
approaches for each of the four scenarios identified in Table I. We
refer reader to [22] for complete details on the experimental setup.

We consider overall three different scenarios, corresponding to
three different values of the problem dimension (n = 28 − 1,
n = 210 − 1, and n = 212 − 1, chosen so that the underlying
trees in each case are complete), and in each case we evaluate the
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Fig. 1: Empirical probability of support recovery error as a function of signal amplitude parameter µ in three different problem dimensions n. In each case,
four different sensing and support recovery approaches – the adaptive tree sensing procedure described here (4 markers); the adaptive compressive sensing
approach of [23] (� markers); a Group Lasso approach for recovering tree-sparse vectors (� markers), and a Lasso approach for recovering unstructured sparse
signals (× markers) – were employed to recover the support of a tree-sparse signal with 16 nonzeros of amplitude µ. The proposed tree-sensing procedure
exhibits performance that is unchanged as the problem dimension increases, in agreement with the theoretical analysis here.

performance of each approach over a range of signal amplitude
parameters µ, as follows. In each of 100 trials we first generate
a random n-dimensional tree-sparse signal with k = 16 nonzero
components of amplitude µ. We construct the signals here so that
all nonzero components are non-negative, for simplicity, and to
facilitate direct comparison with the procedure analyzed in [23]. We
fix m = 4(2k+1) and apply each of the procedures described above
(with additive noise variance σ2 = 1), and assess whether it correctly
identifies the true support by comparing the support estimate obtained
by the procedure with the true support of the tree signal. The final
empirical probabilities of support recovery error for each approach
(and each fixed n and µ) were obtained by averaging results over the
100 trials. Fig. 1 shows the simulation results.

A few interesting points are worth noting here. First, as expected,
the adaptive tree-sensing procedure outperforms each of the other
approaches in each of the three scenarios; overall, the results suggest
that either utilizing adaptive sensing or exploiting tree structure
(alone) can indeed result in techniques that outperform traditional
CS, but even more significant improvements are possible when
leveraging adaptivity and structure together, confirming our claim
in the discussion in Section I. Further, it is interesting to note
that the performance of the tree-sensing procedure is unchanged as
the problem dimension increases, in agreement with the result of
the result of Lemma II.1, where the sufficient condition on µ that
ensures accurate support recovery does not depend on the ambient
dimension n. By comparison, the performance of each of the other
approaches degrades as the problem dimension increases – a “curse of
dimensionality” suffered by each of these other techniques. Whether
other (useful) forms of structured sparsity exhibit this favorable
characteristic remains an open question.
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