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ABSTRACT

This paper examines the problem of multipath channel esti-
mation in single-antenna orthogonal frequency division mul-
tiplexing (OFDM) systems. In particular, we study the prob-
lem of pilot assisted channel estimation in wideband OFDM
systems, where the time-domain (discrete) channel is approx-
imately sparse. Existing works on this topic established that
techniques from the compressed sensing literature can yield
accurate channel estimates using a relatively small number of
pilot tones, provided the pilots are selected randomly. Here,
we describe a general purpose procedure for deterministic
selection of pilot tones to be used for channel estimation,
and establish guarantees for channel estimation accuracy us-
ing these sequences along with recovery techniques from the
compressed sensing literature. Simulation results are pre-
sented to demonstrate the effectiveness of the proposed pro-
cedure in practice.

Index Terms— Channel estimation, compressed sensing,
deterministic RIP matrices, OFDM systems

1. INTRODUCTION

Two key metrics used to evaluate the performance of wire-
less systems include: (i) the bit-error rate (BER) and (ii) the
spectral efficiency (i.e., bits transmitted per second per Hz).
It is generally recognized that the BER in wideband wire-
less systems can be significantly reduced if the receiver has
knowledge of the underlying multipath channel response; the
so-called coherent communications [1]. In practice, however,
the channel response is seldom (if ever) known to the receiver.
Instead, it needs to be periodically estimated at the receiver in
order to reap the benefits of coherent communications.

Our focus in this paper is on multipath channel estimation
for single-antenna orthogonal frequency-division multiplex-
ing (OFDM) wireless systems [2]. There are two classes of
methods that are commonly employed for channel estimation
in OFDM systems, namely, training-based methods and blind
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methods. Blind methods attempt to estimate the channel by
making use of the statistics of the unknown data only. There-
fore, blind channel estimation has the potential to yield a
lower BER without affecting the systems’s spectral efficiency.
Blind methods, however, tend to be effective only if the under-
lying multipath channel remains constant over a large number
of OFDM symbols. This is clearly a disadvantage in the case
of a mobile system where the underlying channel can change
from one symbol to the next symbol.

Training-based methods, on the other hand, try to esti-
mate the channel by transmitting the unknown data multi-
plexed with some training data already known to the receiver.
Such methods are preferred for channel estimation in mobile
OFDM systems since they yield reliable estimates even if the
channel changes from one symbol to the next symbol. The
most prevalent form of training-based channel estimation in
OFDM systems involves dedicating a few of the OFDM sub-
carriers (tones) solely for transmitting the training data (pi-
lots) [3]. The key questions that arise in such pilot-assisted
channel estimation (PACE) methods include: (i) which, and
how many, OFDM tones should be used as pilot tones? and
(ii) how does the choice of pilot tones affect the channel esti-
mation error? Note that the former question directly impacts
the spectral efficiency, while the latter question directly im-
pacts the BER in wireless systems.

To the best of the authors’ knowledge, Rinne and Ren-
fors [4] and Negi and Cioffi [5] made some of the first at-
tempts to concretely answer the above questions for PACE
methods in OFDM systems. In particular, it has been argued
in [5] that: (i) the best set of pilot tones corresponds to a set of
cardinality equal to the length, L, of the underlying (discrete)
multipath channel, with the pilot tones equally spaced within
the OFDM subcarriers, and (ii) this set of equally spaced pilot
tones results in a channel estimation error of Lσ2

Etr , where σ2

denotes the receiver noise variance and Etr denotes the train-
ing energy. The channel estimation results of [5] are based on
the maximum likelihood (ML) criterion and are in fact opti-
mal for narrowband OFDM systems. Many wideband OFDM
systems of recent interest, such as underwater acoustic sys-
tems [6], digital television systems [7] and residential ultraw-
ideband systems [8], however, correspond to underlying (dis-
crete) multipath channels in which a large number of time-



domain channel coefficients tend to have very small magni-
tudes; see [9, 10] for a mathematical justification of this phe-
nomenon from the channel modeling perspective.

Conventional linear PACE methods based on the ML cri-
terion fail to capitalize on this anticipated structure (i.e., ap-
proximate sparsity or compressibility) of the underlying mul-
tipath channels in wideband OFDM systems. In contrast,
the main contribution of this paper is a nonlinear PACE
scheme that makes use of a deterministically chosen set of
pilot tones having cardinality much smaller than L and a con-
vex optimization-based reconstruction method, known as the
Dantzig selector [11], to result in a channel estimation er-
ror that is significantly smaller than that achievable using the
traditional PACE techniques. Stated differently, the PACE
scheme proposed in here is significantly superior to the ones
proposed in [4, 5] in terms of both the spectral efficiency
(number of pilot tones is smaller than L) and the BER (chan-
nel estimation error is smaller than Lσ2

Etr ) in wideband OFDM
systems.

In terms of relationship to previous work, note that the
results reported in this paper leverage some of the recent ad-
vances in the field of compressed sensing (CS) [12]. This
makes our approach to PACE in OFDM systems somewhat
similar to the ones proposed independently in [13–15]. How-
ever, note that [13–15] require using randomly chosen sets
of pilot tones in order to provide concrete guarantees for fi-
nite training energy. In contrast, to the best of our knowledge
this is the first paper in the literature that provides rigorous
guarantees for CS-based PACE methods for OFDM systems
using deterministically chosen sets of pilot tones (determin-
istic probe designs for multi-user multi-antenna OFDM sys-
tems were recently examined in [16], for systems employing
linear least-squares channel estimation).

Finally, note that recently Schniter [17] has also proposed
a novel channel estimation scheme for wideband OFDM sys-
tems. The scheme proposed in [17] can be termed as semi-
blind since it makes use of both the training data and the
statistics of the unknown data to carry out joint channel esti-
mation and data decoding using belief-propagation ideas. The
primary difference between [17] and our work is that [17] as-
sumes the underlying multipath channel to have no more than
S � L nonzero time-domain channel coefficients (i.e., S-
sparse channels), whereas we assume the multipath channel
to be approximately sparse (i.e., compressible) but not neces-
sarily exactly sparse.

2. SYSTEM MODEL

In this section, we describe the problem setup and accompa-
nying assumptions for PACE in wideband OFDM systems.
For the sake of this exposition, we restrict ourselves to the
canonical discrete channel and system model; we refer the
reader to [10] for the relationship between the discrete-time
mathematical model and the continuous-time physical setup

(see also the simulation setup and (8) in Section 6 of this pa-
per).

To begin, we assume that the transmitter communicates
with the receiver over a discrete multipath channel of length
L, h =

[
h0 h1 . . . hL−1

]T ∈ CL, that remains fixed
for a period of N + L with N � L. The main assumption
that we make here concerns the structure of h in wideband
wireless systems. Specifically, we assume that the j-th largest
(in magnitude) entry, h(j), of h obeys

|h(j)| ≤ B · j−α−1/2 (1)

for some B > 0 and α > 0. The parameter α here controls
the rate of decay of the magnitudes of the ordered entries of
h and we term any h that satisfies (1) as α-compressible.

Next, we assume that the (unknown and training) data is
transmitted using an OFDM symbol that consists of a total
of N subcarriers and has an L-length cyclic prefix. Using
d =

[
d0 d1 . . . dN−1

]T ∈ CN in this case to denote
the data transmitted over each of the N OFDM tones, it can
then be easily shown that the received data vector y ∈ CN
at the receiver is related to the transmitted data vector d as
follows [1]:

y = Hd+ w. (2)

Here, w ∈ CN represents a zero-mean additive white Gaus-
sian noise (AWGN) vector of variance σ2, while H ∈ CN×N
is a diagonal matrix comprising of the N OFDM channel co-
efficients that are related to h as {Hkk =

∑L−1
`=0 Fk`h`} with

Fk` = e−j
2π
N k` denoting the (k, `)th element of the N -point

discrete Fourier transform (DFT) matrix.
In order to carry out PACE under this setup, we can

now proceed as follows. First, we select a set of indices
P ⊂ {0, 1, . . . , N−1}, corresponding to the set of pilot tones,
of cardinality Ntr = |P|. Next, we construct a training data
vector dtr ∈ CNtr having energy ‖dtr‖22 = Etr and trans-
mit this vector using the pilot tones specified by P; in other
words, we have that d|P = dtr, where d|P denotes the re-
striction of d to the indices in P . Then defining ytr = y|P ,
it is easy to see because of the diagonal nature of the OFDM
channel matrix H [cf. (2)] that

ytr = H|P×Pdtr + w|P (3)

whereH|P×P denotes the restriction ofH to the ordered pairs
in P ×P . Further, (3) can be easily expressed in terms of the
(time-domain) multipath channel h by noting that

H|P×Pdtr = DtrAh

whereDtr = diag(dtr) andA is anNtr×Lmatrix that com-
prises {

[
Fp0 Fp1 . . . Fp(L−1)

]
: p ∈ P} as its rows.

Therefore, definingX = DtrA, the goal of any PACE scheme
in OFDM systems is to (i) specify the pair (P, dtr) such that



Ntr = |P| and ‖dtr‖22 = Etr, and (ii) provide a reliable es-
timate of the underlying multipath channel h from the corre-
sponding received training data vector

ytr = Xh+ w|P .

3. COMPRESSED SENSING BACKGROUND

The PACE scheme proposed in this paper leverages existing
concepts from the CS literature. In particular, we will employ
a reconstruction method whose success relies upon a normal-
ized version of the measurement matrixX = DtrA described
above satisfying a property known as the Restricted Isometry
Property (RIP) [18].

Definition 3.1 (Restricted Isometry Property). An Ntr × L
matrix Z with unit norm columns satisfies the restricted isom-
etry property of order S ∈ N with parameter δS ∈ [0, 1)—or,
in shorthand, Z satisfies RIP(S,δS)—if

(1− δS)‖v‖22 ≤ ‖Zv‖22 ≤ (1 + δS)‖v‖22 (4)

holds for all v ∈ CL having no more than S nonzero entries.

In words, the RIP of order S says that the matrix Z acts like
an almost isometry on all S-sparse vectors v. For example, if
Z is the identity matrix (say, of dimension L), then it satisfies
the RIP trivially for any S = 1, 2, . . . , L with δS = 0.

The cases of particular interest in the CS literature, how-
ever, correspond to when Z has fewer rows than columns.
Indeed, the RIP has been widely adopted in the CS literature,
and many results have been established for procedures which
guarantee reliable and efficient reconstruction of sparse and
compressible signals from a relatively small number of linear
measurements obtained via a measurement matrix satisfying
the RIP. In the following, we will leverage the results for one
such reconstruction method, known as the Dantzig selector,
which was proposed in [11] and which is particularly well-
suited for measurements corrupted by stochastic noise. The
following result is a complex-valued variant of the result orig-
inally reported in [11]; see [19, Th. 2.13] for further details.

Lemma 3.2 (The Dantzig Selector). Let Z be a measurement
matrix satisfying RIP(2S,δ2S) with δ2S < 1/3 for some S ∈
N. Let γ = Zβ+ η be a vector of noisy measurements of β ∈
CL, where η is an AWGN vector with variance σ2. Choose
λL =

√
2(1 + a) logL for any a ≥ 0. Then the estimator

β̂ = arg min
v∈CL

‖v‖1 subject to ‖ZH(γ − Zv)‖∞ ≤ σλL,

where the notation ZH denotes the Hermitian, or conjugate
transpose, of Z, satisfies

‖β̂ − β‖22 ≤ c0 min
1≤k≤S

(
σλL
√
k +
‖βk − β‖1√

k

)2

,

with probability at least 1 − 2
(√

π(1 + a) logL · La
)−1

,
where βk is the best k-term approximation of β, formed by
setting all but the k largest entries (in magnitude) of β to zero,
and the constant c0 = 16/ (1− 3δ2S)

2.

4. DETERMINISTIC PILOT SEQUENCE AND
TRAINING DATA SELECTION

In this section, we describe our proposed procedure for de-
terministic selection of the pair (P, dtr) corresponding to the
set of pilot tones and training data. Our procedure, which
is based on the method outlined in [20], is quite general and
in fact gives rise to a family of pilot tone/training data selec-
tion procedures, each of which is fully-described by a small
number of integer-valued parameters. We will see in the fol-
lowing section that each selection (P, dtr) results in a set
of pilot tones and corresponding training data whose perfor-
mance for estimating compressible multipath channels using
the Dantzig selector can be rigorously quantified.

In order to describe our selection procedure, we first as-
sume that the number of subcarriers, N , is prime. Under
this condition, our procedure can be described as follows.
Begin by first selecting an integer R ≥ 2. Next, choose
a set of R integers denoted {ai}Ri=1 such that aR is rela-
tively prime to N (i.e., aR ∈ {1, 2, . . . , N − 1}), while
ai ∈ {0, 1, 2, . . . , N − 1} for the remaining i 6= R. The
integers {ai}Ri=1 become the coefficients of a degree-R poly-
nomial Q(m) = a1m + · · · + aRm

R. Finally, choose an in-
teger M ≥ 1 and construct a multiset T by evaluating Q(m)
mod N for integers m = 1, 2, . . . ,M . Formally, we have
that T = {Q(m) mod N : m = 1, 2, . . . ,M} with multi-
plicities.

Now, the set of pilot tones P is the (sub)set of unique el-
ements in T . Note that if each element of T appears with
multiplicity 1 then P = T , otherwise P ⊂ T . The entries of
the training data vector dtr corresponding to the pilots p ∈ P ,
{dtr(p)}p∈P , are functions of the multiplicity of the elements
p ∈ P in the multiset T . Specifically, let Cp denote the num-
ber of times the element p ∈ P appears in T and note that the
cardinality of T is equal to M . Then, we select the training
data associated with the pilot p ∈ P as

dtr(p) =

√
Cp Etr
M

where Etr is the training data energy as described earlier. No-
tice that, by construction, we have

∑
p∈P Cp = M , and so the

selection in (5) ensures ‖dtr‖22 =
∑
p∈P d

2
tr(p) = Etr, as re-

quired. This entire pilot sequence and training data selection
procedure is summarized as Procedure 1.

Notice that this procedure provides considerable flexibil-
ity in selecting a pair (P, dtr), and the selection of each pair
is fully-parameterized by the polynomial degree R (≥ 2), the
number of polynomial evaluation points M , the coefficients



Procedure 1 : Deterministic Pilot/Training Data Selection

1. Select an integer R ≥ 2.

2. Choose integers aR ∈ {1, 2, . . . , N − 1} and ai ∈
{0, 1, 2, . . . , N − 1} for i = 1, . . . , R− 1.

3. Construct the polynomialQ(m) = a1m+ · · ·+aRmR.

4. Choose an integer M ≥ 1 and form the multiset of
integers T = {Q(m) mod N : m = 1, 2, . . . ,M}.

5. Select the set of pilots to be the unique elements of T .

6. Select the training data vector entries according to
dtr(p) =

√
Cp Etr/M for p ∈ P , where Cp denotes

the multiplicity of each p ∈ P in the multiset T .

{ai}Ri=1, and the number of subcarriers N (which is assumed
to be prime). The next section establishes conditions under
which these deterministic selections of (P, dtr) enable prov-
ably accurate estimation of compressible multipath channels
using the Dantzig selector.

5. MAIN RESULTS

In the previous section, we specified a deterministic proce-
dure for selecting the pair (P, dtr) for PACE in OFDM sys-
tems. We now claim that Procedure 1 can result in a mea-
surement matrix X = DtrA that facilitates reconstruction
of compressible multipath channels using the Dantzig selec-
tor. To that end, we follow the approach proposed in [20] to
obtain the following lemma, which outlines conditions under
which our deterministic selection of (P, dtr) corresponds to a
normalized matrix Ψ = (Etr)−1/2X satisfying the RIP. The
proof of this lemma is provided in the appendix.

Lemma 5.1. Suppose N > 2 is prime, and let (P, dtr) be
selected according to Procedure 1, with parameters R (the
polynomial degree), M (the number of polynomial evaluation
points), and {ai}Ri=0 (the polynomial coefficients). Let

Ψ = (Etr)−1/2DtrA (5)

where (as above)Dtr = diag(dtr) andA is anNtr×Lmatrix
that comprises {

[
Fp0 Fp1 . . . Fp(L−1)

]
: p ∈ P} as its

rows. Choose R ≥ 2, and any ε1 ∈ (0, 1) and ε2 ∈ (0, ε1).
There exists a constant c = c(N, ε2) such that whenever the
number of evaluation points M satisfies, N1/(R−ε1) ≤ M ≤
N , the matrix Ψ satisfies RIP(S,δS) for any δS ∈ (0, 1) and

S ≤ c(N, ε2)δSM
(ε1−ε2)/2R−1

. (6)

Now, taken together with the results of Lemma 3.2, the re-
sults of Lemma 5.1 allow us to obtain the following theorem.

Theorem 5.2. Suppose that the time-domain multipath chan-
nel h ∈ CL obeys (1). Define y′tr = (Etr)−1/2 ytr; in other
words, y′tr = Ψh + w′, where w′ is an AWGN vector with
variance SNR−1 = σ2

Etr .
Select (P, dtr) according to Procedure 1, such that for

any choice of ε1 ∈ (0, 1) and ε2 ∈ (0, ε1) the number of
polynomial evaluation points satisfies

M > max
{
N1/(R−ε1),(

6

c(N, ε2)

) 2R−1

ε1−ε2
B

2R−1(α+1/2)
ε1−ε2 · SNR

2R−1(2α+1)
4(ε1−ε2)

(7)

where c(N, ε2) is the same constant as in Lemma 5.1. Fi-
nally, choose λL =

√
2(1 + a) logL for any a ≥ 0. Then the

reconstruction error of the Dantzig selector channel estimate

ĥ = arg min
v∈CL

‖v‖1 subject to ‖ΨH(y′tr −Ψv)‖∞ ≤
λL√
SNR

,

satisfies

‖ĥ− h‖22 ≤ c′0B
2

2α+1 SNR−
2α

2α+1 logL,

with probability at least 1 − 2
(√

π(1 + a) logL · La
)−1

,

where c′0 is an absolute constant.

The proof of Theorem 5.2 follows from the fact that
the condition (7) implies that the matrix Ψ described in
Lemma 5.1 satisfies RIP(2S,δ2S) with S ≥ Bα+1/2 ·
SNR

2α+1
4 and δ2S < 1/3. Thus, we may apply Lemma 3.2

to obtain the stated estimation error bounds.
A few comments are in order regarding the result of the

theorem. First, as our pilot tone selection procedure is entirely
deterministic, the probabilistic statement is with respect to
the randomness in the additive noise vector w′. Second, note
that ignoring constants, our estimation error bounds scale like
‖ĥ− h‖22 - SNR−

2α
2α+1 logL; in other words, our error guar-

antees exhibit only a logarithmic dependence on the channel
length L. Compare this with the estimation error bounds us-
ing ML estimation, which are on the order of L/SNR. When
α is large the error bound obtained here is ∼ log(L)/SNR,
which may represent a significant scaling improvement over
the ML-based estimation methods.

Finally, note that for our results to hold M must exceed
some minimum value as specified in (7). Without specifying
a relationship between N and L, and given that the modular
arithmetic nature of Procedure 1 makes it difficult to precisely
quantify |P| (though we have |P| ≤M trivially), the spectral
efficiency of the proposed method is difficult to quantify an-
alytically. In Section 6 we examine the estimation error as a
function of the number of pilot tones |P| via simulation.
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Fig. 1. A typical channel realization and estimate. The chan-
nel was generated with S = 6 point scatterers with a discrete
channel length of L = 320. Estimation was performed with
pilots selected from a degree R = 2 polynomial.

6. NUMERICAL EXPERIMENTS AND DISCUSSION

In this section, we present results from numerical experiments
which illustrate and verify our results. Though our proce-
dure deterministically selects the set of pilot tones, we use
Monte Carlo experiments with random channel realizations
and noise.

An important and novel feature of our results is their ap-
plicability to compressible channels (compared to the strictly
sparse channels addressed in [17]). This is reflected in the
model used for h. In the numerical experiments, we generate
h as the convolution of the response from S point scatterers
with that of a low pass filter. This is given by

hj =
S∑
i=1

βi sinc(j −Wτi) (8)

where βi and τi are the coefficients and continuous-time de-
lays of the multipath scatterers, while W is the two-sided
bandwidth of the system. Since the τi’s are not taken to
be multiples of 1/W , h is not strictly sparse. We again re-
fer the reader to [10] for further discussion of the relation-
ship between the discrete-time mathematical model and the
continuous-time physical setup.

More particularly, for our simulations we take W =
25.12MHz with S = 6 scatterers and τi distributed uniformly
on [0, 12.7µsec]. These parameters are based on the “Brazil
B” channel reported in [21]. Sampled at 1/W , this results in
a discrete channel length of L = 320. Further, we generate βi
as zero-mean Gaussian and normalize h such that ‖h‖2 = 1.
A typical channel response is shown in Figure 1. Outside of
the generation of h, we use σ = 0.02

√
2 and take the training

data to have energy Etr = 1.
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N = 1049, R = 2
N = 701, R = 2
N = 443, R = 2
N = 1049, R = 3
N = 1049, R = 4
N = 1049, R = 5
Evenly Spaced, N = 1049
Evenly Spaced, N = 701
Evenly Spaced, N = 443
Random selection, N = 1049
Benchmark: L/SNR

Fig. 2. Numerical experiments plotting mean squared-error
versus number of pilot tones for various Fourier matrix sub-
selections. Line color designates the primes N while line
style designates pilot selection method.

Results from our numerical experiments are shown in Fig-
ure 2 where we plot the mean squared-error (MSE) ‖ĥ− h‖22
of the channel estimate, averaged over 100 Monte Carlo tri-
als, as a function of the number of pilot tones |P|. We in-
clude results using various primes N and polynomials Q(m).
For comparison with previous work, we also include recov-
ery using the Dantzig selector from both equally spaced and
randomly selected pilot tones.

To place the results in context, note that the classic re-
sults of [5] require |P| = L pilot tones to achieve an MSE of
L

SNR = 0.256. Figure 2 shows that this MSE is achieved by
our procedure using approximately 30 rather than 320 pilots
while using additional pilots reduces the MSE further. More-
over, as a function of |P| the MSE of our procedure matches
that of randomly selected tones. Random subselections of
Fourier matrices, studied in the context of channel estima-
tion in [13], are known to have near-optimal RIP guarantees.
In contrast, our selection performs as well while having the
advantage of being deterministically constructed.

Though the bounds of (6) suggest that recovery can be
a function of the prime N and polynomial degree R ≥ 2,
a strong dependence was not found empirically. This is ap-
parent since the plots for various N and polynomials roughly
coincide. This, however, may be due to our theory provid-
ing worst-case guarantees over possible channel responses
and polynomials which requires exhaustive search to vali-
date empirically. The polynomials chosen for the experi-
ments displayed in Figure 2 have the coefficients ai = 1 for
i = 1, . . . , R.

An examination of the numerical experiments with evenly
spaced pilots shows the utility of selecting pilots using the
non-linear polynomials Q(m). When |P| = L, [5] finds the
optimal set of pilots to be evenly spaced within the N sub-



carriers. Though the estimation technique of [5] becomes ill-
posed, one might expect that evenly spaced tones may also be
effective when |P| < L and the Dantzig selector is used to
estimate h. We test this idea numerically and find this is not
the case. Figure 2 shows that pilot tones selected as our pro-
cedure prescribes outperform evenly spaced tones, allowing
superior estimation using fewer pilots.

Finally, the MSE of our procedure can be further reduced
by “debiasing” the estimate. As noted in [11], the estimate of
the Danztig selector is improved when, after the initial esti-
mate, a least-squares step is performed to fit the data on the
estimate’s support. For example, with 180 pilot tones, Fig-
ure 2 shows our procedure results in a MSE of 0.16. But with
the additional debiasing step, the MSE is reduced to 0.10. In
the interest of space, we have chosen not to display the debi-
ased results in this exposition.

7. CONCLUSIONS

In this paper we proposed a general purpose procedure for de-
terministic selection of pilot tones for estimation of approxi-
mately sparse (or compressible) multipath channels in single-
antenna OFDM systems. Our approach utilized estimation
techniques from the compressed sensing literature, and was
based on establishing the RIP for certain deterministically
subsampled discrete Fourier transform matrices, as in [20].

It is interesting to note that our pilot tone selection proce-
dure provides considerable flexibility when selecting param-
eters, such as the order R of the polynomial Q(m) and its in-
teger coefficients {ai}Ri=1. That said, our guarantees apply to
all selections of these parameters which satisfy the conditions
outlined in Procedure 1. It would be illustrative to perform a
more comprehensive evaluation of the performance of our pi-
lot tone selection and channel estimation procedure to deter-
mine whether there is a strong dependence on the selection of
these parameters over a wide range of possible choices. We
defer this to a future effort.

8. APPENDIX

8.1. Proof of Lemma 5.1

Assume that a matrix Z has unit-norm columns, then the
worst-case coherence µ(Z) of Z is defined to be the largest
(in magnitude) inner product between unique columns of Z.
Formally, if Zi denotes the ith column of Z, then

µ(Z) = max
i,j, i 6=j

∣∣ZHi Zj∣∣ .
A general procedure for parlaying the coherence of a ma-
trix into a statement of RIP was described, for example, in
[22, 23]. In particular, Geršgorin’s theorem [24] can be ap-
plied to bound the extremal eigenvalues of the Gram matrix
G = ZHZ. It follows that for a specified δS a matrix Z with

coherence µ(Z) (and unit-norm columns) satisfies RIP(S, δS)
for S ≤ δS/µ(Z).

Our goal, then, is to obtain an upper bound on the coher-
ence of the matrix

Ψ = (Etr)−1/2DtrA,

whereDtr = diag(dtr) andA is anNtr×Lmatrix that com-
prises {

[
Fp0 Fp1 . . . Fp(L−1)

]
: p ∈ P} as its rows.

Let Ψi, i = 1, 2, . . . , L denote the columns of Ψ. Then, the
entries of the Gram matrixG of Ψ are given by the expression

G(k, `) =
∑
p∈P

Cp
M
F ∗pkFp`

= M−1
∑
p∈P

Cp exp

(
−j 2π

N
p(`− k)

)
.

Now, notice that because of how we defined the multiplic-
ity terms {Cp}p∈P , we can write the expression for G(k, `)
equivalently as a sum over the indices m = 1, 2, . . . ,M , in
terms of the elements of the multiset T . That is,

G(k, `) = M−1
M∑
m=1

exp

(
−j 2π

N
(`− k)Q(m)

)
.

Note that G(k, k) = 1, implying that the columns of Ψ are
unit norm.

It remains to bound the coherence of Ψ, which is just the
largest value of |G(k, `)| when k 6= `. For that, we follow
the approach described in [20]. We make use of the following
lemma which is credited to H. Weyl [25], and appears in its
present form in [26].

Lemma 8.1 (Weyl). LetR ≥ 2, and let P (m) = b1m+ · · ·+
bRm

R, where bR = α/N + θ/N2, |θ| ≤ 1, and gcd(α,N) =
1. If, for 0 < ε2 < ε1 < 1, the condition M ε1 ≤ N ≤
MR−ε1 holds for some integer M , then

M−1

∣∣∣∣∣
M∑
m=1

exp (2πjP (m))

∣∣∣∣∣ ≤ γ(R, ε2) ·M (ε2−ε1)/2R−1

.

For completeness, we note the constant γ(R, ε2) is given by

γ(R, ε2) = 2

[(
64R

ε2

)(
R2

ε2 log 2

)exp (R2/ε2)

R!

]1/2R−1

.

Let P (m) = (` − k)Q(m)/N , then bR = (` − k)aR.
For `, k ∈ {0, 1, 2, . . . , N − 1} and ` 6= k, it follows
that gcd (bR, N) = 1 since aR was selected to be rela-
tively prime to N . If M ≥ N1/(R−ε1) then Lemma 8.1
implies that the worst-case coherence of Ψ is no more than
γ(R, ε2) · M (ε2−ε1)/2R−1

. The stated results follow from
Geršgorin’s theorem.
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