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On the Restricted Isometry of
Deterministically Subsampled Fourier Matrices

Jarvis Haupt, Lorne Applebaum, and Robert Nowak

Abstract—Matrices satisfying the Restricted Isometry Property
(RIP) are central to the emerging theory of compressive sensing
(CS). Initial results in CS established that the recovery of sparse
vectors x from a relatively small number of linear observations
of the form y = Ax can be achieved, using a tractable convex op-
timization, whenever A is a matrix that satisfies the RIP; similar
results also hold when x is nearly sparse or the observations are
corrupted by noise. In contrast to random constructions prevalent
in many prior works in CS, this paper establishes a collection of
deterministic matrices, formed by deterministic selection of rows
of Fourier matrices, which satisfy the RIP. Implications of this
result for the recovery of signals having sparse spectral content
over a large bandwidth are discussed.

I. INTRODUCTION

The emerging theory of compressive sensing (CS) estab-

lishes that sparse vectors x ∈ R
p can be recovered exactly

from a relatively small number of non-adaptive linear mea-

surements of the form y = Ax, where the number of rows of

the measurement matrix A, denoted by m, can be far fewer

than the ambient signal dimension p. Further, and perhaps most

remarkably, this recovery can be accomplished by solving a

tractable convex optimization [1]–[3].

A particularly concise way of describing for which mea-

surement matrices such exact recovery is possible, is using

the Restricted Isometry Property (RIP), proposed in [4].

Definition 1 (Restricted Isometry Property). The matrix A
satisfies the Restricted Isometry Property of order s with
parameter δs ∈ [0, 1) if

(1 − δs)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δs)‖x‖2
2 (1)

holds simultaneously for all sparse vectors x having no more
than s nonzero entries.

Remark 1. For vectors z ∈ C
p, the function ‖z‖2

2 denotes the
�2 norm, given by ‖z‖2

2 =
∑p

i=1 z2
i . In the sequel, we will also

make use of the �1 norm, which is given by ‖z‖1 =
∑p

i=1 |zi|,
and we will use the �0 quasi-norm, ‖z‖0, to denote the number
of nonzero entries of the vector z.

In essence, matrices A satisfying the RIP of order s with

parameter δs—denoted RIP(s,δs) for shorthand—are those for

which all column submatrices composed of no more than s
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distinct columns of A behave like a near-isometry, in the sense

that their singular values lie in the range (
√

1 − δs,
√

1 + δs).
For matrices that satisfy the RIP, the following recovery result,

established in [4] and refined in [5], is representative.

Lemma 1 (Exact Recovery Using RIP Matrices). Let A be
a matrix satisfying RIP(2s,δ2s) with δ2s <

√
2 − 1, and let

y = Ax be a vector of observations of any sparse signal
x ∈ R

p having no more than s nonzero entries. Then, the
estimate

x̂ = arg min
z

‖z‖1 subject to y = Az, (2)

is unique and equal to x.

Remark 2. The above recovery results can be extended to
settings where x is a complex vector; see, for example, [6].
In that case if A satisfies RIP(2s,δ2s) with δ2s < 0.3, then
any x ∈ C

p having no more than s nonzero entries can be
recovered using the same constrained optimization.

A variety of additional CS recovery results that leverage

the RIP, including those that guarantee approximate recovery

of nearly-sparse signals and stable recovery when the observa-

tions are corrupted by noise, can be found in the CS literature.

See, for example, [4], [5], [7]–[10].

While there is currently no known polynomial-time algo-

rithm to test whether a given matrix satisfies the RIP, certain

randomly-constructed matrices have been shown to satisfy the

RIP with high probability. For example, m×p random matrices

whose entries are independent and identically distributed (iid)

realizations of certain zero-mean random variables have been

shown to satisfy RIP(s,δs) with high probability for any integer

s satisfying

s ≤ c(δs) · m

log p
, (3)

where c(δs) is a constant that depends on δs but not on m or

p [2]–[4], [11]. In such cases, the results of Lemma 1 hold

with high probability.

Random matrices with more structure have also been shown

to satisfy the RIP. Define the p×p Discrete Fourier Transform

(DFT) matrix, denoted here as Fp, to be the complex-valued

matrix whose (j, k)th entry is given by

{Fp}j,k = exp
(

2πijk

p

)
, (4)

where i =
√−1 is the complex element and j, k =

0, 1, . . . , p−1. We denote by Fp
T the |T |×p submatrix formed

by selecting only the rows of Fp indexed by elements in a set

T whose entries come from the set {0, 1, . . . p − 1}. Recent
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results in [12] improve upon initial results in [1], establishing

that when T ⊂ {0, 1, . . . , p − 1} is a subset of size |T | = m,

selected uniformly at random without replacement, the (scaled)

submatrix m−1/2Fp
T satisfies RIP(s,δs) with high probability

when

s ≤ c′(δs) · m

log4 p
, (5)

where c′(δs) is a constant that does not depend on m or p.

In this paper we identify a collection of matrices, formed by

specific selections of rows of the Fourier matrix, that satisfy

the RIP deterministically. Our results leverage ideas from

number theory, specifically the analysis of certain structured

exponential sums, and a result from classical eigenanalysis

known as Geršgorin’s Disc Theorem.

The remainder of the paper is organized as follows. Our

main results, that matrices formed by certain deterministic

selections of rows of Fourier matrices satisfy the RIP, are

stated in the next section. Applications of these results, in the

context of recovering time-varying signals whose spectral rep-

resentations are sparse over a large bandwidth, are discussed

in Section III, and the approach is examined via simulation

in Section IV. The method described here is discussed in

the broader context of sub-Nyquist sampling in Section V.

Finally, some helpful lemmata, as well as the proofs of the

main results, are relegated to the appendix.

II. MAIN RESULTS

Our main results concern submatrices formed by determin-

stically selecting a set of rows of Fp. When the indices of the

rows selected correspond to the (integer) outputs of certain

polynomial functions mod p, the resulting submatrices satisfy

the restricted isometry property (RIP). Analogous results also

hold for submatrices formed by selecting rows of the Fourier

inverse matrix (Fp)−1
, which is the p×p matrix whose (j, k)th

element is given by{
(Fp)−1

}
j,k

=
1
p

exp
(−2πijk

p

)
, (6)

j, k = 0, 1, . . . , p − 1. The first main result of this paper is

stated below as a theorem.

Theorem 1. Let p > 2 be a prime integer and let f(n) be
any polynomial of degree d ≥ 2 of the form f(n) = a1n +
· · ·+adn

d, with real integer coefficients aj ∈ {0, 1, . . . , p−1}
for j = 1, 2, . . . , d − 1, and ad ∈ {1, 2, . . . , p − 1}. For any
ε1 ∈ (0, 1), choose m to be an integer satisfying

p1/(d−ε1) ≤ m ≤ p. (7)

Let T = {f(n) mod p : n = 1, 2, . . . , m} (note that |T | = m
and T may contain duplicate entries). Then, for any δs ∈
(0, 1) and ε2 ∈ (0, ε1), the matrix m−1/2Fp

T satisfies RIP(s,δs)
whenever

s ≤ δs · C(d, ε2) · m(ε1−ε2)/2d−1
, (8)

where C(d, ε2) is a constant that does not depend on m or p.
The same result also holds for the subsampled Fourier inverse
matrix, pm−1/2 (Fp)−1

T , for the same choice of T .

When the degree of the polynomial is large, the following

result provides a slightly stronger statement with respect to

the exponent on m.

Theorem 2. Let p > 2 be a prime integer and let f(n) be any
polynomial of degree d > 2 of the form f(n) = a1n + · · · +
adn

d, with real integer coefficients aj ∈ {0, 1, . . . , p − 1} for
j = 1, 2, . . . , d − 1, and ad ∈ {1, 2, . . . , p − 1}. Choose m to
be an integer satisfying

p1/(d−1) ≤ m ≤ p. (9)

Let T = {f(n) mod p : n = 1, 2, . . . ,m}. Then, for any
δs ∈ (0, 1), the matrix m−1/2Fp

T satisfies RIP(s, δs) whenever

s ≤ δs · C ′(d) · m1/(9d2 log d), (10)

where C ′(d) is a constant that does not depend on m or p.
The same result also holds for the subsampled Fourier inverse
matrix, pm−1/2 (Fp)−1

T , for the same choice of T .

We briefly compare these results with existing results for

similar random constructions. As stated in the introduction,

matrices m−1/2Fp
T formed by selecting a set of m rows of

the p-dimensional Fourier matrix uniformly at random satisfy

the RIP of order s with parameter δs with high probability

provided

s ≤ c′(δs) · m

log4 p
. (11)

In contrast, here we identify an analogous class of determin-
istic matrices that satisfy the RIP of order s with parameter

δs for

s ≤ max
{

δs C(d, ε2) · m(ε1−ε2)/2d−1
,

δs C ′(d) · m1/(9d2 log d)
}

, (12)

where 0 < ε2 < ε1 < 1, d is the degree of the polynomial used

to generate the set of rows to be selected, and the constants

C and C ′ do not depend on the signal dimension p or the

number of measurements m.

Relative to the results for random constructions, the deter-

ministic results presented here exhibit slightly less-favorable

scaling behavior with respect to the parameter m. Specifically,

while a randomly constructed matrix with m rows allows for

recovery of signals with O(m/ log4 p) nonzero entries, our

deterministic results only guarantee recovery if the number of

nonzero entries is, at most, O(
√

m). An open question remains

as to whether there exists a deterministic sampling strategy

from which any signal having O(m) nonzero entries can be

recovered from O(m) observations. In addition, the results

we present here also require that the number of measurements

m exceeds some fractional power of the signal dimension p.

This minimum sampling requirement is more restrictive than

what exists in the CS literature for random sampling methods,

where the dependence of the minimum number of samples on

the signal dimension is typically some power of log p. The

minimum sampling conditions obtained here are artifacts of

the analysis techniques, and another open question remains as

to the minimum number of samples required for deterministic

sampling strategies.



3

III. APPLICATIONS

In this section we describe how the results established

above can be utilized in the analysis of radio frequency

(RF) receiver systems that acquire time-varying signals having

sparse frequency-domain representations using structured, de-

terministic, non-uniform sampling. The approach we consider

here entails collecting samples at times that are related to

the outputs of certain polynomial functions, and is motivated

in part by the Nyquist Folding Receiver (NyFR) architecture

proposed in [13]. Upon casting the sampling processes in the

canonical CS framework, where the target signal is the (sparse)

frequency-domain representation of the time-varying signal of

interest, the results of the previous section guarantee that the

“effective” observation matrix satisfies the restricted isometry

property (RIP). Consequently, any of a number of CS recovery

algorithms can then be utilized to recover the target signal.

Consider signals x(t) defined on t ∈ (0, td], for some time

duration td > 0. Let p be a large prime, and for τ = td/p,

define the sampled signal vector x ∈ R
p to be the vector

whose kth entry is given by xk = x(kτ), for k = 1, 2, . . . , p.

The class of signals we will be interested in here are those

having sparse frequency-domain representations—specifically,

signals for which ‖Fpx‖0 ≤ s � p. Motivated by the results

in the previous section, we suggest two methods for acquiring

samples of the signals of interest according to the outputs

of certain polynomial functions. The first method corresponds

to a “streaming” sampling process, where the output of the

polynomial function determines a set of actual sampling times.

The second method is a process where the sample times are

determined a priori, and can be collected over a relatively

small number of periods of the signal. Each of the methods is

briefly described below.

First, in the case where the polynomial function determines

actual sampling times, we let f(n) be a degree-d polynomial of

the form f(n) = a1n+· · ·+adn
d, where ai ∈ {0, 1, . . . , p−1}

for i = 1, . . . , d − 1, and ad ∈ {1, 2, . . . , p − 1}. A total of

m samples of x(t) are collected, at sampling times described

by the entries of the set {τ · f(n) : n = 1, 2, . . . , m}. Notice

that, because of the periodicity of x(t) (and its corresponding

sampled signal vector), the acquisition scheme can be modeled

by a matrix-vector product corresponding to the action of a

sampling matrix S on the periodic extension of the sampled

signal vector,

y︷ ︸︸ ︷⎡⎢⎢⎢⎣
y1

y2

...

ym

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

m×1

=

S︷ ︸︸ ︷⎡⎢⎢⎢⎣
1 0 0 . . . 0
0 0 1 . . . 0
...

...
...

...
...

0 0 0 . . . 1

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

m×rp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

...

xp

...

x1

...

xp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

rp×1

. (13)

Here, each row of the sampling matrix contains only one

nonzero (unit) entry corresponding to the time at which the

sample is collected, and r ≥ 1 is an integer determined by the

maximum sampling time τ · f(m).

Now, to simplify this expression, we note that⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

...

xp

...

x1

...

xp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

rp×1

=
1
r
·

⎡⎢⎣ (Fp)−1

...

(Fp)−1

⎤⎥⎦
︸ ︷︷ ︸

rp×p

[ Fp . . . Fp
]︸ ︷︷ ︸

p×rp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

...

xp

...

x1

...

xp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

rp×1

.

(14)

Substituting this into the above, we can rewrite the observation

process as⎡⎢⎣ y1

...

ym

⎤⎥⎦ = S

⎡⎢⎣ (Fp)−1

...

(Fp)−1

⎤⎥⎦
︸ ︷︷ ︸

m×p

· Fp

⎡⎢⎣ x1

...

xp

⎤⎥⎦
︸ ︷︷ ︸

p×1

. (15)

Now, the problem has been recast into the canonical CS

framework, where the observation model comprises m samples

of a length-p sparse (complex) vector. In addition, the effective

observation matrix is formed by selecting a set of rows of

the Fourier inverse matrix, which is the setting examined

theoretically in the previous section. In other words, the results

of Theorems 1 and 2 specify the number of samples m (as

a function of the degree of the polynomial) that must be

collected in order for the corresponding effective observation

matrix to satisfy the RIP. Any of a number of recovery

techniques whose success is conditional on the RIP can then

be employed to recover the spectral representation of the signal

being observed.

Notice that in the above discussion, the total observa-

tion time required to obtain m samples is no less than

τ · f(m) = td · f(m)/p. In some applications where the

available observation time window is limited, or where the

signal of interest is from a broader class of signals which are

periodic but only for a short time duration (as is the case

with frequency-hopping transmissions), this time requirement

might be prohibitive. To overcome this, the second method

we propose allows for the collection of the same number of

samples over fewer periods of the signal (and consequently,

less time) by designing a collection of sampling points in

time a priori, based on the output of the polynomial function.

Specifically, the results of Theorems 1 and 2 also apply

when the sampling points are given by the entries of the set

T = {τ · (f(n) mod p) : n = 1, 2, . . . , m}.

Note that in this case, T may contain duplicate entries,

corresponding to indices n1 	= n2 for which f(n1) = f(n2)
mod p. We suggest two possible ways to collect the required

samples in this setting. First, for points in time where duplicate

observations are required, a single observation can be collected

and simply replicated as often as necessary in the overall

vector of observations, prior to the implementation of a CS

recovery technique. Alternatively, the observations can be

collected at distinct times over the periodic extension of the

signal, similar in spirit to the above setting. The upshot here
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is that the observations can be collected over fewer periods of

the signal, and consequently, a shorter actual time.
Indeed, in order to collect distinct samples for each time

prescribed in T , the number of periods of the signal that must

be observed needs to be no greater than the largest multiplicity

of any entry of T . By the Fundamental Theorem of Algebra,

the number of solutions of the polynomial congruence f(n) =
0 mod p is at most the degree of the polynomial when p is a

prime and the polynomial has integer coefficients. It follows

that the number of points ni for which the sample time indices

f(ni) are equal (mod p) is no more than d (the degree of the

polynomial that generates the set of sampling times), provided

the number of measurements satisfies m < p. Consequently,

all of the prescribed sampling points in time can be acquired

by unique observations that occur over an actual observation

time that need not exceed td · d, which is much smaller than

td · f(m)/p when m satisfies the conditions of the theorems.

IV. SIMULATIONS

In this section we demonstrate the effectiveness of the pro-

posed sampling and recovery technique via simulation. Three

settings are examined, corresponding to two different choices

of polynomials used to generate deterministic sampling times

as described above, and one setting where the sampling times

are chosen at random. In each setting, the signal length p is

chosen to be the largest prime less than 216 (which is 65521),

and we consider collecting a total of m = 
p/10� = 6552
observations, which corresponds to downsampling by a factor

of about 10. The deterministic sampling times are generated by

the polynomials f2(n) = 10n+n2 and f3(n) = 10n+n2+n3

(mod p) for n = 1, . . . , m, and in the case of random sampling,

a total of m sample times are chosen uniformly at random

(without replacement) from the set {1, . . . , p}. For simplicity

we consider only noise-free settings.
For each sparsity level, we generate the signals of interest

randomly as follows. First, we select a set of locations for the

nonzero spectral components uniformly at random from the

set {1, . . . , p}. The real and imaginary parts of the amplitude

of each nonzero component are obtained as independent draws

from the unit-norm Gaussian distribution. Finally, the sampled

signal vector (the discretized version of the real-valued time-

varying signal) is taken to be the real part of the inverse Fourier

transform of this complex vector. For each sparsity level and

each sampling approach we perform 50 trials, each using a

unique randomly-generated signal, and we tally the number of

trials for which exact recovery was obtained by solving (2).

We perform the optimization using the complex Basis Pursuit

solver in the SPGL1 software suite; see [14], [15].
The results are depicted in Figure 1, which shows how

the average rate of successful recovery varies as a function

of sparsity level for the three settings examined. The solid

line corresponds to sampling times chosen randomly, while

the dashed and dash-dot lines correspond to sampling times

generated using f2(n) and f3(n), respectively. The results

suggest that samples obtained at times generated by the

second-order polynomial can be as effective for recovery as

random samples, while samples obtained at times generated

by a third-order polynomial may be slightly less effective.
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Fig. 1. Average rate of successful signal recovery as a function of sparsity
level, for two sample-time generating polynomials of differing orders. In each
case, the signal dimension p = 65521, and the number of observations m =
6552. The sparsity level quantifies the number of distinct sinusoids present in
the signal (the actual complex vector being recovered has twice that number
of nonzero components). The solid line corresponds to sample times generated
at random, while the dashed and dash-dot lines correspond to sample times
generated by a second-order and third-order polynomial, respectively.

It is worth noting that, because of the way the signals

are constructed, the sparsity level stated on the figures is

the number of distinct sinusoids present in the time-varying

signal, so that the overall complex vector being recovered

actually consists of twice as many nonzero entries. Strictly

speaking, the optimization in (2) does not take into account

the symmetry of the frequency-domain representation of real-

valued periodic time-varying signals, though in practice such

conditions should, of course, be leveraged. Also, as mentioned

in the previous sections, the fact that the effective measurement

matrices in these settings satisfies the RIP allows for the

potential utilization of any of a number of recovery techniques

(including efficient greedy methods), and ensures that reliable

recovery can be achieved in noisy settings as well.

V. COMPARISON WITH OTHER WORKS

Sub-Nyquist sampling methods for analog RF signals com-

prise a well-studied field. Initial works in sub-Nyquist sam-

pling considered the case of multiband (rather than strictly

bandlimited) signals, establishing that recovery was possible

provided that the average sampling rate exceeds the so-called

Nyquist-Landau rate, which is defined to be the total occupied

Fourier bandwidth of the signal [16], [17]. In these works, the

proposed recovery approach consists of bandpass filtering and

demodulation of each individual signal to baseband, followed

by uniform sampling. Such approaches, of course, require prior

knowledge of the carrier frequencies for each band.

Alternative sampling and recovery techniques for multi-

band signals have also been examined in the literature. For

example, in [18], the authors consider samples obtained by

interleaving the outputs of several channels, each of which

performs uniform downsampling on the unknown multiband

signal. In this approach, however, the recovery process requires

knowledge of the locations of the occupied bands. Simi-

lar approaches using interleaved analog-to-digital converters
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(ADCs) have been examined—see, for example, [19]–[21].

Interleaving techniques all suffer from inherent technological

limitations, such as a limited allowable input bandwidth and

timing jitter/synchronization issues.

Recently, with the emergence of compressive sensing, a

powerful new set of theoretical results and techniques are

being leveraged and utilized to address the multiband sampling

and recovery problem. For example, random demodulator ap-

proaches [22], [23] employ single-channel receivers in which

the incoming signal is mixed with a high-rate pseudo-random

signal, integrated, and downsampled. Another concurrent path

of research entails multi-channel systems, employing either a

form of multi-coset sampling, or a setting in which each chan-

nel performs an analog pre-mixing of the incoming signal with

a periodic waveform followed by filtering and downsampling

[24], [25]. Each of these approaches enjoy certain theoreti-

cal performance guarantees for recovering sparse, multi-band

signals from a large RF bandwidth.

The structured non-uniform sampling technique proposed

here differs markedly from these two approaches. First, our

approach utilizes a single receiver channel, in contrast to multi-

coset and multi-channel sampling techniques described above.

In practice, fewer channels corresponds to reduced power

requirements. Further, the structured non-uniform sampling

approach proposed here can be implemented in practice by

mixing the incoming signal with an appropriate analog pulse

sequence, low-pass filtering, and then sampling the baseband

representation, thus overcoming the bandwidth limitations of

traditional ADCs. See [13] for details.

In contrast to the random demodulator approach, the method

examined here does not require any analog front-end com-

ponents that oscillate at the true Nyquist rate of the target

signal. In addition, while recovery from random demodulator

observations requires storage of and operation with a large

(pseudo-)random matrix, the approach described here can

instead leverage fast Fourier transform techniques and simple

indexing operations to speed the recovery. Finally, as stated

earlier, compared with the random demodulator approach the

structured non-uniform sampling approach examined here has

the distinct benefit of deterministic recovery guarantees.

VI. APPENDIX

A. Helpful Lemmata

The proofs will utilize a standard result in classical eigen-

analysis known as Geršgorin’s Disc Theorem, stated here as a

lemma without proof (for more details see, for example, [26]).

Lemma 2 (Geršgorin). The eigenvalues of a p × p complex
matrix M all lie in the union of p discs dj = dj(cj , rj),
j = 1, 2, . . . , p, centered at cj = Mj,j , and with radius

rj =
p∑

i=1
i �=j

|Mj,i|. (16)

When applying Geršgorin’s Theorem, we will control the

sums of off-diagonal elements using bounds on certain expo-

nential sums. The following result is credited to H. Weyl [27],

and appears in the present form in [28].

Lemma 3 (Weyl). Let d ≥ 2, and let g(n) = a1n+· · ·+adn
d,

where ad = α/p + θ/p2, |θ| ≤ 1, and gcd(α, p) = 1. If, for
0 < ε2 < ε1 < 1, the condition mε1 ≤ p ≤ md−ε1 holds for
some integer m, then

1
m

∣∣∣∣∣
m∑

n=1

exp (2πig(n))

∣∣∣∣∣ ≤ c(d, ε2) · m(ε2−ε1)/2d−1
. (17)

For completeness, we note the constant c(d, ε2) is given by

c(d, ε2) = 2

[(
64d

ε2

)(
d2

ε2 log 2

)exp (d2/ε2)

d!

]1/2d−1

. (18)

Theorem 2 utilizes an improvement of the above for large

values of d, credited to I. Vinogradov [29], and appearing in

its present form in [28].

Lemma 4 (Vinogradov). Let d > 2, and let g(n) = a1n+· · ·+
adn

d, where ad = α/p + θ/p2, |θ| ≤ 1, and gcd(α, p) = 1. If
m ≤ p ≤ md−1, then

1
m

∣∣∣∣∣
m∑

n=1

exp (2πig(n))

∣∣∣∣∣ ≤ c(d) · m−1/(9d2 log d). (19)

For completeness, we note the constant c(d) = exp(3d).

B. Proof of Theorem 1

Recall that the matrix of interest is the |T | × p matrix

m−1/2Fp
T , where the set T indicates which rows of the DFT

matrix Fp are present. We begin by analyzing the Gram matrix

G = m−1(Fp
T )HFp

T , where the superscript H denotes the

complex conjugate transpose (Hermitian) operator. Let f(n)
be any polynomial of degree d > 2 of the form f(n) = a1n+
· · ·+adn

d, with real integer coefficients aj ∈ {0, 1, . . . , p−1}
for j = 1, 2, . . . , d − 1, and ad ∈ {1, 2, . . . , p − 1}, as

specified in the theorem. The entries of the Gram matrix

G correspond to inner products between the columns of the

matrix of interest, whose entries are given by{
m−1/2Fp

T

}
j,n

= m−1/2 exp
(

2πijf(n) mod p

p

)
= m−1/2 exp

(
2πijf(n)

p

)
, (20)

for j = 0, 1, . . . , p − 1 and n = 1, 2, . . . , m. Using this fact,

we have that the entry of G = m−1(Fp
T )HFp

T in row y and

column z is given by

{G}y,z = m−1
m∑

n=1

exp
(

2πi(z − y)f(n)
p

)
, (21)

for y, z = 0, 1, . . . , p − 1 and n = 1, . . . , m.

The first point to note is that the diagonal elements of G
(where y = z) are all equal to one since the argument of the

exponential function is identically zero. For the off-diagonal

elements, we can make the substitution g(n) = (z−y)f(n)/p
to obtain

{G}y,z = m−1
m∑

n=1

exp (2πig(n)), (22)

for y, z = 0, 1, . . . , p − 1, y 	= z, and n = 1, . . . , m.
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Note that the coefficient of the highest order term in g(n)
is given by (z − y)ad/p. For z > y, it is easy to see that the

polynomial g(n) satisfies the conditions of Lemma 3 because

p is prime and (z−y) is a positive integer less than p. For the

case z < y, we can instead consider the polynomial g′(n) =
g(n) + nd, since in this case the periodicity of the complex

exponential implies

{G}y,z = m−1
m∑

n=1

exp (2πig(n))

= m−1
m∑

n=1

exp (2πig′(n)). (23)

If z < y, then (z − y) is negative but (z − y + p) is positive

(since y ≤ p− 1). Thus, the leading coefficient of g′(n) is of

the form of a positive integer (less than p) divided by p, and

satisfies the conditions of Lemma 3 in this case as well. If,

in addition, 0 < ε2 < ε1 < 1 and m satisfies the condition

p1/(d−ε1) ≤ m ≤ p, we can apply Lemma 3 to bound the

magnitude of the off-diagonal elements of G by∣∣∣{G}y,z

∣∣∣ ≤ c(d, ε2) · m(ε2−ε1)/2d−1
, (24)

for y, z = 0, 1, . . . , p − 1 and y 	= z.

Now, let S be a subset of {0, 1, . . . , p−1} satisfying |S| ≤ s,

and denote by Fp
T,S the |T | × |S| submatrix of m−1/2Fp

T

formed by retaining the columns indexed by the elements of

S. Notice that if for each unique choice of S, the eigenvalues

of the Gram matrix GS = m−1(Fp
T,S)HFp

T,S are all within

the range (1− δs, 1 + δs) then the RIP is satisfied. But, since

each Gram matrix GS is a proper submatrix of G, Geršgorin’s

Theorem guarantees that the eigenvalue bound is satisfied

simultaneously for all choices of S whenever the sum of any

s− 1 off-diagonal elements of G does not exceed δs. In other

words, the RIP is satisfied whenever

s ≤ δs

c(d, ε2)
m(ε1−ε2)/2d−1

= δs · C(d, ε2) · m(ε1−ε2)/2d−1
, (25)

as claimed. The same method of proof also establishes the RIP

for the matrix pm−1/2 (Fp)−1
T .

C. Proof of Theorem 2

The proof proceeds along the same lines as above, with

references to Lemma 4 instead of Lemma 3 where appropriate.
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