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Universum SVM Learning Software: Objectives and Functionality
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1. DESCRIPTION

This package is designed to improve usability of Universum SVM (U-SVM) classification software [Weston et al, http://www.kyb.tuebingen.mpg.de/bs/people/fabee/universvm.html ] for general users. This includes automated provisions for (a) tuning parameters of U-SVM; (b) comparison between U-SVM and standard SVM classifiers, and (c) graphical representation of estimated SVM and U-SVM models, using univariate projection of the training data. 
Background: Universum SVM basics and notation
We first present standard quadratic optimization formulation for U-SVM (Vapnik, 2006) and then discuss model selection strategy implemented in this package. 
Let us consider binary classification learning problem, where we have labeled training data

, 

, and a set of unlabeled examples from the Universum, 

, 

. For labeled training data, we use standard SVM soft-margin loss with slack variables
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. For the Universum samples samples 

, we need to penalize the real-valued outputs of our classifier that are ‘large’ (far away from zero). So we adopt 
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–insensitive loss (as in standard support vector regression). Let 
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 denote slack variables for samples from the Universum.  Then linear Universum SVM formulation can be stated as: 


minimize  
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  where 
[image: image6.wmf]0

,

*

³

C

C


        (1)       



subject to constraints
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 (for labeled data)
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 (for the Universum), where
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Parameters 
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and 
[image: image13.wmf]*

C

 control the trade-off between minimization of errors and maximizing the number of contradictions. Selecting ‘good’ values for these parameters is a part of model selection (usually performed via resampling). When 
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=0, this U-SVM formulation is reduced to standard soft-margin SVM. Solution to this optimization problem defines the large margin hyperplane 
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 that incorporates a priori knowledge (data from the Universum) into the final SVM model. 
Successful practical application of U-SVM depends on two factors: implementation of model selection and selection (or generation) of Universum data. Note that model selection becomes more difficult as kernelized U-SVM has 4 tunable parameters: 
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, kernel parameter and 
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. In addition, we need to specify the number of Universum samples. This can be contrasted to standard SVM that has only two tuning parameters. 
Objective 1: Implementation of Model Selection
Model selection for U-SVM follows a two-step strategy:
1. Perform model selection for standard SVM classifier, i.e. choose parameter 
[image: image19.wmf]C

and kernel parameter. Most practical applications use RBF kernel of the form 
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where possible values of parameter C=[0.01, 0.1, 1, 10, 100, 1000] and 
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 = [2-8, 2-6, …, 22, 24] during model selection.

2. Using fixed values of  
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and
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,  as selected above, tune additional parameters specific to U-SVM, as follows:

· For the ratio C*/C , try all values in the range ~ [0.01, 0.03, 0.1, 0.3, 1, 3, 10]
· parameter 
[image: image24.wmf]e

, try all values in the range ~ [0,0.02,0.05,0.1,0.2],
· for the number of Universum, it is suggested to use the number in the range of (n x m)/4. If the dimensionality of the data is large, smaller number of samples will be used due to the computational consideration. 

where, n= No. of samples in Class 1.

          m= No. of samples in Class 2.

Note: steps 1 and 2 above is done by using an independent validation data set.
Objective 2: Estimation of test error for methods’ comparison
The package automates generalization comparison between standard SVM and U-SVM, by
· Estimating test error using separate independent large test set.

Also, the software provides the following outputs useful for understanding comparison results:

· training error (for SVM and U-SVM);
· number of support vectors (for SVM);
· typical values of U-SVM tuning parameters C, C* and
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 , chosen by model selection.

Objective 3: Graphical representation of SVM and U-SVM models via univariate projections
Interpretation of high-dimensional models is difficult because (a) lack of human ability to visualize high-dimensional data, (b) high-dimensional distributions usually have counter-intuitive properties.  One of such properties is the ‘data piling’ effect (Ahn and Marron, 2005) described next. Consider linear classifiers (such as SVM) estimating a hyperplane 
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is the normal direction of the hyperplane. Then for sparse high-dimensional data, most training samples (from one class) lie on the margin border, and their projections onto the normal direction vector 
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 tend to be very close. This observation enables visual analysis of the univariate histograms of projections of training data onto the normal direction vector of the SVM hyperplane. See example of such a histogram of projections for linearly separable data in Fig. 1, where the points on x-axis labeled +1/-1 indicate margin borders, and the point marked zero corresponds to SVM decision boundary. Analysis of these histograms can be used for:
· understanding conditions under which a given Universum data set would provide an improvement relative to standard SVM classifier;

· specifying the conditions under which Random Averaging Universum technique would provide an improvement relative to standard SVM classifier.

In both cases, analysis is based on analysis of the distribution of univariate projections for training and Universum samples, relative to the margin borders of the SVM classifier. 
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Fig. 1 Histogram of projections of training data onto the normal direction vector 
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 of the SVM hyperplane.
The univariate histograms of projections of training data for nonlinear kernels are calculated using representation of SVM decision function in the dual space, 
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. That is, the value of projection of training sample
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onto the normal direction of nonlinear SVM decision boundary is expressed as 
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, and this value is used as a point for generating a histogram. For example, Fig. 2 shows the histogram of projections for MNIST digit recognition data, where training samples are handwritten digits 5 and 8, and the learning task is to estimate a binary classifier for discriminating digits 5 vs 8. Fig. 2 shows univariate histograms of projections of training data onto the normal direction of RBF SVM decision boundary. Also shown are projections of the two types of Universum: random averaging (RA) and ‘other digits’, i.e. handwritten digits other than 5 and 8. Visual analysis suggests that RA Universum may be less effective than ‘other digits’, because most RA Universum samples project close to SVM decision boundary, so using this Universum set is not likely to change the original SVM model.
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(a) Random Averaging Universum  
(b) Other Digits Universum

Fig 2: The histogram of projections of Universum data onto normal direction of RBF SVM decision boundary. Training set size ~ 100 samples.
LIMITATIONS

This package implements, for both standard SVM and U-SVM, a binary classification setting with balanced training data and equal misclassification costs. Multi-class problems can be dealt with by considering several one-vs-all binary classifiers.
2. INSTALLATION AND CONFIGURATION
The basic steps for installing/configuring the package are given below:-

1. Extract the package to a folder.
2. Add the folder/subfolders to the MATLAB path.

3. Change the MATLAB current working directory to the folder Engine.

Note: In order to check the contents of the package type Contents in the MATLAB command window.
3. INTERFACES
The main interfaces of the software package are described below:-
3.1 ExpwithValSet

This is the interface which serves the purpose for Model Selection and Estimation of test error. The SVM and U-SVM Model selection is done by using an independent validation set over the range of parameters specified by the variable param. The selected SVM and U-SVM models are then tested on an independent test set to provide an estimate of the Test error, which can be used as a comparison for the two different methods (SVM vs U-SVM). 
USAGE

[RPred,RPredU,Remp,RempU,Finmodel,FinmodelU,Finoutput,FinoutputU,optparam]=ExpwithValSet(trndata,valdata,tstdata,univdata,param)

 INPUT
   trndata:- This is the training data which has the following fields.

           trndata.X=The X values for the training data.

           trndata.y=The y labels for the training data [+1,-1].

   valdata:- This is the validation data.(it has the same fields as trndata).

   tstdata:- This is the test data.(it has the same fields as trndata).

   univdata:-This is the universum samples.(it has the same fields as trndata.)
   param:- This is the set of parameters used for the SVM and U-SVM model. This set includes  the following parameters.
       param.cset= This is a set of possible C values, entered as a vector.

       param.Cset= This is a set of possible C* values, entered as a vector.

       param.Gset= This is a set of possible ε values, entered as a vector.
       param.t= This is the type of kernel to be used. It could be either

       'linear' or 'rbf'.

       param.dset= This is a set of possible parameters for a Polynomial Kernel.

       param.gset= This is the set of parameters for the RBF Kernel.

 Note: - In the case of Universum samples the y labels should be -2.
 OUTPUT
   RPred:- This is the Prediction Risk i.e test error(for SVM) measured on the test data.

   RPredU:-This is the Prediction Risk i.e test error (for U-SVM) measured on the test data.
   Remp:-This is the Empirical Risk i.e training error (for SVM) observed on the training data.
   RempU:-This is the Empirical Risk i.e training error (for U-SVM) observed on the training data.
   FinModel:- This is the Final SVM Model. This contains the following fields,


FinModel.alpha= These are the values of the Lagrange multipliers. The dimension is [nsv*1].

       
FinModel.sv.X= These are the X values of the support vectors.This has

       

a dimension of [dim*nsv].

       
FinModel.b0= the bias term of the FinModel (decision function).
       
FinModel.nsv= the number of support vectors.
FinModelU:- This is the Final Universum SVM Model. It has the same fields as FinModel.
Finoutput:- This contains the Projection values of the training data on the normal vector of the standard SVM Model. It has the following fields,
Finoutput.train.projection= The projection of the training data.

Finoutput.test.projection= The Projection of the test data.
FinoutputU:-This contains the Projection values on the normal vector of the UNIVERSUM SVM Model. It has the same fields as Finoutput.

 optparam:- The optimal parameters for the dataset. This contains the following fields,

    
optparam.c= Optimal C value for both standard/universum SVM.
optparam.g= Optimal kernel width parameter for both standard/universum SVM, in case an ‘rbf’ kernel is used. 

optparam.C= Optimal C* value for universum SVM.

optparam.G= Optimal epsilon(ε) value for universum SVM.

3.2 getUnivProj

This interface is used to get the Projection values of the universum samples onto the normal direction of the SVM decision boundary.
USAGE

         [dataProjuniv]=getUnivProj(model,univdata)

 INPUT
   model= This is the model obtained after using the ExpwithValSet interface.

   univdata= These are the universum samples. The data format is the same as given above.

 OUTPUT

   dataProjuniv= This is a vector of the Projection values of the Universum samples on the normal vector 

   of the model.
3.3 hist_of_dataProj_with_univ   

This interface is used for the graphical representation of the SVM & U-SVM models using the univariate projections.

USAGE


h=hist_of_dataProj_with_univ(dataProj,dataProjuniv,N_cls1,N_cls2)

 INPUT
   dataProj= This is the projection data for training data.

   dataProjuniv= This is the projection data for universum samples.

   N_cls1 =is the number of samples of class 1[+1] in the training data.
   N_cls2 =is the number of samples of class 2[-1] in the training data.

 OUTPUT
   h= Handler for the figure.
 Note: - all the data projection values of the class +1 should precede the projection values of class -1 in the matrix dataProj. Moreover the Histogram is scaled to the range of [0 -1] by dividing the frequency of projection values for each classes by the total number of samples for that class.
4. EXAMPLES

We provide two examples highlighting the usage of the interfaces. These examples we try to reproduce the results in [2].
4.1 EXAMPLE 1

In this example we try to generate the empirical comparison results as given in Table 3[2].In this experiment we use the - Synthetic 1000-dimensional hypercube data set, where each input is uniformly distributed in [0,1] interval and only 200 out of 1000 dimensions are significant. An output class label is generated as y = sign(x1+x2+…+x200 – 100). For this data set, only linear SVM is used because optimal decision boundary is known to be linear. Training set size is 1,000, validation set size is 1,000, and test set size is 5,000. For U-SVM, 1,000 Universum samples are generated via random averaging from training data. In this case we run the experiment 10 times.

4.2 EXAMPLE 2
In this example we try to generate the empirical comparison results as given in Table 6[2]. In this experiment we use the- Real-life MNIST handwritten digit data set, where data samples represent handwritten digits 5 and 8. Each sample is represented as a real-valued vector of size 28*28=784. On average, approximately 22% of the input features are non-zero which makes this data also sparse. Training set size is 1,000, validation set size is 1,000. For U-SVM, 1,000 Universum samples are taken from either of Digit 1,Digit 3 or Digit 6. Separate test set size of size 1,866 is used for all experiments. The experiment is run 10 times. 



Note:-  for the sake of brevity  this document mainly deals with the application of the software with perspective to the paper [2],[5]. However, the software does provide a number of interfaces that easily covers the gamut of utility provided by any other Standard SVM or Universum SVM software packages. For a brief description of the other interfaces the user can type ‘Contents’ in the command prompt. The functionality of the interfaces has been briefly documented in the HELP files. Moreover, this interface internally uses the executable provided in [6].
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function [RPred,RPredU,Finmodel,FinmodelU,Finoutput,FinoutputU,optparam]=example3()



cleanData(); 

for expno=1:10

    % CREATE THE DATA FILES

    [trndata]=generateHypercubedata(1000,1000,200);

    [valdata]=generateHypercubedata(1000,1000,200);

    [tstdata]=generateHypercubedata(5000,1000,200);

    [univdata]=generateUnivSamp(trndata,1000,0.5);

   

    % DEFINE THE PARAMETERS

    param.cset=[0.01, 0.1, 1, 10, 100, 1000];

    param.Cset=[0.01,0.03,0.1,0.3,1,3,10];

    param.Gset=[0,0.02,0.05,0.1,0.2];

    param.t='linear';

    

%RUN EXPERIMENT

[RPred(expno),RPredU(expno),temp1,temp2,Finmodel(expno),FinmodelU(expno),Finoutput(expno),…

FinoutputU(expno),optparam(expno)]=ExpwithValSet(trndata,valdata,tstdata,univdata,param);

     

%GET UNIVERSUM PROJECTION

[dataProjunivproj]=getUnivProj(Finmodel(expno),univdata);



%DISPLAY(UNIVARIATE PROJECTIONS)

h=hist_of_output_with_univ (Finoutput(expno).train.projection,dataProjunivproj,…

   Finoutput(expno).train.nocls1,Finoutput(expno).train.nocls2);

 

set(h,'Name',['STANDARD SVM with (UNIVERSUM samples) (exp no ',num2str(expno),…

') Pred Risk(SVM)= ',num2str(RPred(expno)),'%','Pred Risk(USVM)= ',num2str(RPredU(expno))]);  



%PRINT OUTPUT

fprintf('Exp no= %d, Pred Risk(SVM)=%f, Pred Risk(USVM)=%f \n Optimal C= %f\n Optimal C*=%f\nOptimalEpsilon=%f\n',expno,RPred(expno),RPredU(expno),optparam(expno).c,optparam(expno).C,optparam(expno).G);



end







function [RPred,RPredU_1,RPredU_3,RPredU_6,optparam_1,optparam_3,optparam_6]=example6()



cleanData();

 

for expno=1:10

    % CREATE THE DATA FILES

    [trndata,valdata,tstdata,udata_1]= mnistdata(5,8,1,500,500,[],1000); 

    [trndata,valdata,tstdata,udata_3]= mnistdata(5,8,3,500,500,[],1000);

    [trndata,valdata,tstdata,udata_6]= mnistdata(5,8,6,500,500,[],1000);

 

    % DEFINE THE PARAMETERS

    param.cset=[0.01, 0.1, 1, 10, 100, 1000];

    param.gset=[2^-8,2^-6,2^-4,2^-2,1,2^2,2^4];

    param.Cset=[0.01,0.03,0.1,0.3,1,3,10];

    param.Gset=[0,0.02,0.05,0.1,0.2];

    param.t='rbf';

    

    %RUN EXPERIMENT

    [RPred(expno),RPredU_1(expno),tempA,tempB,Finmodel(expno),FinmodelU_1(expno),Finoutput(expno),FinoutputU_1(expno),optparam_1(expno)]=ExpwithValSet(trndata,valdata,tstdata,udata_1,param);

    

    param.cset=[];

    param.c=optparam_1(expno).c;

    param.g=optparam_1(expno).g;

  [temp1(expno),RPredU_3(expno),tempA,tempB,temp2(expno),FinmodelU_3(expno),temp3(expno),FinoutputU_3(expno),optparam_3(expno)]=ExpwithValSet(trndata,valdata,tstdata,udata_3,param);

    [temp1(expno),RPredU_6(expno),tempA,tempB,temp2(expno),FinmodelU_6(expno),temp3(expno),FinoutputU_6(expno),optparam_6(expno)]=ExpwithValSet(trndata,valdata,tstdata,udata_6,param);

    

           





%#### FOR DIGIT 1 #######

%GET UNIVERSUM PROJECTION

[dataProjunivproj]=getUnivProj(Finmodel(expno),udata_1);



%DISPLAY(UNIVARIATE PROJECTIONS)

h=hist_of_output_with_univ(Finoutput(expno).train.projection,dataProjunivproj,Finoutput(expno).train.nocls1,Finoutput(expno).train.nocls2);



set(h,'Name',['STANDARD SVM with (digit 1) (exp no ',num2str(expno),') Pred Risk(SVM)= ',num2str(RPred(expno)),'%','Pred Risk(USVM)= ',num2str(RPredU_1(expno))]);



%PRINT OUTPUT

fprintf('Exp no= %d, Pred Risk(SVM)=%f, Pred Risk(USVM)=%f \n Optimal C= %f\n Optimal C*=%f\nOptimal g(radius)=%f\n Optimal Epsilon=%f\n',expno,RPred(expno),RPredU_1(expno),optparam_1(expno).c,optparam_1(expno).C,optparam_1(expno).g,optparam_1(expno).G);



%#### FOR DIGIT 3 #######

%GET UNIVERSUM PROJECTION    

[dataProjunivproj]=getUnivProj(Finmodel(expno),udata_3);



%DISPLAY(UNIVARIATE PROJECTIONS)     h=hist_of_output_with_univ(Finoutput(expno).train.projection,dataProjunivproj,Finoutput(expno).train.nocls1,Finoutput(expno).train.nocls2);

 

set(h,'Name',['STANDARD SVM with (digit 3) (exp no ',num2str(expno),') Pred Risk(SVM)= ',num2str(RPred(expno)),'%','Pred Risk(USVM)= ',num2str(RPredU_3(expno))]);

     

%PRINT OUTPUT

fprintf('Exp no= %d, Pred Risk(SVM)=%f, Pred Risk(USVM)=%f \n Optimal C= %f\n Optimal C*=%f\nOptimal g(radius)=%f\n Optimal Epsilon=%f\n',expno,RPred(expno),RPredU_3(expno),optparam_3(expno).c,optparam_3(expno).C,optparam_3(expno).g,optparam_3(expno).G);

     

%#### FOR DIGIT 6 #######

%GET UNIVERSUM PROJECTION

    

[dataProjunivproj]=getUnivProj(Finmodel(expno),udata_6);



%DISPLAY(UNIVARIATE PROJECTIONS)          h=hist_of_output_with_univ(Finoutput(expno).train.projection,dataProjunivproj,Finoutput(expno).train.nocls1,Finoutput(expno).train.nocls2);

     

set(h,'Name',['STANDARD SVM with (digit 6) (exp no ',num2str(expno),') Pred Risk(SVM)= ',num2str(RPred(expno)),'%','Pred Risk(USVM)= ',num2str(RPredU_6(expno))]);



%PRINT OUTPUT     

fprintf('Exp no= %d, Pred Risk(SVM)=%f, Pred Risk(USVM)=%f \n Optimal C= %f\n Optimal C*=%f\nOptimal g(radius)=%f\n Optimal Epsilon=%f\n',expno,RPred(expno),RPredU_6(expno),optparam_6(expno).c,optparam_6(expno).C,optparam_6(expno).g,optparam_6(expno).G);





end
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