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Abstract — many applications of machine learning involve 
sparse and heterogeneous data. For example, estimation of 
predictive (diagnostic) models using patients’ data from clinical 
studies requires effective integration of genetic, clinical and 
demographic data. Typically all heterogeneous inputs are 
properly encoded and mapped onto a single feature vector, used 
for estimating (training) a predictive model. This approach, 
known as standard inductive learning, is used in most 
application studies. More recently, several new learning 
methodologies have emerged. In particular, when training data 
can be naturally separated into several groups (or structured), 
we can view learning (estimation) for each group as a separate 
task, leading to Multi-Task Learning framework. Similarly, a 
setting where training data is structured, but the objective is to 
estimate a single predictive model (for all groups), leads to 
Learning with Structured Data and SVM+ methodology 
recently proposed by Vapnik. This paper demonstrates 
advantages and limitations of these new data modeling 
approaches for modeling heterogeneous data (relative to
standard inductive SVM) via empirical comparisons using 
several publicly available medical data sets.

I. INTRODUCTION and MOTIVATION

Statistical data-driven computer aided diagnostics have been 
of growing interest in biomedical applications. Such 
approaches usually estimate diagnostic models from available 
(historical) data. Whereas machine learning and statistical 
approaches often pursue similar goals and use similar 
techniques, there is a key difference in perspective [3]. Under 
predictive learning, the main goal of modeling is good 
prediction (generalization) for future data. In contrast, 
statisticians view the probability model as the core of the 
analysis, with the idea that optimal predictions will arise from 
this probability model accurately estimated from data. 
Sometimes machine learning algorithms correspond to 
statistical models (e.g., mixture models), but other times the 
predictions feel more like they are coming from ‘black boxes’  
with less statistical interpretation. This distinction is often 
known as generative (~statistical) vs discriminative (~ 
predictive) modeling. For multivariate sparse data sets 
common in biomedical applications, the predictive approach 
is more practical because 
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(a) there is simply not enough available data samples to 
estimate multivariate distributions (this is known as 
the curse of dimensionality). 

(b) it may be possible to estimate accurate predictive 
models that reflect certain properties of unknown 
distributions [3,8,9]. For example, for classification 
problems, the goal of estimating decision boundary 
(for future predictions) does not require accurate 
estimation of class distributions. Moreover, 
Statistical Learning Theory aka VC theory [7-9]
gives mathematical conditions under which good 
prediction (generalization) is possible with finite 
samples, regardless of dimensionality (the number of 
input variables).

The price paid for adopting the predictive approach is that the 
estimated models may accurately predict, but only in a 
specific well-defined sense (known as ‘generalization’). This 
places an additional burden on a data modeler who needs to 
come up with a meaningful formalization of an application 
domain at hand. In particular, this approach requires close 
collaboration between data modelers and clinicians (who 
provide the data and will use data-driven predictive models). It 
also implies that medical researchers/clinicians should 
understand better conceptual aspects of predictive learning. 
Another important difference is that predictive models may 
not be easily interpretable, because they do not approximate 
‘true’ distributions, but rather imitate certain properties of 
unknown distributions.
Future advances in the area of data-driven biomedical 
applications are limited by two fundamental factors: (a) high 
dimensionality of the input data (i.e., large number of input 
variables) and (b) heterogeneous nature of the input data. 
High-dimensional, low sample size (HDLSS) data is common 
in many biomedical applications, especially studies involving 
genetic data. For example, a ‘typical’ clinical study may result 
in a data set of a few hundred to a couple of thousands patients 
(‘samples’), where each patient has a few hundred genetic 
predictors (for instance, ~ 400 genetic polymorphisms), in 
addition to a few dozen clinical and demographic inputs. All 
these heterogeneous inputs may be used as possible predictors 
for diagnosing a disease or predicting the outcome of a 
medical treatment procedure.
For such datasets, the dimensionality d  of the data vector 
may be larger than/ similar to the sample size n . Such sparse 
training data sets present new challenges to classification 
methods that estimate classification decision boundaries from 
HDLSS data. Note that commonly used discriminative 
methods (such as neural networks and support vector 
machines) require significant modifications and/or clever 
preprocessing in dealing with HDLSS data. Heterogeneous 
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data in biomedical applications may include clinical, genomic 
and demographic data used as input variables for constructing 
a predictive (diagnostic) model. These inputs can be viewed as 
several feature sets, and the challenge is to integrate such input 
data from different modalities into learning with sparse 
high-dimensional data. There are two principal approaches for 
dealing with HDLSS and heterogeneous data [3]:
- first approach is to adopt standard inductive learning

setting, and to reduce the problem dimensionality via 
clever preprocessing and feature extraction. That is, the 
problem of high-dimensional input space is addressed by 
dimensionality reduction (feature selection aka subset 
selection), and the problem of heterogeneous data is 
handled by encoding of all inputs into the same type. Then 
a standard inductive classifier (such as Support Vector 
Machine (SVM), or neural network, or logistic regression) 
is used to estimate a model. This approach has been 
successfully used in many biomedical and image 
processing applications [11]. Commonly used statistical 
approaches to modeling genetic data for diagnostic and 
prognostic classification follow feature selection strategy 
(aka subset selection) where a few strong informative 
inputs are selected from a large number of inputs, typically 
using greedy feature selection. Selection of inputs in the 
final model is performed via extensive use of resampling
[12]. 

- second approach is to investigate new learning settings for 
dealing with HDLSS heterogeneous data. This approach is 
based on the fundamental principle (due to Vapnik) that for 
finite sample estimation problems one should always use 
the most appropriate direct formulation of the learning 
problem rather than a more general formulation. It can be 
argued that most recent advances in statistical learning 
(i.e., transduction, semi-supervised learning, single-class 
learning, multi-task learning) reflect an improved 
understanding of the learning problem setting.

In this paper, we investigate application of novel learning 
methodologies, such as SVM+, and Multi Task Learning 
(MTL), to classification problems using several medical data 
sets. The goal is to present several different ways to model 
heterogeneous data (as discussed in Section 2), and then 
investigate advantages and limitations of different learning 
approaches via empirical comparisons, presented in Section 3. 
Finally, conclusions and discussion are given in Section 4.

II. APPROACHES for MODELING HETEROGENEOUS 
DATA

    In this paper, we consider supervised learning 
applications where the training data includes additional 
(group) information about training samples. Examples 
include: (1) handwritten digit recognition where training 
examples are provided by several persons, (2) medical 
diagnosis where predictive (diagnostic) model, say for lung 
cancer, is estimated using a training data set of male and 
female patients, etc. Incorporating this additional information 
has lead to approaches known as Multi-Task Learning

[1,2,6,10] and, more recently, to Learning with Structured 
Data (aka SVM+) [9], as briefly discussed next.
    Suppose that training data can be represented as a union of t
related groups, i.e. each group ],..,2,1[ tr   contains 

rn samples independently and identically generated from a 

distribution rP  on yx . Therefore, available data is a 

union of t>1 groups: 

1 1
{{ , }, 1,..., },{ , } {{ , }, ...,{ , }}

nr nrr r r r r r r rr t y y X Y X Y x x

and can be thought as samples identically and independently 
generated from unknown distribution

( , ) { ( , ), { , } { , }}r r rP y P y if y x x x X Y . 

    If the group labels of future test samples are not given, the 
problem is “Learning With Structured Data (LWSD)” 
formulation [9]. In this formulation, the goal is to find one best 
mapping function f such that the expected loss

( ) ( ( , ), ) ( , )LWSDR w L f w y P y d dy  x x x

is minimized. Note that even though the expected loss is in the 
same form as in the supervised learning setting, the difference 
is that in supervised learning setting P is unknown, while in 
LWSD it is known that P is a union of t sub-distributions. 
       On the other hand, if the group labels of future test 
samples are given, the problem is Multi-Task Learning 
(MTL) problem [1,2,6,8]. The goal in multi-task learning is to 

estimate t related classifiers },...,,{ 21 tfff  so that the sum 

of expected losses for each task 

1

( ) ( ( ( , ), ) ( , ) )
t

MTL r r
r

R w L f w y P y d dy


  x x x

is minimized. 
     From the application point of view, different learning 
settings (standard inductive learning, multi-task learning and 
learning with structured data) handle training and test data in 
different ways. That is, standard inductive setting does not use 
(ignores) group information in the training data; MTL setting 
estimates t separate related predictive models; and LWSD 
estimates a single model that utilizes group information in the 
training data. Note that under LWSD test inputs do not have 
group information, whereas under MTL test inputs have 
(known) group labels.
       Recently, Vapnik [9] proposed SVM-based optimization
formulation called SVM+ for LWSD formulation. Liang and 
Cherkassky [5,6] showed empirical validation of SVM+ for 
classification, and showed its connection to Multi-Task 
Learning (MTL) classifiers in machine learning [1,2,6,10]. 
“Learning with structured data” formulation [9] and

multi-task learning are similar in the sense that they both try to 
exploit the group information hidden in the data. Such ‘group 
information’ is common in many applications with 
heterogeneous data. For example, in medical diagnostic 
applications, certain inputs, for example patients’ 
demographic features, such as Gender or Age, can be used to 
separate labeled training data into several groups. Proper 
selection of such a group variable is specific to each 
application at hand (see examples in Section 3).



      Assuming that available training data can be partitioned 
(in a meaningful way) into several groups, we can identify 
several learning approaches for utilizing this group 
information. These approaches are shown in Fig. 1 where, for 
simplicity, we show two groups, and use SVM classifier as a 
basic inductive learning method:

- Single SVM inductive model which estimates 
standard SVM classifier by pooling together training 
samples from different groups (i.e. group 
information is ignored);

- multiple SVM approach where a separate SVM 
classifier is estimated for each group
(independently);

- SVM+ approach where a single classifier model, 
utilizing available group information, is estimated 
from all data;

- SVM+MTL implementing multi-task learning, which 
estimates several related classification models
following [5,6].

Various approaches for incorporating group data into learning 
process are presented in Fig. 1, showing for simplicity t=2
groups.

Figure 1: Different ways of using group information in 
learning: (a) sSVM ~ Single SVM classifier, (b) SVM+ 
classifier, (c) mSVM ~ multiple (independent) SVMs, and (d) 
SVM+MTL ~ SVM+ Multi-Task Learning [6].

In this paper, we use SVM as an underlying technology for 
implementing different approaches utilizing group
information. However, one can use other learning techniques, 
for example, MLP networks, for implementing standard 
inductive learning and Multi-Task Learning. Theoretically, 
one can expect more sophisticated modeling approaches 
(utilizing the group information), i.e., SVM+ and 
SVM+MTL, to yield better generalization than single 
inductive SVM and multiple (independent) SVM’s, 
respectively. In practice, the trade-off is not so clear, because 
more  advanced approaches (SVM+ and SVM+MTL) have 
more tunable parameters (than standard SVM), and their 

potential advantages can be easily offset by more complex 
model selection.
Optimization formulation for SVM+ and SVM+MTL 
classification is given below. For detailed mathematical 
description of SVM+ and SVM+MTL, see [9] and [5, 6] 
respectively.

A. Standard SVM classifier

    Given a training set
1{{ , }} , , { 1, 1}d

i i i n i iy R y     x x , 

SVM finds a maximum margin separating 
hyperplane bf  ),()( xwx between two classes [8,9]. This 

optimal decision function bf  ),()( xwx  is estimated from 

training data by solving the  following optimization problem: 

,
1

1
min  ( , )

2

n

i
b

i

C 


 
w

w w                                              (OP1)

subject to:  iii by  1)),(( xw                 

                    0i                                                 

Where , 1,...i i n  are slack variables, measuring the 

deviation from the margin borders. The term ),( ww  controls 

the size of margin, and coefficient C  controls the trade-off 
between complexity and proportion of nonseparable samples.  
(see Figure 2) 

Figure 2. Binary classification for non-separable data involves 
two goals: (a) Minimizing the total error for data samples 
unexplained by the model, quantified as a sum of slack 

variables i  corresponding to deviation from margin borders; 

(b) Maximizing the size of margin. 

    In the non-linear version of SVM, we first map the input 

training data into a feature space ii zx  )( , and then find 

the optimal decision function in that feature space. The 
non-linear form of SVM is similar to the optimization (OP1). 

The only difference is that izw,  (see OP1’) are defined in 

the feature space. The non-linear SVM solves the 
optimization problem as : 

1

2

1y

1y
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B. SVM+

       Suppose that training data are the union of t>1 groups. Let 
us denote the indices of samples from group r by 

triiT
rnnr ,...,1},,...,{ 1  . Then the total training data set is 

a union of t groups: 

1 1
{{ , }, 1,..., },{ , } {{ , }, ...,{ , }}

nr nrr r r r r r r rr t y y X Y X Y x x

      To account for the group information, Vapnik [9] 
proposed to define the slacks within each group by so-called
‘correcting function’

( ) ( , ), , 1,..., .i r i r i r ri T r t     x x w
        To define the correcting function 

),()( ririr wxx    for group rT , Vapnik [9] proposed 

to map the input vectors ri Ti,x  simultaneously into two 

different Hilbert spaces: into the decision space 
Zizi  )(xz  which defines the decision function and 

into correcting space riz
r
i Z

r
 )(xz which defines the 

set of correcting functions for a given group r. The correcting 
functions are specified as:

},...,1{,),()( trdrriir  wxx . Mapping of the 

training data onto two spaces, decision and correcting space, 
is shown in Fig. 3, for t=2 groups.
        Compared to standard SVM, in SVM+ slack variables 
are restricted by the correcting functions, and the correcting
functions represent additional information about the data. The 
goal is to find the decision function in decision space Z,

             bf Z  ))(,()( xwx
Note that data of different groups are mapped into the same 
decision space, and they are all used to construct the decision 
function. However, there are different correcting functions for 
different groups. Correcting functions are defined in the 
correcting space. Different correcting functions can be 
defined either in the same correcting space or different 
correcting function spaces.
      Correcting functions represent a unique way that SVM+ 
handles group information, and these correcting functions 
have the following unique characteristics: 

(1) All slack variables are non-negative, so 

},...,1{,0),()( trdrriir  wxx . 

Therefore mapping samples in the correcting space 
have to lie on one side of the corresponding 
correcting function. Correcting function also has to 
pass through some points with slack variables being 
zero. 

(2) Like decision function, correcting function is also 
chosen from a set of correcting functions, and 

),( rr ww  reflects the capacity of the set of 

correcting functions; but this term does not
correspond to the size of margin. 

(3) Correcting functions are not used to assign a sample 
a group membership.  

Figure 3: SVM+ maps data simultaneously into decision space 
and correcting spaces. Decision function is found in decision 
space. Slack variables are represented by correcting functions 
which are defined in correcting space.  

    Estimating SVM+ model from training data requires 
solving the following optimization problem [9]: 

1 1, ,.., , , ,..
1 1

1
min   ( , ) ( , )

2 2t t
r

t t
r
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subject to: 

     (( , ) ) 1 , , 1,...,r
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     trTi r
r
i ,...,1,,0 

    trTid rrr
r
i

r
i ,...,1,,),(  wz          

The capacity of a set of decision functions is reflected by 
),( ww  and the capacity of a set of correcting functions for 

group r is ),( rr ww . SVM+ directly controls the capacity of 

decision functions and correcting function.   adjusts the 

relative weight of these two capacities. C  controls the 
trade-off between complexity and proportion of nonseparable 
samples. In this problem, the slack variables are represented 

as  rr
r
i d),( wz , and must be non-negative. 

    Using the dual optimization technique (similar to standard 

SVM) one can show that rww, can be expressed in terms of 

training samples:
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where the coefficients i  maximize the functional:
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Therefore, the optimal decision function in Z space has the 
form 
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       Compared to SVM, SVM+  adds 
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  in the 

objective function in the primal form, and adds a new 

constraint rr
r
i

r
i d ),( wz .  

The dual form of SVM+ has an additional term 
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objective function, and more restricted i ’s . 

C. SVM+MTL

    Now we discuss adaptation of SVM+ approach to 
multi-task learning (MTL). Application of SVM+ to MTL 
requires (1) specification (parameterization) of decision 
functions for different groups; (2) modeling the relatedness 
among the groups (tasks). 
     In the method called SVM+MTL, similar to SVM+, we 

map the input vectors ri Ti,x  simultaneously into two 

different Hilbert spaces: into the decision space 
Zizi  )(xz and into correcting space 

riz
r Z

ri
 )(xz

for a given group r. 
       The goal is to find the t decision functions

( ) ( ( ), ) ( ( ), ) , 1,...,
rr z z r rf b d r t      x x w x w

Where each decision function includes two parts: common 

decision function bz  )),(( wx  and unique correcting 

function rrz d
r

 )),(( wx . Common decision function is 

defined in the decision space Z and unique correcting function 

defined in the correcting space 
rZ , so the final decision 

function actually involves two spaces: decision space and
correcting space (unlike SVM+ that yields a function in the 
decision space only) . 
       In SVM+MTL, t tasks are related in the sense that 
decision functions for different tasks share a common decision 
function. Similar to SVM+, correcting functions of different 
groups may lie in the same correcting space or different 
correcting spaces. 
SVM+MTL classifier is estimated from training data as a 
solution to the following optimization problem:
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Here, the 2-norm of rww, is used to control the capacity of 

the common decision function and of the correcting function, 
respectively. Parameter  adjusts the relative weight of these 

two capacities, and C  controls the trade-off between 
complexity and proportion of nonseparable samples. The 

slack variables r
i  measure the error that each of the final 

models (including common decision function and correcting 
function) makes on the data. 

     The dual form of (OP3) is as follows:
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 Based on Karush-Kuhn-Tucker (KKT) conditions, we can 

express rww,  in terms of training samples: 
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Based on optimization formulations for different learning 
settings (shown above), we can identify tunable parameters
for modeling approach shown in Fig. 1:

- single SVM classifier:  single parameter C (linear 

SVM is used), and 2 parameters C ,  (RBF kernel 

is used);



- multiple SVM: t parameters C (linear SVM is used 

for each task) and 2t parameters C ,  (RBF kernel 

is used for each task);

- SVM+ classifier, where linear kernel is used for the 
decision space, and RBF kernel is used for correcting 
space, requires 3 parameters:  C  (as in standard 

linear SVM), and (RBF witdh);

- SVM+MTL classifier requires 3 parameters C and

(as in standard linear SVM),  and (RBF with 

parameter).

Note that the same kernel parameter  is used for all 

correcting functions in SVM+ and SVM+MTL methods. Note 
that standard linear SVM classifier has just one tunable 
parameter, whereas SVM+ and SVM+MTL each have 3 
parameters. This crude analysis also suggests that relative 
performance of these methods may be strongly affected by 
sample size. For small sample size, standard SVM may still be 
the best method, simply because it has fewer tunable 
parameters.

Empirical comparisons of these learning methods (presented 
in Section 3) use double resampling procedure, i.e. one level 
of resampling for comparing prediction accuracy of learning 
methods, and the second level for tuning model parameters of 
each method. At each level, resampling was implemented 
using 5-fold cross-validation. 

III. EMPIRICAL COMPARISONS

This section describes empirical comparisons of various 
modeling approaches for classification with heterogeneous 
data, such as single SVM (sSVM), multiple SVM (mSVM), 
SVM+ and SVM+MTL. All comparisons use linear and rbf 
kernels for sSVM and mSVM, The common decision space 
for SVM+ and SVM+MTL use linear kernel while the unique 
correction space use RBF(Gaussian) kernel. All comparisons 
use the following experimental procedure:

(a) Select a group variable (from a list of input 
variables). 

(b) Partition available data into several groups (tasks) 
corresponding to different values (or range of 
values) of group variable. Each group should be 
roughly of similar size.

(c) Within each group, order data samples by 
increasing value of the group variable.

(d) For estimating prediction error of a particular 
method, use 5-fold cross-validation, so that 80% 
of data samples are used for training and 20% of 

the data are used as test data. Note that 
conditions (b) and (c) ensure that each fold has 
approximately equal number of samples from all 
groups (tasks). 

(e) For each training fold, parameter tuning (model 
selection) for different methods are via 
resampling within the training fold.

Comparison of methods’ performance on several publicly 
available medical data sets is presented next.  Comparison 
results show average test error (averaged over 5 folds) and its 
standard deviation.

A. Statlog heart disease dataset

This dataset is from UCI machine learning repository. There 
are 270 instances, each of which has 13 attributes. The goal is 
to predict absence or presence of heart disease using 13 input 
variables. We choose variable ‘SEX’ to separate the data into 
male & female groups: group1( 0SEX  , 87 instances)and 
group2( 1SEX  , 183 instances). The binary group variable 
was removed and modeling was performed with remaining 12 
attributes.  Possible choices of parameters for sSVM and 
mSVM are C = [0.1 1 10 100]  and 

[0.25 0.5 1 2 4]  . Possible choices of parameters for 

SVM+ and SVM+MTL are C = [0.1 1 10 100] , 

[10 1 0.1 0.01 0.001]  and [0.25 0.5 1 2 4]  . 

Comparison results are shown in Table 1.

B. Ljubljana breast cancer dataset

This dataset is available at UCI machine learning repository. It 
consists of 286 instances, each with 9 attributes. The dataset 
contains 9 instances with missing values and the remaining 
277 instances are used. The goal is to predict the class 
(no-recurrence-events or recurrence-events) from 9 attributes. 
Variable ‘age’ was selected to separate the data into 3 
different groups: group 1( 47age  , 94 instances), group 

2( 47 55age  , 93 instances) and group 3( 55age  , 90 

instances). Since variable ‘age’ has different values within 
each group, this variable is still included in modeling. Possible 
choices of parameters for sSVM and mSVM are 
C = [0.1 1 10 100] and [0.25 0.5 1 2 4]  . Possible 

choices of parameters for SVM+ and SVM+MTL are 
C = [0.1 1 10 100] , [10 1 0.1 0.01 0.001]  and 

[0.25 0.5 1 2 4]  . Results are shown in Table 2.

C. Wisconsin breast cancer dataset

This is another dataset from UCI machine learning repository. 
There are 699 instances, each of which has 9 continuous 
attributes. The measurements of attributes are assigned an 
integer value between 1 and 10. After removing 16 instances 
with missing values, we are left with 683 instances for 



modeling. The goal is to predict the class(benign or 
malignant) using 9 input variables. We choose variable 
‘Clump Thickness’ to separate the data into 3 groups: 
group1( Clump Thickness 4 , 293 instances), 

group2( 4 Clump Thickness<6 , 207 instances)and 

group3 ( Clump Thickness 6 , 183 instances). Since 

variable ‘Clump Thickness’ has different values within each 
group, this variable is still included in modeling. Possible 
choices of parameters for sSVM and mSVM are 
C = [0.1 1 10 100] and [0.25 0.5 1 2 4]  . Possible 

choices of parameters for SVM+ and SVM+MTL are 
C = [0.1 1 10 100] , [10 1 0.1 0.01 0.001]  and 

[0.25 0.5 1 2 4]  . Results are shown in Table 3.

D. Hepatitis dataset

This dataset can also be found at UCI machine learning 
repository. There are 155 instances, each of which has 19 
attributes. After removing 75 instances with missing values, 
we are left with 80 instances for modeling. The goal is to 
predict the class (dead / alive) using 19 input variables. We 
separate data into 2 groups using binary variable 
‘HISTOLOGY’: group 1( 1HISTOLOGY  , 47 instances) 
and group 2( 2HISTOLOGY  , 33 instances). Hence, all 
methods used only the remaining variables 18 attributes for 
prediction.  Possible choices of parameters for sSVM and
mSVM are C = [0.1 1 10 100] , [0.25 0.5 1 2 4]  . 

Possible choices of parameters for SVM+ and SVM+MTL 
are C = [0.1 1 10 100] , [10 1 0.1 0.01 0.001]  and 

[0.25 0.5 1 2 4]  . Results are shown in Table 4.

Table 1 Prediction error for statlog heart dataset
method sSVM(linear) sSVM(rbf) SVM+
Test error % 19.3 ± 7.5 18.2 ± 6.5 16.3 ± 6.1
method mSVM mSVM(rbf) SVM+MTL
Test error % 16.6 ± 4.3 21.5 ± 5.3 15.2 ± 4.0

Table 2 Prediction error for Ljubljana breast cancer dataset
method sSVM(linear) sSVM(rbf) SVM+
Test error % 29.3 ± 6.2 25.7 ± 4.5 24.9 ± 4.8
method mSVM(linear) mSVM(rbf) SVM+MTL
Test error % 29.6 ± 1.6 24.2 ± 2.5 23.5 ± 3.4

Table 3 Prediction error for Wisconsin breast cancer dataset
method sSVM(linear) sSVM(rbf) SVM+
Test error % 3.4 ± 1.3 3.8 ± 0.8 3.1 ± 1.0
method mSVM(linear) mSVM(rbf) SVM+MTL
Test error % 3.4 ± 0.8 3.1 ± 1.0 2.9 ± 0.9

Table 4 Prediction error for hepatitis dataset
method sSVM(linear) sSVM(rbf) SVM+
Test error % 16.3 ± 8.4 17.5 ± 5.2 16.3 ± 8.4
method mSVM(linear) mSVM(rbf) SVM+MTL
Test error % 16.3 ± 8.4 16.3 ± 8.4 15.0 ± 7.1

E. Comparison for Regression: Boston Housing Dataset

Finally, we show comparison between different methods for 
regression problems. The same conceptual approaches, i.e. 
standard SVM, SVM+ and SVM+MTL can be developed for 
regression learning problem. We do not provide here detailed 
mathematical formulations for regression, due to space 
constraints. SVM+ regression was originally introduced by 
Vapnik [9] and description of SVM+MTL regression can be 
found in [13]. Comparisons between SVM regression, SVM+ 
regression, SVM+MTL regression, and multiple SVM 
regression are presented next using Boston Housing data set. 
It has 13 input variables (12 continuous and 1 Boolean) and 
506 data samples. The goal is to estimate the median value of 
owner-occupied homes in $1000’s from 13 attributes. We 
present two sets of comparisons for this dataset, using 
different group variables: ‘RAD’ ~ accessibility index to 
major highways) and ‘DIS’ ~ weighted distance to major 
employment centers in Boston area. First, variable ‘RAD’ is 
selected to separate data into 3 groups: group 1( 5RAD  , 
192 instances), group 2( 5 7.5RAD  , 158 instances) and 
group 3( 7.5RAD  , 156 instances). Second, we separate 
data into 3 groups by another variable ‘DIS’: group 
1( 2.5DIS  , 188 instances), group 2( 2.5 4.5DIS  , 163 
instances) and group 3( 4.5DIS  , 155 instances). Therefore,
all methods, sSVM, mSVM, SVM+ and SVM+MTL, used all 
13 attributes for prediction. 
Comparisons use different learning methods for regression, 
i.e. single SVM, multiple SVM, SVM+ and SVM+MTL, that 
implement different approaches for estimating regression 
models from heterogeneous training data. Distinction between 
these approaches is shown in Fig. 1 (where estimated models 
are real-valued functions). Comparisons use linear SVM 
regression for single and multiple SVMs, linear SVM for 
decision function in SVM+ and SVM+MTL, and RBF kernel 
in the correcting space. So each modeling approach has the 
following tunable parameters:

- single SVM regression:  parameters C , epsilon and 

 (RBF width);

- multiple SVM: parameters C ,epsilon and   (for 

each task);

- SVM+ regression requires 5 parameters:  C , epsilon

and common (as in standard  SVM),  and

correction (RBF width);

- SVM+MTL regression requires 5 parameters:  C , 

epsilon and common  (as in standard  SVM),  and

correction (RBF width);

Parameters C and epsilon for SVM were tuned using analytic 
approach described in [3], whereas parameters  and  are 

tuned using resampling. Possible choices of parameters for 
SVM+ and SVM+MTL regression are:



[10 1 0.1 0.01 0.001]  , [0.25 0.5 1 3 4]  .

Results are shown in Table 5 and Table 6. These results show 
prediction error (MSE) for each fold of 5-fold 
cross-validation procedure used to estimate test error, along 
with the mean (MSE) error and its standard deviation. Note 
that SVM+ regression is better than single SVM, and 
SVM+MTL is better than multiple SVM regression models. 
Overall, SVM+MTL achieves improvement, in terms of 
prediction MSE, over standard SVM regression.

Table 5 Prediction MSE for Boston housing dataset
(group variable: RAD)

Folds 1 2 3 4 5 Mean(st.dev) 

sSVM 8.9 26.1 8.5 5.9 10.9 12.1(8.0)

mSVM 12.1 27.2 10.4 6.2 15.1 14.2(7.9)

SVM+ 8.9 23.5 9.5 6.1 8.8 11.4(6.9)

SVM+MTL 7.6 15.6 8.0 4.9 8.7 9.0(4.0)

Table 6 Prediction MSE for Boston housing dataset 
(group variable: DIS)

Folds 1 2 3 4 5 Mean(st.dev) 

sSVM 8.9 8.3 11.1 9.0 18.4 11.1(4.2)

mSVM 10.2 8.9 10.3 11.1 20.1 12.1(4.5)

SVM+ 8.1 8.7 10.7 7.9 16.5 10.4(3.6)

SVM+MTL 7.1 8.2 8.6 8.4 17.0 9.9(4.0)

IV. CONCLUSIONS and DISCUSSION

This paper presents and compares different approaches for 
utilizing group information in learning problems. These 
include standard inductive SVM, multiple SVMs, SVM+ and 
SVM+MTL. Empirical comparisons presented using several 
medical data sets illustrate relative performance of these 
methods and various trade-offs. Our comparisons show that 
for the single-model setting, SVM+ is consistently better than 
standard SVM classifier, and that for multiple-model setting, 
SVM+MTL is consistently better than several independent 
SVMs.

Whereas our empirical comparisons suggest the advantages 
of SVM+MTL, we strongly warn against making such 
over-reaching conclusions. Relative performance of learning 
methods is always strongly affected by the properties of 
application data at hand [6, 13]. New learning settings, such as 
SVM+ regression and SVM+MTL, are more complex than 
standard SVM, and have more tuning parameters. So, 
effective model selection for these new methods is an open 
research area. Another important practical problem is 
specification of ‘good’ group variable(s) that is likely to yield 
improved generalization. In all examples shown in this paper, 

selected group variable typically has low correlation with the 
output (response) y. However, more research is needed in 
proper selection of group variable(s), in both classification 
and regression problems.
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