
 
 

 

  

Abstract—Exploiting additional information to improve 
traditional inductive learning is an active research in machine 
learning. When data are naturally separated into groups, 
SVM+[7] can effectively utilize this structure information to 
improve generalization. Alternatively, we can view learning 
based on data from each group as an individual task, but all 
these tasks are somehow related; so the same problem can also 
be formulated as a multi-task learning problem. Following the 
SVM+ approach, we propose a new multi-task learning 
algorithm called svm+MTL, which can be thought as an 
adaptation of SVM+ for solving MTL problem. The 
connections between SVM+ and svm+MTL are discussed and 
their performance is compared using synthetic data sets. 

I. INTRODUCTION 
       Under inductive learning setting [3,4,5,6], the goal is to 
find a mapping function f which maps an input vector 

Xx ∈  to an output Y∈y . This estimation (learning) is 
performed using a training set of i.i.d. samples generated 
from an unknown probability distribution ).,( yP x   The 
goal is to find the best mapping function f such that the 
expected loss 

∫= dydyxPywfLwR xx ),()),,(()(  

is minimized. Note that )),,(( ywfL x  denotes a loss 
function such as classification error, or squared-loss.  
       Suppose that training data can be represented as a union 
of t related groups, i.e. each group ],..,2,1[ tr ∈  contains rn  

i.i.d. samples from a distribution rP  on YX × . Therefore, 
available training data is a union of t>1 groups:  

}},{},...,,{{},{},,...,1},,{{
11 nrnr rrrrrrrr yyYXtrYX xx==

 and can be though as samples identically and independently 
generated from the distribution rtr PP ,..1=∪= .  
        If the group labels of future test samples are not given, 
the problem is “Learning With Structured Data (LWSD)” 
formulation [7]. In this formulation, the goal is to find one 
best mapping function f such that the expected loss 

∫= dydyPywfLwR xxx ),()),,(()(  

is minimized. Note that even though the expected loss is in 
the same form as in the supervised learning setting, the 
difference is that in supervised learning setting P is 
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unknown, while in LWSD, P is a union of t sub-
distributions.  
       On the other hand, if the group labels of future test 
samples are given, the problem is Multi-Task Learning 
(MTL) problem [1,2]. The goal in multi-task learning is to 
find t mapping functions },...,,{ 21 tfff  such that the sum 
of expected losses for each task  

∑ ∫
=

=
t

r
rr dydyPywfLwR

1

)),()),,((()( xxx  

is minimized. Figure 1 illustrates how standard supervised 
learning, multi-task learning and learning with structured 
data utilize training and test data in different ways. 
 
       “Learning with structured data” formulation and multi-
task learning formulation are similar in the sense that they 
all try to exploit the group information. However, there are 
several important differences: (1) LWSD estimates a single 
model, while MTL estimates t models; (2) LWSD does not 
use the group membership of test data, whereas MTL does 
require it. Let’s consider two application problems in order 
to illustrate the difference between the two formulations. 
One example is handwritten digit recognition, where the 
training data originates from t persons (each person provides 
labeled examples of all 10 digits). Then goal 1 (LWSD) is to 
find a classifier that can generalize well for other 
(previously unseen) samples written by these people (we 
don’t know who generates test samples). In contrast, goal 2 
(MTL) is improved generalization for each person who 
contributed to training data (i.e., the group membership for 
future test samples is known). Another application example 
is fMRI data analysis or more generally, medical diagnosis. 
Here the goal is to estimate a predictive model 
(predict/diagnose a disease)  from the training samples from 
t patients. Then goal 1 (LWSD) is to find a predictive model 
that has good generalization for other (new) samples from 
these patients, whereas the goal 2 (MTL) is to built t 
specialized models (one for each patient).  Note that 
estimating a classifier that can generalize well for data from 
a new group (previously unseen in the training data) does 
not fall into either LWSD or MTL formulation, and it 
represents a problem formulation beyond the scope of this 
paper. A recent empirical comparison study [9] shows that 
SVM+ provides an improved generalization accuracy for 
fMRI data. This paper attempts to extend the concepts 
developed for SVM+ algorithm, in order to solve multi-task 
learning problems.  
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II. SVM+ APPROACH 
    SVM+ [7] is an algorithm for Learning with Structured 
Data developed as an extension of standard SVM. This 
section briefly reviews standard SVM classification (in 
order to introduce notation) and then describes SVM+.  

A. Standard SVM 
    Given a training set }1,1{,,}},{{ 1 −+∈∈≤≤ i

d
iniii yRy xx , 

SVM finds a maximum margin separating hyperplane 
bf += ),()( xwx  between two classes [5]. 
bf += ),()( xwx  is also called decision function. To this 

end, SVM solves the following optimization problem:  
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subject to:  iii by ξ−≥+ 1)),(( xw                  

                    0>iξ                                                  

ni��i ,...1, =ξ are called slack variables, which indicates the 
deviation from the margin borders.  ),( ww  indicates the 
size of margin, which represents the model complexity of 
SVM. The coefficient C  controls the trade-off between 
complexity and proportion of nonseparable samples and 
must be selected by the user.  (see Figure 2)  
    In the non-linear version of SVM, we first map the input 
training data into a feature space ii zx =Φ )( , and then 
find the optimal decision function in that feature space. The 
non-linear form of SVM is similar to the optimization 
(OP1). The only difference is that izw,  (see OP1’) are 
defined in the feature space. The non-linear SVM solves the 
optimization problem as:  
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sum of slack variables iξ  corresponding to deviation from 
margin borders; (b) Maximizing the size of margin.  
 

B. SVM+ 
       Suppose that training data are the union of t>1 groups. 
Let us denote the indices from group r by 

triiT
rnnr ,...,1},,...,{ 1 == . Then all training samples can be 

represented as:  
}},{},...,,{{},{},,...,1},,{{

11 nrnr rrrrrrrr yyYXtrYX xx==       

To account for the group information, Vapnik [7] proposes 
to define the slacks inside one group by some correcting 
function:  

.,...,1,),,()( trT��i rririri =∈== wxx φξξ  

        To define the correcting function 
),()( ririr wxx φξ =  for group rT , Vapnik proposed to 

map the input vectors ri Ti ∈,x  simultaneously into two 
different Hilbert spaces: into the decision space 

Zizi ∈Φ= )(xz  which defines the decision function and 

into correcting space riz
r
i Z

r
∈Φ= )(xz which defines 

the set of correcting functions for a given group r. The 
correcting functions are represented by 

},...,1{,),()( trdrriir =+= wxxξ  
        Compared to standard SVM, here the slack variables 
are restricted by the correcting functions, and the correcting 
functions represent additional information about the data. 
The goal is to find the decision function in decision space Z,  
             bf Z +Φ= ))(,()( xwx  
Note that data of different groups are mapped into the same 
decision space, and they all used to construct the decision 
function. However, there are different correcting functions 
for different groups. Correcting functions are defined in the 
correcting space. Different correcting functions can be 
defined either in the same correcting space or different 
correcting function spaces. Of course, if data of different 
groups are mapped to different correcting spaces, the 
correcting functions for different groups are different. If data 
of different groups are mapped to the same correcting space, 
we still can construct different correcting functions for 
different groups. The important point is that the correcting 
functions are different, not the correcting space.  
      Correcting functions represent a unique way that SVM+ 
handles group information (see Figure 3). Since correcting 
functions represent slack variables, they have some unique 
characteristics:  

(1) All slack variables are non-negative, so 
},...,1{,0),()( trdrriir =≥+= wxxξ . 

Therefore mapping samples in the correcting space 
have to lie on one side of the corresponding 
correcting function. Correcting function also has to 
pass through some points with slack variables being 
zero.  

(2) Like decision function, correcting function is also 
chosen from a set of correcting functions, and 

),( rr ww  reflects the capacity of the set of 
correcting functions; but this term does not have 
meaning of the size of margin.  

(3) Correcting functions is not used to assign a sample 
a group membership.   

 
     Implementation of SVM+ is based on Vapnik’s idea to 
control the capacity of a set of decision functions, and the 
capacity of a set of correcting functions. To this end, we 
need to solve the following optimization problem :  
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The capacity of a set of decision functions is reflected by 
),( ww  and the capacity of a set of correcting functions for 

group r is ),( rr ww . SVM+ directly controls the capacity 
of decision functions and correcting functions. Parameterγ  
adjusts the relative weight of these two capacities. C  
controls the trade-off between complexity and the number of 
nonseparable samples. In this problem, the slack variables 
are represented as rr

r
i d+),( wz , and must be non-

negative.  
    Using the dual optimization technique (similar to standard 
SVM) one can show that rww, can be expressed in terms 
of training samples: 
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where the coefficients iα  maximize the functional:  
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Therefore, the optimal decision function in Z space has the 
form  

     byf z

n

i
izii +ΦΦ= ∑

=

))(),(()(
1

xxx α ,            

       Compared to SVM, SVM+ adds ∑
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objective function in the primal form, and also adds a new 
constraint rr

r
i

r
i d+= ),( wzξ .   

The dual form of SVM+ has an additional term 
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objective function, and more constrained iα ’s .  

III. SVM+ FOR MULTI-TASK LEARNING (SVM+MTL) 

A. svm+MTL 
   This section describes an extension of SVM+ approach 

to multi task learning. In order to apply SVM+ to multi task 
learning, we need to specify: (1) how SVM+ can define 
decision functions for different groups; (2) how SVM+ can 
model task (group) relatedness.  
     The proposed method svm+MTL is described next. 
Similar to SVM+, we map the input vectors ri Ti ∈,x  
simultaneously into two different Hilbert spaces: the 
decision space Zizi ∈Φ= )(xz  and the correcting space 

riz
r Z

ri
∈Φ= )(xz  for a given group r.  

       The goal is to find the t decision functions 
 tr���dbf rrzzr r

,...,1,)),(()),(()( =+Φ++Φ= wxwxx  
Each decision function includes two parts: common decision 
function bz +Φ )),(( wx  and unique correcting function 

rrz d
r

+Φ )),(( wx . Common decision function is defined 
in the decision space Z and unique correcting function 
defined in the correcting space rZ , so the final decision 
function actually involves two spaces: decision space and 
correcting space.  
       The t tasks are related in the sense that decision 
functions for different tasks share a common decision 
function.  
       Note that like SVM+, correcting functions of different 
groups may lie in the same correcting space or different 
correcting spaces.  
 
Formally, the proposed svm+MTL method needs to solve 
the following optimization problem:  
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Following SVM+, we use 2-norm of rww, to control the 
common decision function capacity and correcting function 
capacity. Parameterγ  adjusts the relative weight of these 
two capacities. C  controls the trade-off between complexity 
and proportion of nonseparable samples. The slack variables 

r
iξ  measure the error that each group models (including the 

common decision function and correcting function) makes 
on the training data.  
      This formulation (OP3) has some similarity to the 
regularized multi-task learning technique (rMTL) proposed 
by Evgeniou and Pontil [8] , which also assumes decision 
function has a common part and unique part. The relatedness 
of decision functions for different groups are characterized 
by the common decision function. rMTL solves the 
following optimization problem (OP4):  
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      However, there are two important differences between 
our svm+MTL and rMTL. First, under rMTL formulation 
the decision space and correcting space are the same, 
whereas the svm+MTL formulation these spaces may be 
different. Second, rMTL assumes that the decision function 
for each task is : 
   tr���wxwxxf rzzr ,...,1,)),(()),(()( =Φ+Φ= , while 
svm+MTL considers a more general form with bias terms 
(b, rd ).   
     The dual form of (OP3) is as follows: 
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Based on KKT conditions, we can express rww,  in terms 
of training samples:  
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B.  Connection between SVM+ and svm+MTL 
      OP3 can be though as an adaptation of SVM+ for 
solving MTL problems. Comparing OP2 and OP3, we can 
observe that both formulations utilize correcting functions. 
However, correcting functions play different roles in the two 
formulations. In SVM+, correcting functions are used to 
model slack variables, which have to be non-negative. In 
svm+MTL, correcting functions are used to fine-tune the 
decision function so that it fits the data from each group 
more appropriately; so it is not required for the correcting 
function to be non-negative.  
     The inherent connection between SVM+ and svm+MTL 
can be clarified by comparing their dual forms.  We can see 
that the mappings 

riz
r Z

ri
∈Φ= )(xz  in correcting spaces play 

different roles in these two formulations. In SVM+, the 
objective function contains the term  
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while the corresponding term in svm+MTL is:  
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Looking at constraints, we can observe that svm+MTL has 
more restricted constraints, because it requires ∑
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for data in each group (task). In contrast, SVM+ only places 
constraints ∑
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0α  for all data samples.   

IV. EMPIRICAL COMPARISONS 

      This section describes empirical comparisons between 
SVM+ and svm+MTL, using synthetic data sets.  
 
Synthetic data generation:  
(1) Let number of input features be d=20, and number of 

tasks(groups) be t=3. 
(2) Generate x 20R∈  with each component 

20,...,1,)1,1(~ =− i��uniformxi . 
(3) The coefficient vectors of three tasks are specified as  

      

]0,0,0,0,0,1,0,0,0,0,0,1,0,1,1,1,1,1,1,1[
]0,0,0,0,0,0,0,0,1,0,1,0,1,1,1,1,1,1,1,1[
]0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1[

3

2

1

=
=
=

β
β
β

 

(4) For each task and each data vector, 
)5.0( += xisigny β  

 
For each task, we generate 100 data samples for training, 
100 samples for validation, and 2000 samples for testing, 
and repeat the process 10 times. Training data is used for 
training model, validation data used for model selection, and 
testing data for evaluating generalization performance of the 
final model. We use linear kernel for decision space, and 
Gaussian kernel for correcting space 

 ).2/||||exp(),( 22 σjijiK xxxx −−=  
Thus, in total, we have 3 tuning parameters for SVM+ and 
svm+MTL: σγ ,,C .  The possible choices for parameters 
are C=[0.1, 1, 10], γ =[0.1,1,10], and ]2,1,5.0[=σ . In 
Table 1, we show the classification accuracy for each trial. 
Additionally, linear SVM with C=[0.1, 1, 10] is also used 
for comparison. Namely, training samples from all tasks are 
pooled together and are all used to estimate a linear SVM 
classifier.   
      The average accuracy and standard deviation for SVM, 
SVM+ and svm+MTL are 88.11(0.65), 88.31(0.84) and 
91.47(1.03), respectively. Both SVM+ and svm+MTL 
outperform SVM. We note that svm+MTL performs better 
than SVM+.  It is not surprising because svm+MTL uses 
additional information about the group label of test data, 
which is not used in SVM+.    
       To check the effect of the training sample size, we 
reduced the number of training and validation samples to 50 
and 15 per group. The other parameters were same as used 
the last experiment. The result is shown in Table 2 and 
Table 3 respectively. For 50 training samples, the average 



 
 

 

accuracy and standard deviation for SVM, SVM+ and 
svm+MTL are 85.74(1.36),  86.49(1.69), 87.39(2.29), 
respectively. Similar to the case of 100 training samples, 
both SVM+ and svm+MTL outperform SVM. In all trials, 
svm+MTL outperforms SVM+.  
       For 15 training samples, the average accuracy and 
standard deviation for SVM, SVM+ and svm+MTL are 
80.10(3.42), 80.84(3.16) and 79.24(2.81) . In this case, 
SVM+ slightly outperforms better than SVM, and both 
SVM and SVM+ perform better than svm+MTL. This can 
be explained by observing that svm+MTL has to estimate 3 
different model (vs a single model for SVM and SVM+), so 
it requires sufficient number of training samples. Clearly, 15 
training samples for each group is not enough for the 
training svm+MTL.    

V. CONCLUSION 
   In this paper, we investigated how to utilize available 

group information in order to improve prediction accuracy. 
We extended SVM+ (originally proposed for Learning with 
Structural Data) to the problem of multi-task learning. The 
proposed new technique called SVM+MTL can be applied 
to solving multi-task learning problem. Empirical 
comparisons illustrate the advantages of the proposed 

method (vs SVM+) for multi-task learning settings, when 
the number of training samples (per task) is sufficiently 
large. On the other hand, when the number of samples per 
task is small, standard SVM and SVM+ methods are shown 
to outperform svm+MTL.  
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Table 1: Classification Accuracy (%) of SVM+ and svm+MTL for synthetic data (100 samples per task). 
Trials 1 2 3 4 5 6 7 8 9 10 
SVM 88.12 87.25 88.75. 88.50 88.10 89.15 87.27 87.82 88.60 87.52 

SVM+ 88.60 86.95 88.62 88.93 88.42 89.90 87.28 88.08 88.52 87.80 
Svm+MTL 91.55 89.82 91.93 92.82 91.28 91.57 89.60 92.33 92.17 91.62 

 
Table 2: Classification Accuracy (%) of SVM+ and svm+MTL for synthetic data (50 samples per task). 

 

 
 

Table 3: Classification Accuracy (%) of SVM+ and svm+MTL for synthetic data (15 samples per task). 
Trials 1 2 3 4 5 6 7 8 9 10 
SVM 74.97 80.58 81.67 79.80 85.80 77.65 79.48 85.32 77.52 78.25 

SVM+ 76.77 80.50 81.37 79.82 86.25 77.77 79.97 86.32 79.28 80.38 
Svm+MTL 78.07 79.38 79.43 78.82 80.92 73.90 78.58 85.15 77.85 80.25 

 
 
 
 

Trials 1 2 3 4 5 6 7 8 9 10 
SVM 86.68 85.37 86.70 86.98 84.38 83.53 87.32 86.58 83.92 85.93 

SVM+ 87.73 86.35 87.43 87.45 84.42 85.77  88.12 88.07 82.97 86.55 
Svm+MTL 89.82 87.88 88.73 89.42 83.68 84.20  87.42 89.80 85.10 87.83 
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Figure 1: Inductive learning, Multi-task learning, and Learning with structured data use training and test data in different 
ways.  
 
 
 
 
 

 
Figure 2. Binary classification for non-separable data involves two goals: (a) Minimizing the total error for data samples 
unexplained by the model, usually quantified as a sum of slack variables iξ  corresponding to deviation from margin borders; 
(b) Maximizing the size of margin.  
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Figure 3: SVM+ maps data (from two groups) simultaneously into decision space and correcting spaces. Decision function is 
found in the decision space. Slack variables are represented by correcting functions defined in the correcting space.   
 
 


