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Abstract. Many applications of machine learning involve sparse high-
dimensional data, where the number of input features is (much) larger
than the number of data samples, d À n. Predictive modeling of such
data is very ill-posed and prone to overfitting. Several recent studies
for modeling high-dimensional data employ new learning methodology
called Learning through Contradictions or Universum Learning due to
Vapnik (1998,2006). This method incorporates a priori knowledge about
application data, in the form of additional Universum samples, into the
learning process. This paper investigates generalization properties of the
Universum-SVM and how they are related to characteristics of the data.
We describe practical conditions for evaluating the effectiveness of Ran-
dom Averaging Universum.

1 Introduction and Background

Sparse high-dimensional data is common in modern machine learning applica-
tions. In micro-array data analysis, technologies have been designed to measure
the gene expression levels of tens of thousands of genes in a single experiment.
However, the sample size in each data set is typically small ranging from tens to
low hundreds due to the high cost of measurements. Similarly, in brain imaging
studies using magnetic resonance imaging (MRI) and in image recognition stud-
ies, the dimensionality d of the data vector is much larger than the sample size
n. Such sparse high-dimensional training data sets represent new challenges for
classification methods.

Most approaches to learning with high-dimensional data focus on improve-
ments to existing inductive methods (Cherkassky and Mulier 2007, Schölkopf and
Smola 2002) that try to incorporate a priori knowledge about the good models.
Another approach to handling ill-posed high-dimensional classification problems
adopts new non-standard learning formulations that incorporate a priori knowl-
edge about application data and/or the goal of learning directly into the problem
formulation (Cherkassky and Mulier, 2007). Such non-standard learning settings
reflect properties of real-life applications, and can result in improved generaliza-
tion, relative to standard inductive learning. However, these new methodologies
are more complex, and their relative advantages and limitations are still poorly
understood.
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The idea of ‘inference through contradiction’ was introduced by Vapnik
(1998) in order to incorporate a priori knowledge into the learning process. This
knowledge is introduced in the form of additional unlabeled data samples (called
virtual examples or the Universum), that are used along with labeled training
samples, to perform inductive inference. Examples from the Universum are not
real training samples, however they reflect a priori knowledge about application
domain. For example, if the goal of learning is to discriminate between hand-
written digit 5 and 8, one can introduce additional ‘knowledge’ in the form of
other handwritten digits 0, 1, 2, 3, 4, 6, 7, 9. These examples from the Univer-
sum contain certain information about handwritten digits, but they can not be
assigned to any of the two classes (5 or 8).

Next we briefly review optimization formulation for the Universum SVM
classifier (Vapnik, 2006). Let us consider inductive setting (for binary classifi-
cation), where we have labeled training data (xi, yi), (i = 1, ..., n), and a set
of unlabeled examples from the Universum (x∗j ), (j = 1, ..., m). The Universum
contains data that belongs to the same application domain as training data, but
these samples are known not to belong to either class. These Universum sam-
ples are incorporated into inductive learning as explained next. Let us assume
that labeled training data is linearly separable using large margin hyperplanes
f(x, ω) = (w · x) + b. Then the Universum samples can either fall inside the
margin or outside the margin borders (see Fig. 1). Note that we should favor
hyperplane models where the Universum samples lie inside the margin, because
these samples do not belong to either class. Such Universum samples (inside the
margin) are called contradictions, because they have non-zero slack variables for
either class label. So the Universum learning implements a trade-off between
explaining training samples (using large-margin hyperplanes) and maximizing
the number of contradictions (on the Universum).

Fig. 1. Two large-margin separating hyperplanes explain training data equally well, but
have different number of contradictions on the Universum. The model with a larger
number of contradictions should be favored.

The quadratic optimization formulation for implementing SVM-style infer-
ence through contradictions is shown next following (Vapnik, 2006). For labeled
training data, we use standard SVM soft-margin loss with slack variables ξi.
For the Universum samples (x∗j ), we need to penalize the real-valued outputs
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of our classifier that are ‘large’ (far away than zero). So we adopt ε-insensitive
loss (as in standard support vector regression). Let ξ∗j denote slack variables for
Universum samples. Then the Universum SVM formulation can be stated as:

minimize R(w, b) = 1
2 (w ·w) + C

∑n
i=1 ξi + C∗

∑m
j=1 ξ∗j whereC, C∗ ≥ 0(1)

subject to constraints
yi[(w · xi) + b] ≥ 1− ξi, ξi ≥ 0, i = 1, . . . , n (for labeled data)
|(w · xj) + b| ≤ ε + ξ∗j , ξ∗j ≥ 0, j = 1, . . . , m (for the Universum),

Parameters C and C∗ control the trade-off between minimization of errors and
maximizing the number of contradictions. Selecting ‘good’ values for these pa-
rameters is a part of model selection (usually performed via resampling). When
C∗ = 0, this U-SVM formulation is reduced to standard soft-margin SVM.

Solution to the above optimization problem defines the large margin hy-
perplane f(x, ω∗) = (x · w∗) + b∗ that incorporates a priori knowledge (i.e.
Universum samples) into the final SVM model. The dual formulation for in-
ductive SVM in the Universum environment, and its nonlinear kernelized ver-
sion can be readily obtained using standard SVM techniques (Vapnik, 2006).
The above quadratic optimization problem is convex due to convexity of con-
straints for labeled data and for the Universum. Efficient computational algo-
rithms for solving this optimization problem involve modifications of standard
SVM software (Weston et al, 2006). Universum SVM software is available at
http://www.kyb.tuebingen.mpg.de/bs/people/fabee/universvm.html.

Successful application of U-SVM depends on implementation of model selec-
tion and selection of Universum data. Note that model selection becomes more
difficult as kernelized U-SVM has 4 tunable parameters: C, C∗, kernel and ε.
In addition, we need to specify the number of Universum samples. In contrast,
standard SVM has only two tuning parameters. So in practise, standard SVM
may yield better performance than U-SVM, simply because it has inherently
more robust model selection.

Selection of Universum samples is usually application-dependent (Vapnik
2006, Weston et al 2006). However, there is a possibility of generating Uni-
versum data directly from labeled training data. This approach is called random
averaging (RA) and it does not rely on a priori knowledge about application do-
main. Such RA Universum samples are generated by randomly selecting a pair
of positive and negative training samples, and computing their average. This
paper investigates practical conditions for the effectiveness of U-SVM using ran-
dom averaging (RA). As Universum samples are generated directly from labeled
training data, we expect to express these conditions via the properties of training
data. These properties can be conveniently presented using novel representation
of high-dimensional training data via univariate histograms introduced in section
2. Section 3 specifies practical conditions for the effectiveness of RA Universum.
Section 4 provides empirical examples illustrating the effectiveness of U-SVM
learning. Conclusions are presented in Section 5.
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2 Representation of High-Dimensional Data via
Univariate Projections

Let us consider binary classification problems with sparse high-dimensional data,
where the input dimensionality is larger than training sample size (d À n). Since
n points generate n-dimensional subspace (in the input space), the projections
of the data points onto any direction vector in the d − n dimensional subspace
are all zeros. Also, the projections of the data points onto any vectors orthog-
onal to the hyperplane generated by the data are non-zero constants. Ahn and
Marron (2005) analyzed asymptotic (d À n) properties of high-dimensional data
for the binary classification setting, under the assumption that input variables
are ‘nearly independent’. Their analysis suggests that asymptotically there is a
direction vector such that the projections of data samples from each class onto
this direction vector collapse onto a single point. This projection vector is called
the Maximal Data Piling direction vector.

Various linear classifiers differ in approach for selecting the value of the vec-
tor w, specifying the normal direction of a hyperplane (x·w)+b. For linear SVM
classifiers under sparse high-dimensional settings, most data samples (from one
class) lie on the margin border, and their projections onto the SVM hyperplane
normal direction vector w tend to be the same (i.e., they project onto the same
point). In real-life applications, analytic assumptions in (Ahn and Marron 2005)
do not hold, so the data piling effect can be observed only approximately, in the
sense that many data samples lie near the margin borders. Next we illustrate
the data piling effect using the WinMac text classification data set (UCI KDD
20 Newsgroups entry). This is a binary classification data set where each sample
has 7511 binary features. The data is very sparse, and on average only a small
portion (∼7.3%) of features are non-zeros. We use 200 samples for training, and
200 independent validation samples for tuning linear SVM model parameter C.
Fig. 2(a) shows the histogram of univariate projections of the training data onto
the normal direction vector w of the SVM hyperplane. As expected, training
data is well separated and training samples from each class cluster near the
margin borders, marked as +1 and -1. Also shown in Fig. 2(b) is the histogram
of projections of the Universum samples generated from training data via Ran-
dom Averaging. As training samples cluster at the margin borders, Universum
samples will cluster near linear SVM decision boundary (marked 0 on the hori-
zontal axis). In Fig. 2, the y axis of a histogram indicates the number of samples
and the histogram of projections are evaluated, separately for each class, by first
calculating the range of projected values (i.e., max value − min value), and
then dividing this range into 10 different bins. This procedure is used for other
histograms of projections shown later in this paper.

For this data set, U-SVM is not likely to provide an improvement over linear
SVM, because optimization formulation (1) tries to force the Universum sam-
ples to lie near decision boundary. However, as shown in Fig. 2(b), Universum
samples already lie near the optimal hyperplane (of standard SVM model), so
no additional improvement due to U-SVM can be expected for this data set.
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(b) histogram of projections of Universum

Fig. 2. Histogram of projections of training data onto the normal direction vector w
of the SVM hyperplane

Next we show empirical comparisons between standard linear SVM and U-
SVM for the WinMac data set, in order to confirm our intuitive interpretation
of Fig. 2. Our comparisons use
- 200 training samples (100 samples per each class);
- 200 independent samples for validation, where validation data set is used for
tuning parameters of SVM and U-SVM;
- 1,000 Universum samples generated from training data via random averaging;
- 1,000 independent test samples (used to estimate testing error for each method).
All samples are randomly selected from the WinMac data set, and experiments
are repeated 10 times. During model selection, possible values for tuning param-
eters of U-SVM are given below:
C ∼[0.01,0.1,1,10,100,1000], C∗/C ∼[0.01,0.03,0.1,0.3,1,3,10] and ε ∼[0,0.02,
0.05,0.1,0.2]. These parameter values for U-SVM are also used for modeling other
data sets presented in this paper.
Performance results in Table 1 show average training and testing error for each
method, where averages are calculated over 10 runs. As expected, Universum
SVM shows no improvement over standard linear SVM. Additional information
in Table 1 shows ‘typical’ values of tuning parameters selected by the model se-
lection procedure. Note small values of parameter C∗ suggesting that Universum
data samples have little effect on the final model. In Table 1, the typical value
of ε is also shown, but the effectiveness of Universum is mainly determined by
the values of C and C∗ (or their ratio). So only typical values of parameter C
and C∗ will be shown later in this paper.

3 Conditions for Effectiveness of Random Averaging
Universum

Comparisons for the WinMac data set suggest that it may be possible to judge
the effectiveness of RA Universum by analyzing the histograms of projections of
training samples onto the normal direction vector w of standard SVM model. In
fact, for sparse high-dimensional training data sets, we can have 3 distinct types
of projections:
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Table 1. Comparison of Linear SVM and U-SVM on WinMac data set. Standard
deviation of error rate is shown in parenthesis.

Training/validation set size 200

Average training error rate (SVM) 0

Average training error rate (U-SVM) 0

Average test error rate (SVM) 7.11%(0.92%)

Average test error rate (U-SVM) 7.14%(0.92%)

Ave. Number of Support Vectors (SVM) 195.60

Typical C values 1 or 0.01

Typical C∗ values 0.01 or 0.001

Typical ε values 0

- Case 1: univariate projections of training data onto SVM decision boundary
cluster strongly on margin borders (as in Fig. 2).
- Case 2: univariate projections of training data onto SVM decision boundary
cluster inside margin borders, as shown in Fig. 3(a).
- Case 3: univariate projections of training data onto SVM decision boundary
cluster outside margin borders, as shown in Fig. 3(b).
From the nature of the U-SVM optimization formulation (1), it can be expected
that Universum would not provide any improvement for cases (1) and (2), be-
cause Universum samples generated by random averaging are distributed nar-
rowly near SVM decision boundary in the projection space, as shown in Fig. 2(b).
However, U-SVM is expected to provide an improvement in case (3), where ran-
dom averaging would produce Universum samples scattered far away from SVM
decision boundary in the projection space, and possibly outside the margin bor-
ders of standard SVM.
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Fig. 3. Typical histograms: training data is separable and its projections cluster inside
or outside the margin borders

Note that histograms in Figs. 2-3 assume that training data is separable.
This is generally true for sparse high-dimensional data. For lower-dimensional
data, we assume that separability can be achieved using some nonlinear kernel.
So the conditions for the effectiveness of RA Universum can be stated as follows:
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1. Training data is well-separable (in some optimally chosen kernel space).
2. The fraction of training data samples inside SVM margin borders is small.
The same conditions are also sought by standard SVM classifiers during model
selection. That is, optimally selected SVM parameters (kernel and C value) aim
at achieving high degree of separation between training samples from two classes.
So analysis of univariate histograms for standard SVM model, optimally tuned
for a given data set, can be used to ‘predict’ the usefulness of RA Universum.

The univariate histograms of projections of training data for nonlinear kernels
are calculated using representation of SVM decision function in the dual space,
f(x) =

∑
αiyiK(xi,x) + b. That is, the value of projection of training sample

xk onto the normal direction of nonlinear SVM decision boundary is expressed
as f(xk) =

∑
αiyiK(xi,xk) + b. The predicted class label for sample xk is the

sign of f(xk). Most existing SVM software packages supply both the label values
and real values of the decision function.

In practice, data samples will not always fall precisely on the margin bor-
ders (denoted as -1 or +1 in the projection space), so the condition for the
effectiveness of RA Universum can be quantified via simple separation index:

Separation Index ∼ the fraction of training data samples falling in the
interval (-0.99,+0.99) in the univariate projection space.

Smaller values of this index, say less than 5-6%, indicate higher separability
of the training data, and will generally ensure improved prediction accuracy
due to Universum generated via random averaging. This index can be used in
practise as ‘rule-of-thumb’ rather than precise necessary condition guaranteeing
improved performance of U-SVM vs standard SVM.

4 Empirical Results

This section presents additional empirical comparisons between standard SVM
and U-SVM classifiers, using two high-dimensional data sets:
- Synthetic 1000-dimensional hypercube data set, where each input is uniformly
distributed in [0,1] interval and only 200 out of 1000 dimensions are significant.
An output class label is generated as y = sign(x1+x2+. . .+x200−100). For this
data set, only linear SVM is used because optimal decision boundary is known
to be linear. Training set size is 1,000, validation set size is 1,000, and test set
size is 5,000. For U-SVM, 1,000 Universum samples are generated via random
averaging from training data.
- Real-life MNIST handwritten digit data set, where data samples represent hand-
written digit 5 and 8. Each sample is represented as a real-valued vector of size
28∗28 = 784. On average, approximately 22% of the input features are non-zero.
Training set size is 1,000, validation set size is 1,000. For U-SVM, 1,000 Univer-
sum samples are generated via random averaging from training data. Separate
test set of size 1,866 is used for all experiments.

For each data set, a classifier is applied to training data, its model complexity
is optimally tuned using independent validation data set, and then the test
error of an optimal model is estimated using test data. The results of such an



8 Vladimir Cherkassky and Wuyang Dai

experiment would depend on random realization of training and validation data.
So each experiment is repeated 10 times, using different random realizations, and
average error rates are reported for comparison. Linear SVM parameterization
is used for synthetic data set, and both linear SVM and nonlinear RBF SVM are
used for MNIST data set. Comparison of generalization performance of standard
SVM and U-SVM is shown in Table 2, where standard deviation of estimated
average test error is indicated in parenthesis.

Table 2. Test error rates for MNIST and synthetic data sets.

SVM U-SVM

MNIST (RBF Kernel) 1.37%(0.22%) 1.20%(0.19%)

MNIST (Linear Kernel) 4.58%(0.34%) 4.62%(0.37%)

Synthetic data (Linear Kernel) 26.63%(1.54%) 26.89%(1.55%)

These results indicate that U-SVM yields improvement over SVM only for
digits data when using RBF kernel. These results can be explained by examin-
ing the histograms of projections of training data. Fig. 4 shows the histogram
of training data projections onto the normal direction of the RBF SVM deci-
sion boundary, suggesting that this data is well-separable. On the other hand,
histogram of projections for linear SVM shown in Fig. 5 for both data sets, indi-
cate that training data is not well-separable, so the Universum SVM should not
provide any improvement. For MNIST data with RBF SVM, (average) value of
separability index is 1.55%, whereas for MNIST data with linear SVM, (average)
value of separability index is 15%.
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Fig. 4. Histogram of projections of MNIST training data onto normal direction of RBF
SVM decision boundary. Training set size∼1,000 samples.

Finally, we investigate the effectiveness of other types of Universum for
MNIST data. In this experiment, the training set size is varied as 100, 200
and 1,000; and the validation set size is always taken to be the same as training
set. For Universum data, 125 samples are randomly selected from each of the
digits other than 5 or 8. So the total of 1,000 Universum samples are used. Ta-
ble 3 presents comparison between standard SVM and Universum SVM using
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Fig. 5. Histogram of projections onto normal direction of linear SVM hyperplane.

‘other digits’ as Universum. Table 3 shows that using other digits for Universum
always results in improvement over standard SVM. These results (for 1,000 train-
ing samples) should be compared with results obtained using random averaging
U-SVM reported in Table 2.

Table 3. Test error rates and parameter values of ‘other digits’ Universum SVM

Training set size 100 200 1000

SVM (RBF Kernel) 5.66%(1.89%) 3.69%(0.66%) 1.51%(0.20%)

U-SVM using ‘Other Digits’ Universum 4.86%(2.08%) 3.03%(0.67%) 1.09%(0.26%)

Typical C values selected for SVM 10 or 1 or 0.01 1 10 or 1

Typical C∗ values selected for U-SVM 0.1 or 0.01 0.1 3 or 0.3

In addition, two types of Universum, Random Averaging and Other Digits,
are compared for low sample size (100 training samples) in Fig. 6, showing
the histograms of projections. As evident from Fig. 6(a), the RA Universum is
less effective because its projections are narrowly clustered near SVM decision
boundary. On the other hand, projections of the Other Digits Universum are
distributed more uniformly between margin borders, suggesting its effectiveness.

Comparison of histograms of projection in Fig. 4 (for 1,000 training samples)
and Fig. 6(a) (for 100 samples) shows that the effectiveness of the RA Universum
depends on the training sample size.

5 Summary

This paper investigates the effectiveness of the Random-Averaging Universum
SVM for high-dimensional data. Our analysis suggests that relative advantages
of using U-SVM depend on the properties of training data, such as sample size
and noise level. In many situations, using RA Universum SVM does not offer
any improvement over standard SVM.

In general, relative performance of learning methods is always affected by the
properties of application data at hand. New learning settings, such as Universum-
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(a) Random Averaging Universum
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(b) Other Digits Universum

Fig. 6. The histogram of projections of Universum data onto normal direction of RBF
SVM decision boundary. Training set size∼100 samples.

SVM, are inherently more complex than standard SVM, and they have more
tuning parameters. So it is important to have simple practical criteria that guar-
antee potential advantages of using U-SVM, for a given data set. To this end,
the paper describes novel representation of high-dimensional training data using
projections of this data onto the normal direction of SVM decision boundary.
Analysis of the univariate histograms of projected training data, presented in
this paper, leads to practical conditions for the effectiveness of RA Universum.
Empirical results using several real-life and synthetic data sets illustrate the
usefulness of the proposed histogram representation and analysis, for random
averaging Universum. The same approach can be used for analyzing effective-
ness of other types of Universum, such as ‘other digits’ used for MNIST data
set.
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