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Abstract

Recently, several empirical studies showed practical application of VC-bounds for regression for model selection with linear estimators. In this paper we discuss issues related to practical model complexity control using VC-bounds for nonlinear estimators, i.e. minimization of the empirical risk and accurate estimation of the VC-dimension. Then we present an application setting (signal denoising) where the empirical risk can be reliably minimized. However, with adaptive signal denoising (aka wavelet thresholding) an accurate estimation of the VC-dimension becomes difficult. For such signal denoising applications, we propose practical modification of VC-bounds for model selection. Effectively, the proposed approach provides a heuristic methodology for estimating the VC-dimension as a function of the number of orthogonal basis functions (wavelet or Fourier) used for signal representation. Then this VC-dimension can be used in VC-analytic bounds for model selection, for determining an optimal number of orthogonal basis functions for a given (noisy) signal. The proposed (heuristic) methodology called improved VC signal denoising provides better estimation accuracy than the original VC-denoising approach and other popular thresholding methods for representative univariate signals.

1 VC-based model selection

We consider general setting for predictive learning ([1], [8], [9]) for real-valued function estimation. The goal is to estimate unknown real-valued function in the relationship:
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where 
[image: image2.wmf]e

 is zero mean random error (noise), x is a d-dimensional input vector and y is a scalar output. The estimation is made based on a finite number (n) of samples (training data): 
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are independent and identically distributed (i.i.d.) generated according to some (unknown) joint probability density function (pdf) 
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. Unknown function in (1) is the mean of the output conditional probability (a.k.a. regression function) 
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A learning method (or estimation procedure) selects the 'best' model 
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 from a set of approximating functions (or possible models) 
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, parameterized by a set of parameters 
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. The quality of an approximation is measured by the loss or discrepancy measure 
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. A common loss function for regression is the squared error
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The set of functions 
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 supported by a learning method may or may not contain the regression function (3). Thus learning is the problem of finding the function 
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 (regressor) that minimizes the prediction risk functional,
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using only the training data. This risk functional measures the accuracy of the learning method's predictions of the signal (unknown 
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). In this (general) formulation, both the true function 
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 are unknown; however it is assumed that they are stationary (i.e., do not change with time). This makes it possible to produce meaningful estimates (predictions) using past training data. The model parameters are estimated by fitting the model to available (training) data aka minimization of empirical risk. For example, with squared loss commonly used for regression estimation and signal denoising:
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VC-theory provides a general framework for complexity control called Structural Risk Minimization (SRM). Under SRM, a set of possible models (approximating functions) is ordered according to their complexity (or flexibility to fit the data). Specifically under SRM the set of approximating functions 
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 has a structure, that is, it consists of the nested subsets (or elements) 
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where each element of the structure 
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has finite VC-dimension 
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. By design, a structure provides ordering of its elements according to their complexity (i.e., VC-dimension):
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The SRM approach for estimating an optimal predictive model for a given data set is as follows: 

1. For each element of the structure 
[image: image28.wmf]k

S

 minimize the empirical risk (4).

2. For each element of the structure 
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 estimate future error (or prediction risk). This is usually done using various resampling techniques. However, more rigorous approach (advocated in this paper) is to estimate prediction risk using (analytical) VC-bounds.
3. Select an optimal model providing smallest (estimated) upper bound on prediction risk.

The VC-dimension h is a measure of complexity of a set of approximating functions. In the case of linear estimators, the VC-dimension equals the number of free parameters m. However for non-linear estimators quantifying the VC-dimension may be problematic, and this usually leads to practical difficulties in applying theoretical VC-bounds for model selection [1], [3].

Theoretical VC generalization bounds for regression problems ([8], [9]) provide an upper bound for prediction risk (test error) as a function of the empirical risk (training error), the number of training samples, and the VC-dimension (complexity) of an estimator. Specific form of VC bound used in [3] for practical model selection and adopted in this paper is:
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where 
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 denotes regression estimate 
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 found by minimization of empirical risk (4). Notice that for regression problems VC bound (5) has multiplicative form, i.e., the empirical risk (residual sum of squares) is penalized by the following penalization factor:
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where 
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, Penalization factor (6) was used for VC-based complexity control in several empirical comparisons [1], [2], [3]. These comparisons suggest that VC penalization factor (6) provides superior model selection than classical analytic model selection criteria and resampling methods (cross-validation) for linear and penalized linear estimators.
There are (at least) two principal issues for practical application of  VC-based model selection for nonlinear estimators:

(a) Minimization of empirical risk. This is usually difficult for nonlinear estimators, and it leads to numerous nonlinear optimization heuristics.

(b) Estimation of the VC-dimension. This is a very difficult task for nonlinear estimators. For example, for feed-forward neural networks using (using standard back propagation training) the VC-dimension is smaller than the number of parameters (weights). For nonlinear estimators implementing subset selection regression a.k.a. sparse feature selection [9] the VC-dimension is larger than the number of 'free' parameters.

Clearly, it may be possible to apply VC-bounds for nonlinear estimators only in settings where the empirical risk (training error) can be reliably minimized. Two recent practical examples (of such settings) include Support Vector Machines (SVM) [9] and signal denoising applications using orthogonal basis functions [1], [2]. In such settings unique (global) minimum can be readily obtained, so the main problem is evaluating the VC-dimension of a nonlinear estimator. There are two practical approaches for dealing with this problem. First, it may be possible to measure the VC-dimension via experimental procedure proposed by [9], and then use this (estimated) VC-dimension for model complexity control as described in [2]. The second approach, proposed in this paper, is to use the known form of VC-bound (5) for estimating the optimal value of h/n directly from the training data. The rationale is that we try to capitalize on the known analytical form of VC-bounds. For instance, the penalization factor (6) depends mainly on the value of p=h/n, rather than on the number of samples n (when n is larger than a hundred which is always the case in signal processing applications).

In this paper we focus on VC-based model selection for orthogonal estimators commonly used in signal processing applications. Recent wavelet thresholding methods [4], [5] select wavelet basis functions (wavelet coefficients) adaptively in a data-dependent fashion, and these methods can be used as a good test bed for practical applicability of VC-model selection for nonlinear estimators. Our original work [1] and [2] used the number of basis functions (wavelet coefficients) selected for denoised signal as the VC-dimension; however, this is only a crude approximation of the true VC-dimension. In this paper we show that better signal denoising is possible using VC-based model selection with more accurate estimates of VC-dimension. 

The rest of the paper is organized as follows. Section 2 briefly reviews the connection between signal denoising and predictive learning formulation, leading to VC-based signal denoising [1,2]. Section 3 describes proposed technique called Improved VC-based Denoising (IVCD). Empirical comparisons between IVCD and other representative thresholding methods are presented in Section 4. Finally, summary and conclusions are given in Section 5.

2 VC-based signal denoising

In Signal Processing, functions (signals) are estimated as a linear combination of orthonormal basis functions:
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where x denotes an input variable (i.e., time) for univariate signals, or 2-dimensional input variable (for 2D signals or images). Commonly, signals in representation (7) are zero-mean. Examples of orthonormal basis functions 
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 include Fourier series and, more recently, wavelets. Assuming that the basis functions in expansion (7) are (somehow) chosen, estimation of the coefficients in a linear expansion becomes especially simple due to orthogonality of basis functions - and can be performed using computationally efficient signal processing algorithms, such as Discrete Fourier Transform (DFT) or Discrete Wavelet Transform (DWT). 

Signal denoising formulation assumes that y-values of available training data are corrupted by noise, and the goal is to estimate the 'true' signal from noisy samples. Thus signal denoising is closely related to the regression formulation (presented in Section 1). Namely, signal denoising formulation (commonly used in signal processing) can be defined as a standard function estimation problem with additional simplifications:

(a) fixed sampling rate in the input (x) space, i.e. there is no statistical uncertainty about x-values of training and test data;

(b) low-dimensional problems, that is 1 or 2-dimensional signals;

(c) signal estimates are obtained in the class of orthogonal basis functions .

According to VC framework, parameterization (7) specifies a structure or complexity ordering (indexed by the number of terms m) used in signal processing. Particular ordering of the basis functions (i.e., wavelet coefficients) in (7) according to their importance for signal estimation should reflect a priori knowledge about the properties of a target signal being estimated. Hence different orderings result in different types of structures (in VC formulation). For example, fixed orderings of the basis functions (i.e., harmonics) in parameterization (7) independent of data result in linear filtering methods. On the other hand, recent wavelet thresholding methods [5] select wavelet basis functions adaptively in a data-dependent fashion. These methods usually order the wavelet coefficients according to their magnitude. In order to avoid terminological confusion, we emphasize that thresholding methods are nonlinear estimators, even though they produce models linear in parameters. Wavelet thresholding methods use the following signal estimation or denoising procedure:

Step 1)  apply discrete transform (DFT or DWT) to n samples (noisy signal) yielding n coefficients in transform domain;

Step 2)  order coefficients in transform domain (i.e., by magnitude);

Step 3)  select first m most 'important' coefficients (or their modifications) in this ordering (Step 2) according to some thresholding rule;

Step 4)  generate (denoised) signal estimate via inverse transform (DFT or DWT) from selected coefficients.

Existing wavelet thresholding methods, many of which are a part of the WaveLab package (available at http://playfair.stanford.edu/ wavelab) developed at Stanford University, effectively follow the above denoising procedure. Many denoising methods use ordering (Step 2) according to the magnitude of the wavelet coefficients:
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where 
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w

 denotes ordered wavelet coefficients.

The main difference between wavelet thresholding methods is in a procedure for choosing the threshold (Step 3). Typically, the threshold value is determined based on certain statistical modeling assumptions about the noise and/or target signal. The very existence of so many different wavelet thresholding methods suggests their limited practical value in situations where restrictive assumptions (underlying these methods) do not hold. So our main practical motivation is to develop robust signal denoising techniques based on VC model selection, since VC theoretical framework is a model-free approach. One can readily interpret the above denoising procedure using the framework of VC-theory [2]. Namely, estimation of wavelet coefficients (parameters in expansion (7)) via DWT in Step 1 corresponds to minimization of the empirical risk. Ordering of wavelet/ Fourier coefficients in Step 2 implements the choice of a structure. Finally, thresholding in Step 3 corresponds to model selection. Denoising accuracy of wavelet thresholding algorithm depends on all 3 factors: the type of basis function chosen, ordering of basis functions (choice of a structure) and thresholding rule (complexity control). Cherkassky and Shao [2] proposed particular ordering of wavelet coefficients, suitable for signal denoising. In their structure, (wavelet or Fourier) basis functions are ordered according to their coefficient values adjusted (divided) by frequency. This ordering effectively penalizes higher-frequency basis functions:
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where 
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 denotes ordered wavelet coefficients and 
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 denotes corresponding frequencies. The intuitive motivation for such an ordering is due to the fact that energy of most practical signals is concentrated at low frequencies in the transform domain, whereas white noise has flat power spectrum density over all frequencies. Using ordering (9) along with VC penalization factor (6) for choosing a threshold constitutes VC signal denoising approach [1,2]. Under this approach, the number m of selected wavelet (Fourier) coefficients in ordering (9) is used as an estimate of the VC-dimension in VC bound (5). The optimal number of wavelet coefficients chosen by VC method in Step 3 is also denoted as DoF (degrees-of-freedom) in empirical comparisons presented later in Section 3. In the rest of the paper, signal denoising using ordering (6) along with VC-based thresholding using the number of selected wavelet coefficients m as an estimate of VC-dimension, is referred to as Standard VC Denoising (SVCD). 

3 Improved VC-based Denoising
Even though empirical comparisons [2] indicate that SVCD approach performs well relative to several representative wavelet thresholding techniques, it uses inaccurate estimate of the VC-dimension, due to adaptive (signal-dependent) nature of ordering (9). Hence we propose to use the following (improved) VC-bound for signal denoising applications:
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where the VC-dimension is estimated as
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The main issue is selecting an optimal value of 
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), i.e. the value that yields accurate signal denoising via VC-bound (10). In our previous work [7], it is shown that selecting δ=0.8~0.9 usually improves accuracy of VC-based signal denoising. However, [7] does not provide a systematic procedure for selecting δ-value for a given noisy signal. Hence, we developed an empirical procedure for selecting an optimal value of 
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 for denoising univariate signals, as described next. First, we note that an optimal value of 
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 depends on several unknown factors (such as noise level and target function) and on several known factors (such as the number of samples, and ordering of wavelet coefficients). So our goal is to find a procedure for estimating 
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 given a noisy signal, assuming known sample size and ordering (9). Second, note that for a given noisy signal 
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where 
[image: image63.wmf])

(

x

g

is the target function, and 
[image: image64.wmf])

(

ˆ

m

y

 is an estimated signal using exactly m (wavelet) basis functions, for given ordering/structure. Note that 
[image: image65.wmf]opt

m

 is an optimal DoF for a given noisy signal 
[image: image66.wmf]n

Z

, which can be found empirically for synthetic data sets (with known target functions); whereas 
[image: image67.wmf])

(

*

d

m

 denotes optimal DoF found by VC method with particular value of 
[image: image68.wmf]d

. In general, for a given noisy signal 
[image: image69.wmf]n

Z

, the value of 
[image: image70.wmf]opt

m

 is different from 
[image: image71.wmf]*

m

. However we hope these values are (approximately) the same for good/reasonably chosen 
[image: image72.wmf]d

. That is, for an ‘optimal’ value 
[image: image73.wmf]opt

d

 the following equality approximately holds:


[image: image74.wmf])

(

)

,

(

*

n

opt

n

opt

m

m

Z

Z

»

d


(13)

Note that (13) should hold true assuming that VC-bound (10) indeed provides good/near optimal model selection. More accurately, the value of 
[image: image75.wmf])

,

(

*

n

opt

m

Z

d

 obtained via VC-bound will always underestimate the true optimal DoF 
[image: image76.wmf]opt

m

 for each data set 
[image: image77.wmf]n

Z

(due to the nature of VC-bounds). Of course, we cannot use (13) directly for practical model selection since its left-hand side depends on unknown value 
[image: image78.wmf]opt

d

 and its right-hand side depends on the target function (which is also unknown). However, we have observed empirically a stable functional relationship between an optimal 
[image: image79.wmf]d

-value and optimal DoF 
[image: image80.wmf]opt

m

, that is independent of noisy data 
[image: image81.wmf]n

Z

:


[image: image82.wmf])

(

opt

n

opt

m

j

d

=


(14-a)

or equivalently


[image: image83.wmf])

(

1

opt

n

opt

m

d

j

-

=


(14-b)

Here 
[image: image84.wmf])

(

×

n

j

 is a monotonically decreasing function, and subscript n denotes the fact that this function may depend on sample size. We emphasize fundamental importance of the stable dependency (14). That is, function 
[image: image85.wmf])

(

×

n

j

 does not depend on the (unknown) target signal and noise level, in spite of the fact that the 
[image: image86.wmf]d

-value and 
[image: image87.wmf]opt

m

 in (14) both depend on the noisy signal 
[image: image88.wmf]n

Z

. Empirically, one can show that when the ratio 
[image: image89.wmf]n

m

opt

 is small enough (say, less than 20%), 
[image: image90.wmf])

(

×

n

j

 can be closely approximated by a linear function, 


[image: image91.wmf]2

.

0

 

if

      

,

)

(

)

(

)

(

1

0

£

+

»

=

n

m

n

m

n

a

n

a

m

opt

opt

opt

n

opt

j

d


(15)

where constants 
[image: image92.wmf])

(

0

n

a

 and 
[image: image93.wmf])

(

1

n

a

 depend only on (known) sample size n and given ordering/structure. Condition 
[image: image94.wmf]n

m

opt

<0.2 holds true for all practical signal denoising settings. Constants 
[image: image95.wmf])

(

0

n

a

 and 
[image: image96.wmf])

(

1

n

a

 can be empirically estimated using synthetic data sets generated using known target functions corrupted by additive noise (with different noise levels). Procedure for estimating linear dependency (15) is detailed next, for sample size 512 and 2048. Figure 1 shows known target functions (signals) doppler, heavisine, spires, and dbsin used for estimating linear dependency (15). These target functions have been chosen rather arbitrarily as ‘representative’ signals reflecting a broad range of univariate signals. Signals doppler, heavsine, and spires are taken from [5], and dbsin is generated by authors as summation of two sinusoidal signals with different frequencies. We should note, however, that using other signals does not affect (estimated) dependency (15). Further, for each target function we generate noisy signals with noise levels (SNR) ranging from 2dB to 20dB (for 512 samples) or 2dB to 40dB (for 2048 samples). For a given noisy signal 
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where coefficients 
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= -1.5093 for n = 2048 pts. Then standard VC denoising procedure is applied to a given noisy signal using (16) as an estimate for VC-dimension. Graphical dependency of the VC-dimension for n=2048 is shown in Fig.3; note that expression (16) gives much higher estimates of VC-dimension than DoF when m/n is large, i.e. in the 10-20% range. We also point out that dependencies shown in Fig.3 are valid only for particular ordering specified in (6) and for the number of samples n=2048. For a different ordering (of wavelet coefficients) and/or different number of samples one can estimate coefficient values in (15) using the same methodology.

The second implementation of IVCD is based on combining (13) with empirical dependency (14-b), leading to:
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Here the right-hand side 
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 does not depend on the training data and can be approximated by a linear function:
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where coefficients 
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 are estimated empirically as described above. Specific coefficient values (obtained empirically) are b0(n) = -0.9012, b1(n) = -1.067, for n=512 samples, and b0(n) = -0.5989, b1(n) = -0.6626, for n=2048 samples. For a given noisy signal the value of DoF selected by VC-method, 
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. Note that the left-hand side in (17) depends on the training data 
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-values, as shown in Fig.4. Since both dependencies are monotonic functions, they have a single intersection point that gives an optimal 
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-value and an optimal DoF value for a given noisy signal 
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Empirical comparisons indicate that both implementations of IVCD produce denoising results with similar accuracy (within 2-3% range), even though the first implementation is slightly inferior as it consistently underestimates optimal DoF. Empirical comparisons presented in the next section use the second implementation of IVCD.

3. Empirical comparisons

This section presents empirical comparisons for the following signal denoising methods:

· Standard VC-based Denoising (SVCD) (proposed in [1] and [2]), where the number of selected wavelet coefficients (DoF) is directly used as an estimate of the VC-dimension; 
· Improved VC-based Denoising (IVCD) method using VC bound (10) for thresholding, with proposed methodology for selecting the value of 
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.
· Soft thresholding (SoftTh) method originally proposed by Donoho [5]. In this method, wavelet coefficients are ordered by magnitude and then thresholded via:
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Threshold t is obtained as
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where the noise variance 
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s

is estimated from the wavelet coefficients of noisy signal as described in [4].

· Hard thresholding (HardTh) -- also proposed by Donoho [5]. In this method, wavelet coefficients are ordered by magnitude and then thresholded as
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where the threshold is obtained using (20). 

Hard thresholding and soft thresholding are selected for comparison as representative wavelet thresholding techniques with known for their optimal properties. Namely, HardTh is asymptotically optimal for the least squares loss, for piecewise polynomial target functions, whereas SoftTh is optimal in the sense of l1-penalized least square loss function [6].

Also note that VC denoising methods use ordering (structure) given by (9), whereas HardTh and SoftTh use ordering (8) where the wavelet coefficients are ordered by magnitude. All denoising methods use the same wavelet bases (Daubechies family of order 2) in all comparisons.
Data sets used for comparisons are generated using 4 target functions spires, blocks, winsin and mishmash,shown in Fig. 5. Signals spires, blocks are taken from [5], winsin is generated by the authors (as a sinusoidal signal multiplied by a hamming window), and mishmash is provided in Matlab R12. There is no particular reason for choosing these signals; however they reflect a broad spectrum of signals with different statistical properties. Also note that signal spires was used to estimate dependency (15) in the IVCD method, so it can be argued that comparison results (for this signal) may be biased in favor of IVCD. Other target functions blocks, winsin and mishmash have not been used for estimating dependency (15), so comparisons are ‘fair’. 

Comparisons used noisy signals with two sample sizes (512pts and 2048pts) and different noise levels with SNR values 3dB (high noise) and 20dB (low noise). We follow the comparison procedure outlined in [2] where comparisons are based on many random realizations of a noisy signal. The prediction risk (or estimation error) is measured as mean-squared-error (MSE) between the true signal and its estimate. Model complexity is measured as the number of wavelet coefficients, or degrees-of-freedom (DOF) selected by a given method. Signal estimation (denoising) procedure is performed 300 times using random realizations of a noisy signal, and the resulting empirical distributions of the prediction risk and DOF are used for methods' comparison. These empirical distributions are shown using standard box plot notation with marks at 95, 75, 50 and 5 percentile of an empirical distribution of MSE (prediction risk). 

Comparison results are shown in Figs. 6-9. Box plots for IVCD method include the optimal 
[image: image129.wmf]d

-value selected by the proposed empirical procedure; this value can be used to compute the ‘effective’ VC-dimension using (11). From these results, IVCD clearly provides better (overall) performance than other methods, for a wide range of sample sizes and noise levels. Such a superior performance is rather remarkable, since it indicates that IVCD method can automatically adapt to a wide range of signals with different statistical properties (such as signals shown in Fig.5). In contrast, other methods typically show good performance for one or two signals, but fail for other signals. For example, the HardTh method shows good performance for three signals, but fails miserably for mishmash signal. The reason is that the mishmash signal contains many high frequency components that are treated as noise by the HardTh method. The SoftTh method gives overall inferior results, as expected, since this method is not asymptotically optimal for squared loss. Further, we performed comparisons using other target signals (not shown here due to space constraints), which lead to similar conclusions regarding superior performance of IVCD method.

4 Conclusions

Empirical results presented in [1,2,3] suggest that VC generalization bounds can be successfully used for model selection with linear estimators. However, it is difficult to apply VC-bounds for nonlinear estimators, where accurate estimates of the VC-dimension are hard to obtain. In this paper, we propose practical method for using VC-bounds for model selection that does not rely on analytic estimates of VC-dimension. Instead, we use an empirical procedure that (implicitly) estimates the VC-dimension as a linear function of DoF for signal denoising applications. Empirical comparisons show that the proposed approach consistently achieves better denoising accuracy than other methods. These empirical results represent the first successful application of VC-bounds for regression for nonlinear estimators.

Future work may proceed in several directions. First, the proposed methodology can be naturally extended to other nonlinear estimators using orthogonal bases. This includes, for example, Fourier basis functions using ordering of Fourier coefficients given by (5) or (6). Alternatively, one can use orthogonal polynomials for 1D signal denoising. Second, it may be possible to extend our approach to denoising 2D functions (images). The main challenge here is finding an appropriate ordering (structure) for wavelet coefficients. Finally, it may be possible to use the proposed methodology with other nonlinear estimators (such as Support Vector Machines) where the empirical risk can be reliably minimized. In other words, the proposed method can be adapted for SVM regression [9], so that analytic VC-bounds (for regression) can be used for (analytic) selection of SVM meta-parameters (i.e., the width of insensitive zone and regularization parameter) for a given data set.
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(a) doppler
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(b) heavisine
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(c) spires
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(d) dbsin

Figure 1 Target functions used for estimating linear dependency between optimal value of δ and DoF
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(a) n = 512
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(b) n = 2048

Figure 2 Estimating linear dependency using empirical scatter plot of (δopt and 
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(a) Solid line is VC-dimension obtained via (13), dashed line is VC-dimension estimated as DoF
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(b) Solid line is VC penalization factor obtained using proposed method. Dashed line is penalization factor obtained using VC-dimension equal to DoF

Figure 3 Comparison of VC-dimension and penalization factor obtained using proposed method (Improved VC-based denoising) and standard VC-denoising, for n=2048 samples.
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(a) high noise
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(b) low noise

Figure 4 Estimating optimal δ-value for a given noising signal, dbsin with sample size 2048 points.
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(a) spires
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(b) blocks
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(c) winsin
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(d) mishmash

Figure 5 Target functions used for empirical comparison of denoising methods
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(a) spires
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(b) blocks
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(c) winsin
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(d) mishmash

Figure 6 Prediction risk comparisons for high noise level and small sample size 
(n = 512, and SNR = 3dB)
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(a) spires
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(b) blocks
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(c) winsin
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(d) mishmash

Figure 7 Prediction risk comparisons for low noise level and small sample size 
(n = 512, and SNR = 20dB)
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(a) spires
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(b) blocks

[image: image155.emf]IVCD(0.88) SVCD HardTh SoftTh

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

prediction risk

risk


(c) winsin
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(d) mishmash

Figure 8 Prediction risk comparisons for high noise level and large sample size 
(n = 2048, and SNR = 3dB)
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(a) spires
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(b) blocks
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(c) winsin
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(d) mishmash

Figure 9 Prediction risk comparisons for low noise level and large sample size 
(n = 2048, and SNR = 20dB)
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