Predictive Learning from Data

LECTURE SET 2 Problem Setting, Basic Learning Problems and Inductive Principles

Electrical and Computer Engineering

OUTLINE

2.0 Objectives + Background

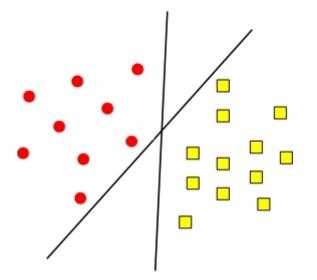
- formalization of inductive learning
- classical statistics vs predictive approach
- 2.1 Terminology and Learning Problems
- 2.2 Basic Learning Methods and Complexity Control
- 2.3 Inductive Principles
- 2.4 Alternative Learning Formulations

2.5 Summary

2.0 Objectives

- To quantify the notions of explanation, prediction and model
- Introduce terminology
- Describe common learning problems
- Past observations ~ data points
- Explanation (model) ~ function
 Learning ~ function estimation (from data)
 Prediction ~using the model to predict new inputs

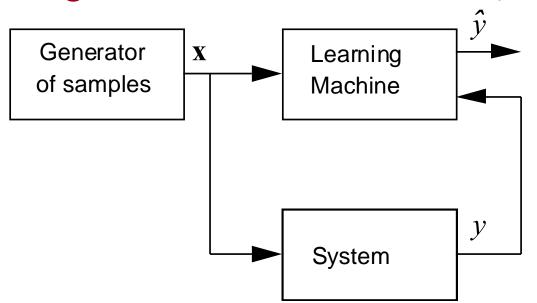
 Example: classification problem training samples, model
 Goal 1: explain training data ~ min training error
 Goal 2: generalization (for future data)



Learning (model estimation) is ill-posed

Mathematical formalization

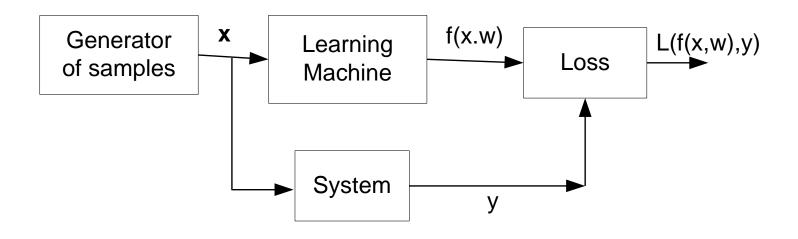
• Learning machine ~ predictive system



- Unknown joint distribution $P(\mathbf{x}, \mathbf{y})$
- Set of functions (possible models) $f(\mathbf{x}, \omega)$
- **Pre-specified** Loss function $L(y, f(\mathbf{x}, \omega))$ (by convention, non-negative Loss)

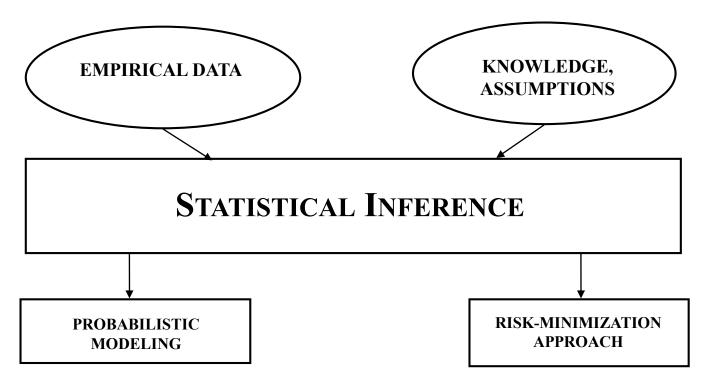
Inductive Learning Setting

- The *learning machine* observes samples (**x**, *y*), and returns an estimated response $\hat{y} = f(\mathbf{x}, w)$
- Two types of inference: identification vs imitation
- Risk $\int Loss(y, f(\mathbf{x}, w)) dP(\mathbf{x}, y) \rightarrow min$



Two Views of Empirical Inference

• Two approaches to empirical or statistical inference



 These two approaches are different both technically and conceptually

Classical Approaches to Inductive Inference

- Generic problem: *finite data → Model*
- (1) Classical Science ~ hypothesis testing
- experimental data is generated by a given model (*single function* ~ scientific theory)
- (2) Classical statistics ~ max likelihood
- ~ data generated by a parametric model for density. *Note:* loss fct ~ likelihood (*not problem-specific*)
- ~The same solution approach for all types of problems

R. Fisher: *"uncertain inferences" from finite data* see: R. Fisher (1935), The Logic of Inductive Inference, *J. Royal Statistical Society*, available at <u>http://www.dcscience.net/fisher-1935.pdf</u>

Discussion

- Math formulation useful for quantifying
 - explanation ~ fitting error (training data)
 - generalization ~ prediction error
- Natural assumptions
 - future similar to past: stationary P(x,y),
 i.i.d.data
 - discrepancy measure or loss function, i.e. mean squared error (MSE)
- What if these assumptions do not hold?

OUTLINE

2.0 Objectives

2.1 Terminology and Learning Problems

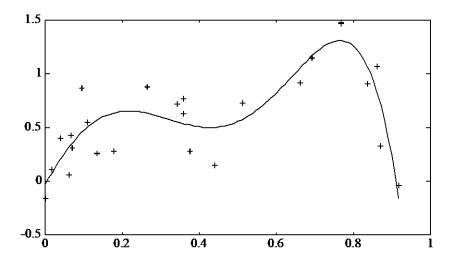
- supervised/ unsupervised
- classification
- regression etc.

2.2 Basic Learning Methods and Complexity Control

- 2.3 Inductive Principles
- 2.4 Alternative Learning Formulations2.5 Summary

Supervised Learning: Regression

- Data in the form (**x**,y), where
 - **x** is multivariate input (i.e. vector)
 - y is univariate output ('response')
- Regression: y is real-valued $L(y, f(\mathbf{x})) = (y f(\mathbf{x}))^2$



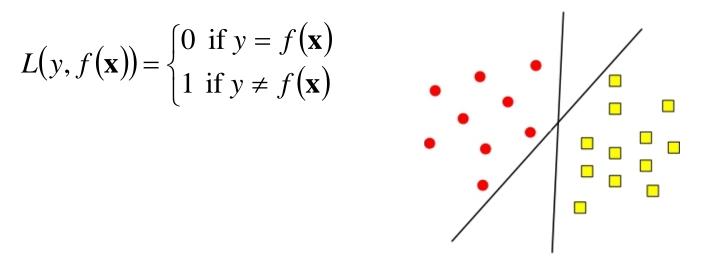
→ Estimation of real-valued function

Regression Estimation Problem Given: training data $(\mathbf{x}_i, y_i), i = 1, 2, ... n$ **Find** a function $f(\mathbf{x}, w^*)$ that minimizes squared error for a large number (N) of future samples: $\sum_{k=1}^{N} \left[(y_k - f(\mathbf{x}_k, w)) \right]^2 \rightarrow \min_{1.5} (y_k - f(\mathbf{x}_k, w))^2 \rightarrow \max_{1.5} (y_k - f(\mathbf{x}$ k=1-0.5 L 02 04 0.6 0.8

BUT future data is unknown ~ $P(\mathbf{x}, y)$ unknown \rightarrow All estimation problems are ill-posed

Supervised Learning: Classification

- Data in the form (**x**,y), where
 - **x** is multivariate input (i.e. vector)
 - y is univariate output ('response')
- Classification: y is categorical (class label)



→ Estimation of indicator function

Density Estimation

- Data in the form (**x**), where
 - x is multivariate input (feature vector)
- Parametric form of density is given: $f(\mathbf{x}, \omega)$
- The loss function is likelihood or, more common, the negative log-likelihood $I(f(\mathbf{x}, \omega)) = Inf(\mathbf{x}, \omega)$

$$L(f(\mathbf{x},\omega)) = -\ln f(\mathbf{x},\omega)$$

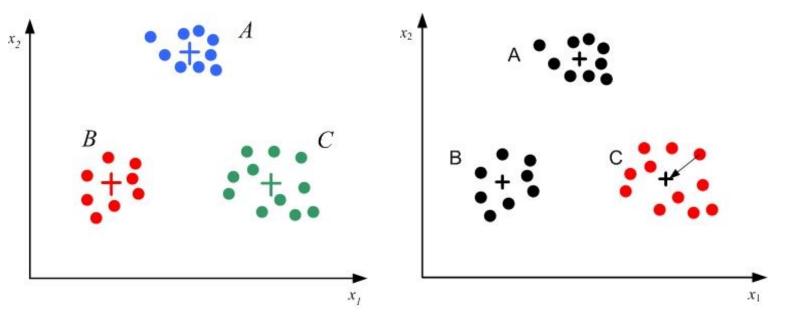
• The goal of learning is minimization of

$$R(\omega) = \int -lnf(\mathbf{x}, \omega)p(\mathbf{x})d\mathbf{x}$$

from finite training data, yielding $f(\mathbf{x}, \omega_0)$

Unsupervised Learning 1

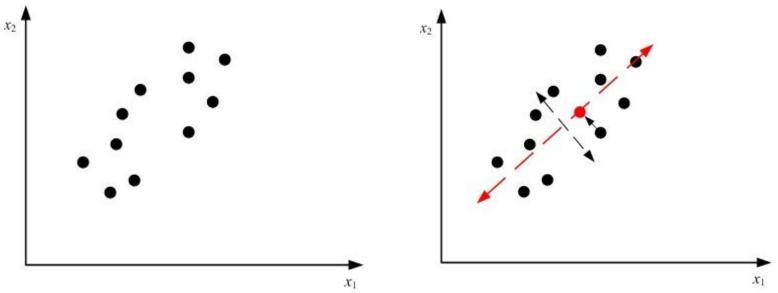
- Data in the form (x), where
 - x is multivariate input (i.e. feature vector)
- Goal: data reduction or clustering



→ Clustering = estimation of mapping $X \rightarrow C$, where $C = \{c_1, c_2, ..., c_m\}$ and $L(x, f(x)) = ||x - f(x)||^2$

Unsupervised Learning 2

- Data in the form (x), where
 - x is multivariate input (i.e. vector)
- Goal: dimensionality reduction



→ Mapping $f(\mathbf{x})$ is projection of the data onto low-dimensional subspace, minimizing loss $L(\mathbf{x}, f(\mathbf{x})) = \|\mathbf{x} - f(\mathbf{x})\|^2$

OUTLINE

2.0 Objectives

- 2.1 Terminology and Learning Problems
- 2.2 Basic Learning Methods and Complexity Control
 - Parametric modeling
 - Non-parametric modeling
 - Data reduction
 - Complexity control
- 2.3 Inductive Principles
- 2.4 Alternative Learning Formulations
- 2.5 Summary

Basic learning methods

General idea

- Specify a wide set of possible models $f(\mathbf{x}, \omega)$ where ω is an abstract set of 'parameters'
- Estimate model parameters \omega^{*} by minimizing given loss function for training data (~ ERM)

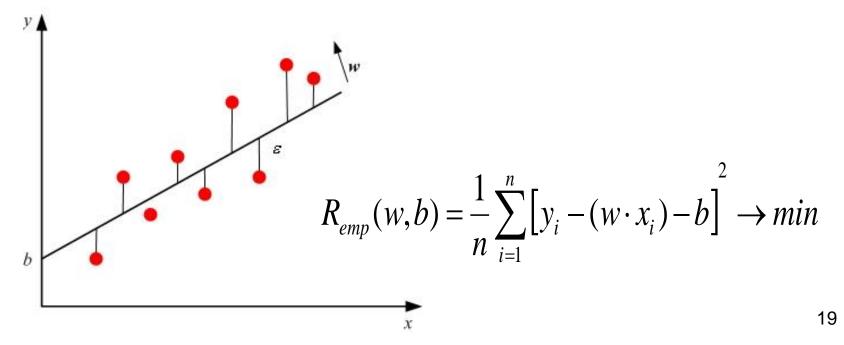
Learning methods differ in

- Chosen parameterization
- Loss function used
- Optimization method used for parameter estimation

Parametric Modeling (~ERM)

Given training data $(\mathbf{x}_i, y_i), i = 1, 2, ..., n$

- (1) Specify parametric model
- (2) Estimate its parameters (via fitting to data)
- Example: Linear regression F(x)= (w x) + b



Parametric Modeling: classification

Given training data $(\mathbf{x}_i, y_i), i = 1, 2, ... n$

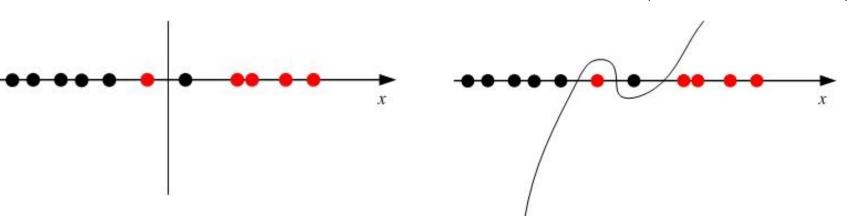
- (1) Specify parametric model
- (2) Estimate its parameters (via fitting to data)

Example: univariate classification data set

(a) Linear decision boundary f(x) = sign(x-b)

(b) third-order polynomial

$$f(x) = sign(x^2 + wx + b)$$



Parametric Methods in Classical Statistics

- Learning ~ density estimation, i.i.d. data
- Maximum Likelihood inductive principle:

Given *n* training samples **X**, find **w*** maximizing

$$P[\text{data}|\text{model}] = P(\mathbf{X}|\mathbf{w}) = \prod_{i=1}^{n} p(\mathbf{x}_i;\mathbf{w})$$

equivalently, *minimize negative log-likelihood* See textbook, Section 2.2, for example:

- Estimate two parameters of normal distribution from i.i.d. data samples via max likelihood
- \rightarrow empirical mean and empirical variance)

Maximum Likelihood (cont'd)

- Similar approach for regression ~ for known parametric distribution (normal noise) → maximizing likelihood ~ min squared loss
- Similar approach for classification: for known class distributions (Gaussian) maximizing likelihood → second-order decision boundary

General approach: (statistical decision theory)

- Start with parametric form of a distribution
- Estimate its parameters via max likelihood
- Use estimated distributions for making decision (prediction)

Non-Parametric Modeling

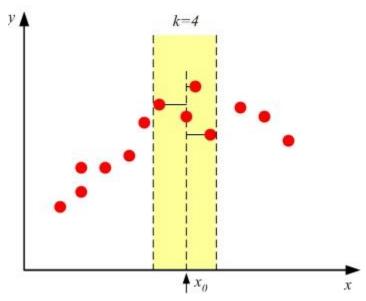
Given training data $(\mathbf{x}_i, y_i), i = 1, 2, ... n$

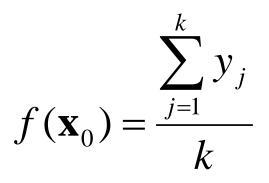
Estimate the model (for given \mathbf{x}_0) as

'local average' of the data.

Note: need to define 'local', 'average'

Example: k-nearest neighbors regression





Data Reduction Approach

Given training data, estimate the model as 'compact encoding' of the data.

Note: 'compact' ~ # of bits to encode the model

or # of bits to encode the data (MDL)

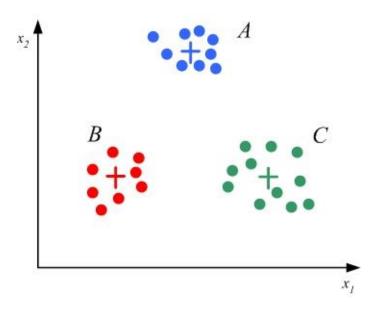
Example: piece-wise linear regression

How many parameters needed for two-linear-component model?

Data Reduction Approach (cont'd)

- Data Reduction approaches are commonly used for unsupervised learning tasks.
- Example: clustering.

Training data encoded by 3 points (cluster centers)



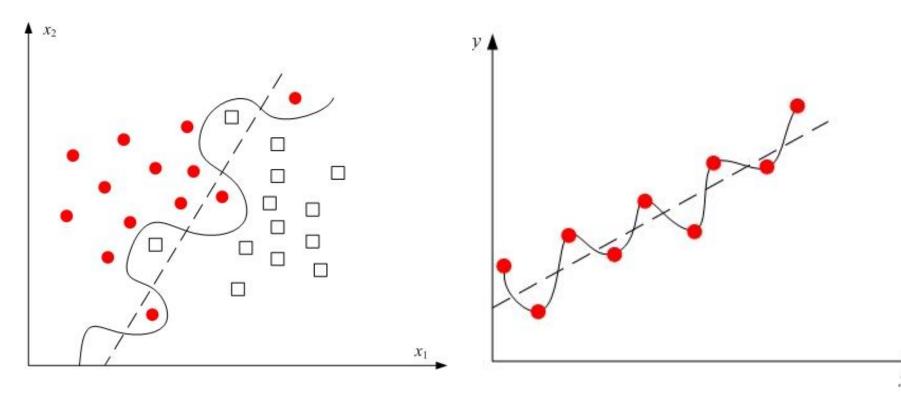
Issues:

- How to find centers?
- How to select the number of clusters?

Diverse terminology (for learning methods)

- Many methods differ in parameterization of admissible models or approximating functions $\hat{y} = f(\mathbf{x}, w)$
 - neural networks
 - decision trees
 - signal processing (~ wavelets)
- How training samples are used:
 Batch methods
 On-line or flow-through methods

Motivation for Complexity Control Effect of model control on generalization (a) Classification (b) Regression

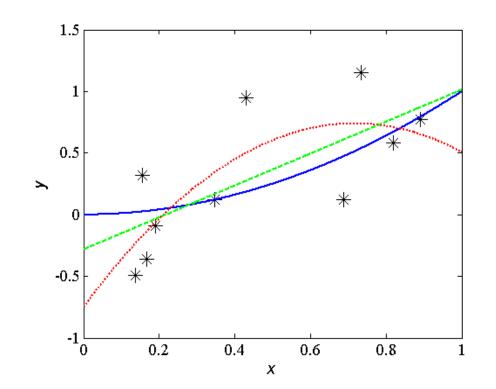


Complexity Control: parametric modeling Consider regression estimation

Ten training samples

$$y = x^{2} + N(0, \sigma^{2}), where \sigma^{2} = 0.25$$

• Fitting linear and 2-nd order polynomial:

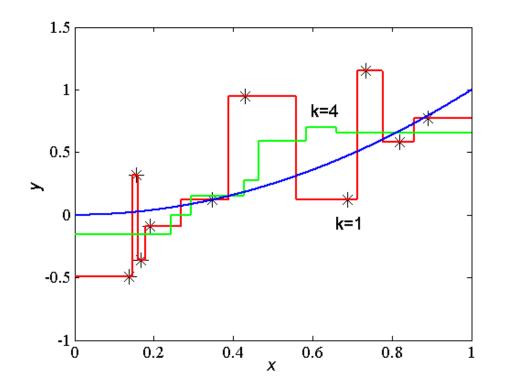


Complexity Control: local estimation Consider regression estimation

• Ten training samples from

$$y = x^{2} + N(0, \sigma^{2}), where \sigma^{2} = 0.25$$

• Using k-nn regression with k=1 and k=4:



Complexity Control (summary)

- Complexity (of admissible models) affects generalization (for future data)
- Specific complexity indices for
 - Parametric models: ~ # of parameters
 - Local modeling: size of local region
 - Data reduction: # of clusters
- Complexity control = choosing optimal complexity (~ good generalization) for given (training) data set
- not well-understood in classical statistics

OUTLINE

2.0 Objectives

- 2.1 Terminology and Learning Problems
- 2.2 Basic Learning Methods and Complexity Control
- **2.3 Inductive Principles**
 - Motivation
 - Inductive Principles: Penalization, SRM, Bayesian Inference, MDL
- 2.4 Alternative Learning Formulations2.5 Summary

Conceptual Motivation

Generalization from finite data requires:

 a priori knowledge = any info outside training data, e.g. ???
 inductive principle = general strategies for combining a priori knowledge and data

learning method = constructive implementation of inductive principle

 Example: Empirical Risk Minimization ~ parametric modeling approach

Question: what are possible limitations of ERM?

Motivation (cont'd)

- Need for flexible (adaptive) methods
 - wide (~ flexible) parameterization
 - \rightarrow ill-posed estimation problems
 - need provisions for complexity control
- Inductive Principles originate from statistics, applied math, info theory, learning theory – and they adopt distinctly different terminology & concepts

Inductive Principles

- Inductive Principles differ in terms of
 - representation of a priori knowledge
 - mechanism for combining a priori knowledge with training data
 - **applicability** when the true model does not belong to admissible models
 - **availability** of constructive procedures (learning methods/ algorithms)

Note: usually prior knowledge about parameterization

PENALIZATION

- Overcomes the limitations of ERM
- Penalized empirical risk functional

$$R_{pen}(\omega) = R_{emp}(\omega) + \lambda \phi [f(\mathbf{x}, \omega)]$$

- $\phi[f(\mathbf{x}, \omega)]$ is non-negative penalty functional specified *a priori* (independent of the data); its larger values penalize complex functions.
 - λ is regularization parameter (non-negative number) tuned to training data

Example: ridge regression

Structural Risk Minimization

- Overcomes the limitations of ERM
- Complexity ordering on a set of admissible models, as a nested structure

$$S_0 \subset S_1 \subset S_2 \subset \dots$$

Examples: a set of polynomial models, Fourier expansion etc.

• Goal of learning ~ minimization of empirical risk for an optimally selected element S_{ν}

Bayesian Inference

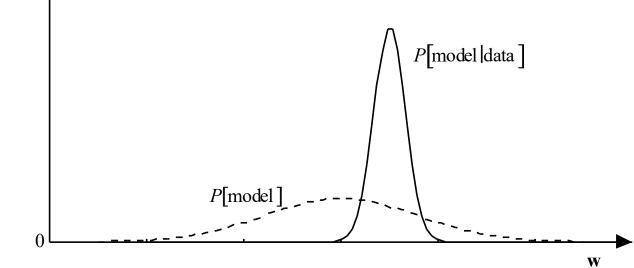
- Probabilistic approach to inference
- Explicitly defines a priori knowledge as prior probability (distribution) on a set of model parameters
- Bayes formula for updating prior probability using the evidence given by training data: זת 1 1

$$P[\text{model}|\text{data}] = \frac{P[\text{data}|\text{model}|P[\text{model}]}{P[\text{data}]}$$

P model data | ~ posterior probability *P*[data|model] ~ likelihood (probability that the data are generated by a model)

Bayesian Density Estimation

• Consider parametric density estimation where prior probability distribution $P[\text{model}] = p(\mathbf{w})$ Given training data **X**, the posterior probability distribution is updated $p(\mathbf{w}|\mathbf{X}) = \frac{P(\mathbf{X}|\mathbf{w})p(\mathbf{w})}{P(\mathbf{X})}$



Implementation of Bayesian Inference

• Maximum Likelihood, i.e. choose w* maximizing $P[data|model] = P(\mathbf{X}|\mathbf{w}) = \prod_{n=1}^{n} p(\mathbf{x}; \mathbf{w})$

$$P[\text{data}|\text{model}] = P(\mathbf{X}|\mathbf{w}) = \prod_{i=1}^{n} p(\mathbf{x}_i; \mathbf{w})$$

(equivalent to ERM)

• **True Bayesian inference** (averaging) $\Theta(\mathbf{x}|\mathbf{X}) = \int p(\mathbf{x};\mathbf{w}) p(\mathbf{w}|\mathbf{X}) d\mathbf{w}$

Where $p(\mathbf{x}; \mathbf{w})$ is a set of admissible densities and $p(\mathbf{w}|\mathbf{X}) = \frac{P(\mathbf{X}|\mathbf{w})p(\mathbf{w})}{P(\mathbf{X})}$

Minimum Description Length (MDL)

- Information-theoretic approach
 - any training data set can be optimally encoded
 - code length ~ generalization capability
- Related to the *Data Reduction* approach introduced (informally) earlier.
- Two possible implementations:
 - lossy encoding
 - lossless encoding of the data (as in MDL)

Binary Classification under MDL

- Consider training data set
 X={xk,yk} (k=1,2,...n) where y={0,1}
- Given data object X={x1,..., xn} is a binary string y1,...,yn random?

if there is a dependency then the output string can be encoded by a shorter code:

- the model having code length L (model)
- the error term L(data | model)
- \rightarrow the total length of such a code for string **y** is:

 $\mathbf{b} = L \pmod{\mathbf{b} + L} \pmod{\mathbf{b}}$

and the compression coefficient is $K = b / n_{41}$

Comparison of Inductive Principles

- Representation of a priori knowledge/ complexity: penalty term, structure, prior distribution, codebook
- Formal procedure for complexity control: penalized risk, optimal element of a structure, posterior distribution
- Constructive implementation of complexity control: resampling, analytic bounds, marginalization, minimum code length

See Table 2.1 in [Cherkassky & Mulier, 2007]

OUTLINE

- 2.0 Objectives
- 2.1 Terminology and Learning Problems
- 2.2 Basic Learning Methods and Complexity Control
- 2.3 Inductive Principles
- **2.4 Alternative Learning Formulations**
 - Motivation
 - Examples of non-standard formulations
 - Formalization of application domain
- 2.5 Summary

Motivation

Estimation of predictive model

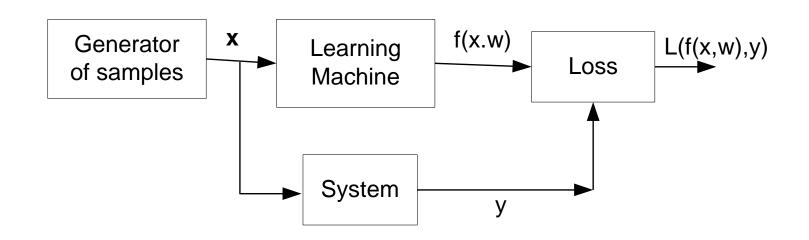
Step 1: Problem specification/ Formalization Step 2: Model estimation, learning, inference

Standard Inductive Formulation

- usually assumed in all ML algorithms

- certainly *may not be the best formalization* for given application problem

Standard Supervised Learning



- Available (training) data format (x,y)
- Test samples (x-values) are unknown
- Stationary distribution, i.i.d samples
- Single model needs to be estimated
- Specific loss functions adopted for common tasks (classification, regression etc.)

Non-standard Learning Settings

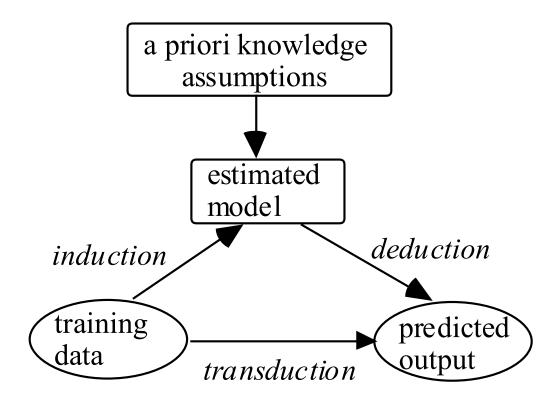
- Available Data Format
 - x-values of test samples are known during training
 - → Transduction, semi-supervised learning
- Different (non-standard) Loss Function
 - see later example 'learning the sign of a function'
- Univariate Output (~ a single model)

 multiple outputs may need to be estimated from available data

Transduction

~ predicting function values at given points:

- **Given** labeled training set + x-values of test data
- Estimate (predict) y-values for given test inputs

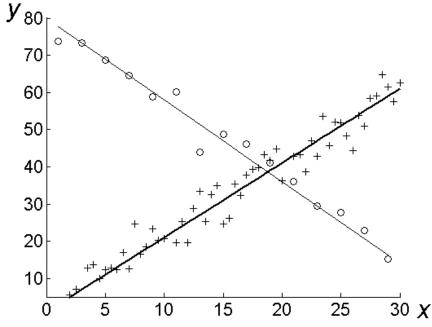


Learning sign of a function

- Given training data $(\mathbf{x}_i, y_i), i = 1, 2, ... n$ with y-values in a bounded range $y \in [-2, +2]$ Estimate function $f(\mathbf{x})$ predicting sign of y Loss function $L(y, f(\mathbf{x})) = -yf(\mathbf{x})$ If prediction is wrong ~ real-valued loss -|y|If prediction is correct ~ real-valued gain +|y|
- Neither standard regression, nor classification
- Practical application: frequent trading

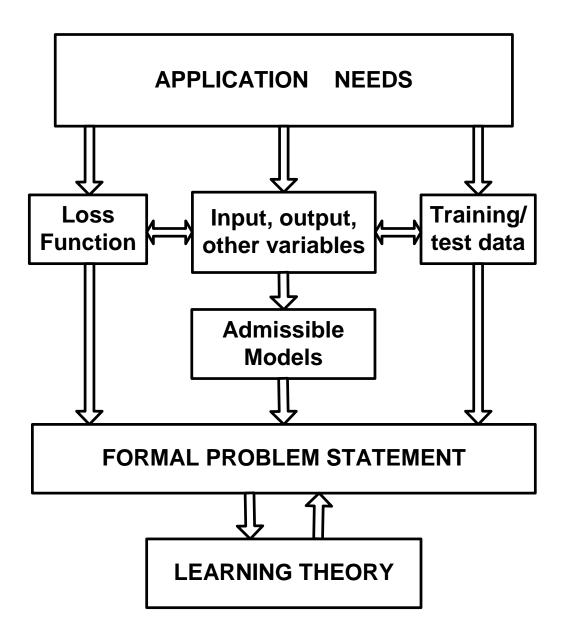
Multiple Model Estimation

- Training data in the form (**x**,y), where
 - x is multivariate input
 - y is univariate real-valued output ('response')
- Similar to standard regression, but subsets of data may be described by different models



Formalization of Application Problems

- Problem Specification Step cannot be formalized
 But
- Several guidelines can be helpful during formalization process
- Mapping process:
 Application requirements → Learning formulation
- Specific components of this mapping process are shown next



Summary

- Standard Inductive Learning ~ function estimation
- Goal of learning (empirical inference): to act/perform well, not system identification
- Important concepts:
 - training data, test data
 - loss function, prediction error (~ prediction risk)
 - basic learning problems
- Complexity control
- Inductive principles which one is the 'best' ?

Summary (cont'd)

- Assumptions for inductive learning
- Non-standard learning formulations
- Aside: predictive modeling of

physical systems vs social systems

Note: main assumption (stationarity) does not hold in social systems (business data, financial data etc.)

 For discussion think of example application that requires *non-standard* learning formulation
 Note: (a) *do not* use examples similar to ones presented in my lectures and/or text book
 (b) you can email your example to instructor (maximum half-a-page)