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Predictive Learning 
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Electrical and Computer Engineering
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Problem Setting, Basic Learning 

Problems and Inductive Principles



2

OUTLINE

2.0 Objectives + Background

- formalization of inductive learning

- classical statistics vs predictive approach

2.1 Terminology and Learning Problems

2.2 Basic Learning Methods and Complexity 
Control

2.3 Inductive Principles

2.4 Alternative Learning Formulations

2.5 Summary
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2.0 Objectives

- To quantify the notions of explanation, 

prediction and model

- Introduce terminology

- Describe common learning problems

• Past observations ~ data points

• Explanation (model) ~ function  

Learning ~ function estimation (from  data)

Prediction ~using the model to predict new inputs
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• Example: classification problem

training samples, model

Goal 1: explain training data ~ min training error

Goal 2: generalization (for future data)

• Learning (model estimation) is ill-posed
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Mathematical formalization

• Learning machine ~ predictive system

• Unknown joint distribution P(x,y)

• Set of functions (possible models)

• Pre-specified Loss function

(by convention, non-negative Loss )

Generator 

of samples

Learning 

Machine
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Inductive Learning Setting

• The learning machine observes samples (x ,y), and 

returns an estimated response

• Two types of inference: identification vs imitation

• Risk 

),(ˆ wfy x=

min,y),w)) dP(Loss(y, f( → xx

Generator

of samples
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System

x f(x.w)
Loss

L(f(x,w),y)
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Two Views of Empirical Inference

• Two approaches to empirical or statistical inference

• These two approaches are different both technically and 
conceptually

STATISTICAL INFERENCE

EMPIRICAL DATA KNOWLEDGE,

ASSUMPTIONS

PROBABILISTIC 

MODELING

RISK-MINIMIZATION 

APPROACH
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Classical Approaches to Inductive Inference

Generic problem: finite data → Model

(1) Classical Science ~ hypothesis testing

experimental data is generated by a given model 

(single function ~ scientific theory)

(2) Classical statistics ~ max likelihood
~ data generated by a parametric model for density.

Note: loss fct ~ likelihood (not problem-specific)

~The same solution approach for all types of problems

R. Fisher: “uncertain inferences” from finite data

see: R. Fisher (1935), The Logic of Inductive Inference, J. Royal Statistical 

Society, available at http://www.dcscience.net/fisher-1935.pdf

http://www.dcscience.net/fisher-1935.pdf
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Discussion

• Math formulation useful for quantifying

- explanation ~ fitting error (training data)

- generalization ~ prediction error

• Natural assumptions

- future similar to past: stationary P(x,y),
i.i.d.data

- discrepancy measure or loss function, 
i.e. mean squared error (MSE)

• What if these assumptions do not hold?
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OUTLINE
2.0 Objectives

2.1 Terminology and Learning Problems

- supervised/ unsupervised

- classification

- regression etc.

2.2 Basic Learning Methods and Complexity 
Control

2.3 Inductive Principles

2.4 Alternative Learning Formulations

2.5 Summary
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Supervised Learning: Regression
• Data in the form (x,y), where

- x is multivariate input (i.e. vector)

- y is univariate output (‘response’)

• Regression: y is real-valued

→ Estimation of real-valued function

( )2)())(,( xx fyfyL −=
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Regression Estimation Problem

Given: training data 

Find a function           that minimizes squared 

error for a large number (N) of future samples:

BUT future data is unknown ~ P(x,y) unknown

→ All estimation problems are ill-posed

min,y) dP(,w))f((y → − xx 2
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Supervised Learning: Classification
• Data in the form (x,y), where

- x is multivariate input (i.e. vector)

- y is univariate output (‘response’)

• Classification: y is categorical (class label)

→ Estimation of  indicator function

( )( )
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Density Estimation

• Data in the form (x), where

- x is multivariate input (feature vector)

• Parametric form of density is given:  

• The loss function is likelihood or, more 

common, the negative log-likelihood

• The goal of learning is minimization of

from finite training data, yielding 

f x,( )

L f x,( )( )= − ln f x ,( )

R ( )= − lnf x ,( )p x( ) dx

f x, 0( )
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Unsupervised Learning 1

• Data in the form (x), where

- x is multivariate input (i.e. feature vector)

• Goal: data reduction or clustering

→ Clustering = estimation of mapping X→ C, 

where                     and C = c1, c2 , ... ,cm 
2

)())(,( xxxx ffL −=
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Unsupervised Learning 2

• Data in the form (x), where

- x is multivariate input (i.e. vector)

• Goal: dimensionality reduction

→ Mapping         is projection of the data onto 

low-dimensional subspace, minimizing loss
2

)())(,( xxxx ffL −=

)(xf
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OUTLINE
2.0 Objectives

2.1 Terminology and Learning Problems

2.2 Basic Learning Methods and 
Complexity Control

- Parametric modeling

- Non-parametric modeling

- Data reduction

- Complexity control

2.3 Inductive Principles

2.4 Alternative Learning Formulations

2.5 Summary
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Basic learning methods

General idea

• Specify a wide set  of possible models

where      is an abstract set of ‘parameters’

• Estimate model parameters      by minimizing 
given loss function for training data (~ ERM)

Learning methods differ in

• Chosen parameterization

• Loss function used  

• Optimization method used for parameter 
estimation

)( ,f x


*
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Parametric Modeling (~ERM)

Given training data

(1) Specify parametric model

(2) Estimate its parameters (via fitting to data)

• Example: Linear regression F(x)= (w x) + b

niyii ,...2,1),,( =x
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Parametric Modeling: classification
Given training data

(1) Specify parametric model

(2) Estimate its parameters (via fitting to data)

Example: univariate classification data set

(a) Linear decision boundary (b) third-order polynomial

niyii ,...2,1),,( =x

( )bxsignxf −=)( ( )bwxxsignxf ++= 2)(
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Parametric Methods in Classical Statistics

• Learning ~ density estimation, i.i.d. data

• Maximum Likelihood inductive principle:

Given n training samples X, find w* maximizing

equivalently, minimize negative log-likelihood

See textbook, Section 2.2, for example:

- Estimate two parameters of normal distribution 

from i.i.d. data samples via max likelihood

- → empirical mean and empirical variance)

  ( ) ( )
=
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n

i
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Maximum Likelihood (cont’d)
• Similar approach for regression ~ for known 

parametric distribution (normal noise) →
maximizing likelihood ~ min squared loss

• Similar approach for classification: for 
known class distributions (Gaussian) 
maximizing likelihood → second-order 
decision boundary

General approach: (statistical decision theory)

• Start with parametric form of a distribution

• Estimate its parameters via max likelihood

• Use estimated distributions for making 
decision (prediction)
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Non-Parametric Modeling
Given training data

Estimate the model (for given    ) as

‘local average’ of the data. 

Note: need to define ‘local’, ‘average’

• Example: k-nearest neighbors regression
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Data Reduction Approach

Given training data, estimate the model as ‘compact 

encoding’ of the data. 

Note: ‘compact’ ~ # of bits to encode the model

or # of bits to encode the data (MDL)

• Example: piece-wise linear regression

How many parameters needed 

for two-linear-component model?
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Data Reduction Approach (cont’d)

Data Reduction approaches are commonly used 

for unsupervised learning tasks.

• Example: clustering. 

Training data encoded by 3 points (cluster centers)

H

Issues:

- How to find centers?

- How to select the 

number of clusters?
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Diverse terminology (for learning methods)

• Many methods differ in parameterization 
of admissible models or approximating 
functions

- neural networks

- decision trees

- signal processing (~ wavelets)

• How training samples are used:

Batch methods

On-line or flow-through methods

),(ˆ wfy x=
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Motivation for Complexity Control

Effect of model control on generalization

(a) Classification (b) Regression
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Complexity Control: parametric modeling

Consider regression estimation

• Ten training samples  

• Fitting linear and 2-nd order polynomial:

25.0),,0( 222 =+=  whereNxy
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Complexity Control: local estimation

Consider regression estimation

• Ten training samples from 

• Using k-nn regression with k=1 and k=4:

25.0),,0( 222 =+=  whereNxy
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Complexity Control (summary)

• Complexity (of admissible models) affects 

generalization (for future data)

• Specific complexity indices for

– Parametric models: ~ # of parameters

– Local modeling: size of local region

– Data reduction: # of clusters

• Complexity control = choosing optimal 

complexity (~ good generalization) for 

given (training) data set

• not well-understood in classical statistics
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OUTLINE

2.0 Objectives

2.1 Terminology and Learning Problems

2.2 Basic Learning Methods and 
Complexity Control

2.3 Inductive Principles

- Motivation

- Inductive Principles: Penalization, 
SRM, Bayesian Inference, MDL

2.4 Alternative Learning Formulations

2.5 Summary
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Conceptual Motivation

• Generalization from finite data requires:

a priori knowledge = any info outside 

training data, e.g. ???

inductive principle = general strategies for

combining a priori knowledge and data

learning method = constructive 

implementation of inductive principle

• Example: Empirical Risk Minimization ~ 

parametric modeling approach

Question: what are possible limitations of ERM? 
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Motivation (cont’d)

• Need for flexible (adaptive) methods

- wide (~ flexible) parameterization 

→ ill-posed estimation problems

- need provisions for complexity control

• Inductive Principles originate from

statistics, applied math, info theory, 

learning theory – and they adopt distinctly 

different terminology & concepts
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Inductive Principles

• Inductive Principles differ in terms of

- representation of a priori knowledge

- mechanism for combining a priori 

knowledge with training data

- applicability when the true model does 

not belong to admissible models

- availability of constructive procedures 

(learning methods/ algorithms)

Note: usually prior knowledge about parameterization
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PENALIZATION

• Overcomes the limitations of ERM

• Penalized empirical risk functional

is non-negative penalty functional

specified a priori (independent of the data); its 

larger values penalize complex functions. 

is regularization parameter (non-negative 

number) tuned to training data

Example: ridge regression

( ) ( ) ( )  ,f x+= emppen RR

( )  ,f x
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Structural Risk Minimization
• Overcomes the limitations of ERM

• Complexity ordering on a set of admissible 

models, as a nested structure

Examples: a set of polynomial models, Fourier 

expansion etc.

• Goal of learning ~ minimization of empirical 

risk for an optimally selected element 

S0  S1  S2 ...

kS
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Bayesian Inference
• Probabilistic approach to inference

• Explicitly defines a priori knowledge as prior 

probability (distribution) on a set of model 

parameters

• Bayes formula for updating prior probability 

using the evidence given by training data:

~ posterior probability

~ likelihood (probability that the data are 

generated by a model)

P model data =
P data model P model 

P data 
P model data 
P data model 
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Bayesian Density Estimation

• Consider parametric density estimation where 

prior probability distribution

Given training data X, the posterior probability 

distribution is updated 
( )

( ) ( )

( )X

wwX
Xw

P

P p
p =

P model  = p w( )

0
w

P model 

P model data 
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Implementation of Bayesian Inference

• Maximum Likelihood,i.e. choose w* maximizing

(equivalent to ERM)

• True Bayesian inference (averaging)

Where is a set of admissible densities

and
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Minimum Description Length (MDL)

• Information-theoretic approach

- any training data set can be optimally encoded

- code length ~ generalization capability

• Related to the Data Reduction approach 

introduced (informally) earlier. 

• Two possible implementations:

- lossy encoding

- lossless encoding of the data (as in MDL)
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Binary Classification under MDL
• Consider training data set

X={xk,yk}  (k=1,2,...n)  where y={0,1} 

• Given data object X={x1,..., xn} is a binary string 

y1,...,yn random?

if there is a dependency then the output string 

can be encoded by a shorter code:

- the model having code length L (model)

- the error term L( data | model)

→ the total length of such a code for string y is:

b = L (model) + L( data | model)

and  the compression coefficient is K = b / n
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Comparison of Inductive Principles

• Representation of a priori knowledge/ complexity:

penalty term, structure, prior distribution, 

codebook

• Formal procedure for complexity control:

penalized risk, optimal element of a structure, 

posterior distribution

• Constructive implementation of complexity control:

resampling, analytic bounds, marginalization, 

minimum code length

***See Table 2.1 in [Cherkassky & Mulier, 2007]***
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OUTLINE

2.0 Objectives

2.1 Terminology and Learning Problems

2.2 Basic Learning Methods and Complexity 
Control

2.3 Inductive Principles

2.4 Alternative Learning Formulations

- Motivation

- Examples of non-standard formulations

- Formalization of application domain 

2.5 Summary
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Motivation

• Estimation of predictive model 

Step 1: Problem specification/ Formalization

Step 2: Model estimation, learning, inference

• Standard Inductive Formulation

- usually assumed in all ML algorithms

- certainly may not be the best formalization for 
given application problem
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Standard Supervised Learning

• Available (training) data format (x,y)

• Test samples (x-values) are unknown

• Stationary distribution, i.i.d samples

• Single model needs to be estimated

• Specific loss functions adopted for common tasks 

(classification, regression etc.)

Generator

of samples
Learning

Machine

System

x f(x.w)
Loss

L(f(x,w),y)

y
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Non-standard Learning Settings

• Available Data Format

- x-values of test samples are known 
during training

→ Transduction, semi-supervised learning

• Different (non-standard) Loss Function

- see later example ‘learning the sign of a 
function’

• Univariate Output (~ a single model)

- multiple outputs may need to be
estimated from available data
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Transduction

~ predicting function values at given points:

• Given labeled training set + x-values of test data

• Estimate (predict) y-values for given test inputs

a priori knowledge 
     assumptions

estimated 
model

training  
data

predicted 
output

induction deduction

transduction
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Learning sign of a function

• Given training data

with y-values in a bounded range

Estimate function         predicting sign of y

Loss function

If prediction is wrong ~ real-valued loss

If prediction is correct ~ real-valued gain

• Neither standard regression, nor classification

• Practical application: frequent trading

niyii ,...2,1),,( =x

]2,2[ +−y
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Multiple Model Estimation

• Training data in the form (x,y), where

- x is multivariate input

- y is univariate real-valued output (‘response’)

• Similar to standard regression, but subsets of 

data may be described by different models
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Formalization of Application Problems

• Problem Specification Step cannot be formalized

But

• Several guidelines can be helpful during 

formalization process

• Mapping process:

Application requirements → Learning formulation

• Specific components of this mapping process 

are shown next
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APPLICATION    NEEDS

Loss

Function
Input, output,

other variables

Training/

test data

Admissible

Models

FORMAL PROBLEM STATEMENT

LEARNING THEORY
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Summary
• Standard Inductive Learning ~ function estimation 

• Goal of learning (empirical inference):

to act/perform well, not system identification 

• Important concepts:

- training data, test data

- loss function, prediction error (~ prediction risk)

- basic learning problems

• Complexity control

• Inductive principles – which one is the ‘best’ ?
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Summary (cont’d)
• Assumptions for inductive learning

• Non-standard learning formulations

Aside: predictive modeling of 

physical systems vs social systems

Note: main assumption (stationarity) does not hold in 
social systems (business data, financial data etc.)

• For discussion think of example application that 
requires non-standard learning formulation

Note: (a) do not use examples similar to ones 
presented in my lectures and/or text book

(b) you can email your example to instructor 
(maximum half-a-page) 


