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Abstract 

This paper addresses selection of the loss function for regression problems with 

finite data.  It is well-known (under standard regression formulation) that for a 

known noise density there exist an optimal loss function under an asymptotic setting 

(large number of samples), i.e. squared loss is optimal for Gaussian noise density. 

However, in real-life applications the noise density is unknown and the number of 

training samples is finite. Robust statistics provides prescriptions for choosing the 

loss function using only general information about noise density; however robust 

statistics is based on asymptotic arguments and may not work well for finite sample 

problems. For such practical situations, we suggest using Vapnik’s ε -insensitive 

loss function. We propose a practical method for setting the value of ε  as a function 
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of known number of samples and (known or estimated) noise variance. First we 

consider commonly used unimodal noise densities (such as Gaussian and 

Laplacian). Empirical comparisons for several representative linear regression 

problems indicate that the proposed loss function yields more robust performance 

and improved prediction accuracy, in comparison with commonly used squared loss 

and least-modulus loss, especially for noisy high-dimensional data sets. We also 

performed comparisons for symmetric bimodal noise densities (where large errors 

occur more likely than small errors). For such (bimodal) noise, the proposed ε -

insensitive loss consistently provides improved prediction accuracy (in comparison 

with other loss functions), for both low-dimensional and high-dimensional 

problems. 

 

1 Introduction _________________________________________________________ 

Estimation of a real-valued function from finite set of (noisy) samples is a central 

problem in applied statistics. Even though the main solution approaches have been 

proposed centuries ago (i.e., the least-squares method by Gauss and the least-modulus 

method by Laplace), statistical justification of these methods is based on restrictive 

assumptions. That is, statistical optimality of these methods is based on two main 

assumptions:  

- Asymptotic setting, i.e. good statistical properties such as asymptotic unbiasedness of 

the least-squares method for linear regression, holds for large number of training 
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samples. It is not at all clear whether this property (unbiasedness) is necessary for 

finite-sample problems; 

- Knowledge of the noise density, i.e., the least squares method has the smallest 

variance for linear regression with normal additive noise. However, in most 

applications, the noise density is not known. 

In this paper, we consider regression problems under practical settings when the 

number of samples is finite, and the noise density is unknown. There are two main issues 

that need to be addressed by any method, that is: 

- model selection (complexity control);  

- choice of parameter estimation (optimization) procedure. 

Model selection is outside the scope of this paper; however see (Cherkassky and 

Mulier, 1998; Cherkassky, 2002) for discussion of model complexity control under the 

framework of statistical learning theory (or VC-theory). Here we only focus on the 

parameter estimation procedure, or equivalently, on the choice of the loss function for 

regression estimation. Moreover, we only consider linear regression problems where the 

number of terms (in a linear model) is given a priori. For such problems, we consider 

three representative loss functions, i.e. standard squared loss, least-modulus loss 

(commonly used for robust regression), and ε -insensitive loss function recently proposed 

by Vapnik (Vapnik, 1995) for Support Vector Machine (SVM) regression. Our goal is to 

investigate (via empirical comparisons) appropriateness of these loss functions for finite-

sample estimation problems with unknown noise density. Statistical characterization of 
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different types of loss functions in terms of their robustness to different noise models is 

addressed in robust statistics (Huber, 1964); and robust loss functions have been 

extensively used for modeling real-life noisy data (i.e. least-modulus loss has been 

successfully used for forecasting of economic and political data in (Werbos and Titus, 

1978)). However, characterization of different loss functions for finite-sample problems 

remains sketchy and unsatisfactory, because robust statistics provides only asymptotic 

characterization of unbiased estimators under maximum-likelihood approach. On the 

other hand, it is well known that with finite-sample estimation problems it may be 

preferable to use biased estimators (e.g. recall the bias-variance dilemma in statistics). 

The paper is organized as follows. Section 2 reviews standard regression problem 

statement, describes representative loss functions, and reviews assumptions underlying 

each loss function. Section 3 presents empirical comparisons for finite-sample settings, 

for symmetric unimodal noise densities (commonly used in statistical literature) and for 

bimodal noise densities. Empirical results show that for unimodal noise, ε -insensitive 

loss (with appropriately chosen ε -value) provides superior robustness and prediction 

accuracy for high-dimensional sparse data sets. However, for large-sample settings (with 

unimodal noise) standard squared-loss provides superior prediction accuracy. For 

bimodal noise, the proposed ε -insensitive loss consistently yields best prediction 

accuracy for large-sample and small-sample settings alike. Summary and discussion are 

given in Section 4. 

 



 5

2 Loss functions for regression _____________________________________________ 

We consider standard regression formulation under general setting for predictive learning 

(Vapnik, 1995; Cherkassky and Mulier, 1998; Hastie et al, 2001). The goal is to estimate 

unknown real-valued function in the relationship: 

   ( ) δ+= xgy                                            (1) 

where δ  is independent and identically distributed (i.i.d.) zero mean random error 

(noise), x  is a multivariate input and y is a scalar output. The estimation is made based 

on a finite number (n) of samples (training data): ),...,1(),,( niyii =x . The training data 

are i.i.d. samples generated according to some (unknown) joint probability density 

function (pdf),  

)|()(),( xxx yppyp =                                                (2) 

The unknown function in (1) is the mean of the output conditional probability (aka 

regression function) 

dyypyg )|()( xx ∫= .                     (3) 

A learning method (or estimation procedure) selects the 'best' model ),( 0ωxf  from a set 

of approximating functions (or possible models) ),( ωxf parameterized by a set of 

parameters Ω∈ω . The quality of an approximation is measured by the loss or 

discrepancy measure )),(,( ωxfyL , and the goal of learning is to select the best model 

minimizing (unknown) prediction risk: 
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dydypfyLR xxx ),()),(,()( ∫= ωω                                (4) 

 It is known that the regression function (3) is the one minimizing prediction risk (4) with 

the squared loss function loss: 

2)),(()),(,( ωω xx fyfyL −=                                         (5) 

Note that the set of functions ),( ωxf , Ω∈ω  supported by a learning method may or may 

not contain the regression function (3). Thus the problem of regression estimation is the 

problem of finding the function ),( 0ωxf  (regressor) that minimizes the prediction risk 

functional 

dydypfyR xxx ),()),(()( 2∫ −= ωω                               (6) 

using only the training data. This risk functional measures the accuracy of the learning 

method's predictions of unknown target function )(xg . 

Since the prediction risk functional (6) is not known, we need to estimate the best 

model ),( 0ωxf using only available (training) data. For a given parametric model, its 

parameters are estimated by minimizing the empirical risk: 

∑
=

=
n

i
iiemp fyL

n
R

1
)),(,(1)( ωω x    (7) 

For example, with commonly used squared loss, the best model is found via 

minimization of average squared error: 
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2)),((1)( ωω x                                   (8) 

In this paper we assume that in regression formulation (1) the target function is linear 

and its parametric form is known, i.e. 

( ) dd xxf ωωωω +++= ...., 110x          (9) 

The goal is to estimate parameters of a linear regression (9) when the number of 

samples is finite, and the noise density in (1) is not known. The key problem for 

regression is the choice of a loss function used to minimize the empirical risk functional 

(7). For example, it is well-known that using quadratic loss function for regression 

problems with normal additive noise provides an asymptotically efficient (best unbiased) 

estimator for regression. Using standard statistical arguments (Smola and Schölkopf, 

1998; Hastie et al, 2001), one can find the optimal loss function (in a maximum-

likelihood sense) for a known noise density )(δp , that is: 

)),((log)),(,( ωω xx fypfyL −−=                                         (10) 

Two commonly used types of noise and corresponding ‘optimal’ loss functions are 

shown in Figure 1a, 1b. We note, however, that this ‘optimality’ is based on asymptotic 

arguments and it may not hold well for finite-sample settings. 

In most cases the noise distribution is unknown and robust methods (Huber, 1964) 

provide various loss functions using only general information about the model of noise. 

For example, if one only knows that the noise density is a unimodal symmetric smooth 
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function, then the best minimax strategy for regression estimation is provided by the 

least-modulus (or absolute-value) loss: 

|),(|)),(,( ωω xx fyfyL −=                                         (11) 

We emphasize here that statistical optimality properties for both the least-modulus 

and squared loss (under respective assumptions about the noise density) should be 

understood under an asymptotic setting, i.e. when the number of training samples is 

large. Several empirical results (presented later in this paper) clearly demonstrate that 

statistical ‘optimality’ of these loss functions does not hold for finite-sample settings. 

Statistical analysis of various noise models typically considers unimodal and smooth 

noise densities, reflecting an assumption that small errors are much more likely than 

large errors. In practice, however, we are often faced with symmetric bimodal 

distributions (that may also contain discontinuities). Figure 1c, 1d shows representative 

examples, i.e. uniform noise model and bimodal uniform noise density: 

    






<<
−<<−

=
otherwise
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0

3125.0
1325.0

)( δ
δ

δ                                            (12) 

In this paper, we shall use noise densities shown in Figure 1 as representative examples 

of unimodal and bimodal types of noise. 

Recently, a new loss function called ε -insensitive loss has been proposed by Vapnik 

(1995):  
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This loss function had been proposed in the context of Support Vector Machine (SVM) 

regression. SVM approach to linear regression amounts to (simultaneous) minimization 

of ε -insensitive loss and minimization of the norm of linear parameters ( 2|||| ω ). This 

can be formally described by introducing (non-negative) slack variables *, ii ξξ  ni ,...1= , 

to measure the deviation of training samples outside ε -insensitive zone. Thus SVM 

regression can be formulated as minimization of the following functional: 

∑
=

++
n

i
iiC

1

*2 )(||||
2
1 ξξω    (14) 

        Subject to   
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This optimization problem can be transformed into the dual problem (Vapnik, 1995), and 

its solution is given by   

><−= ∑
=

xxx ,)()( *

1
iii

n

i

SV

f αα    (15) 

with coefficient values in the range Ci ≤≤ *0 α , Ci ≤≤ α0 . And >⋅⋅< , denotes the dot 

product in the input space. In representation (15), typically only a fraction of training 

samples appear with non-zero coefficients and such training samples are called support 

vectors. For most applications, the number of support vectors (SVs) SVn is usually much 

smaller than the number of training samples. 
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For nonlinear regression problem, SVM approach performs first a mapping from the 

input space onto a high-dimensional feature space, and then performs linear regression in 

the high-dimensional feature space using ε -insensitive loss (Vapnik, 1995; Cherkassky 

and Mulier, 1998; Schoelkopf et al, 1999). SVM approach enables efficient model 

complexity control using a special structure on a set of high-dimensional linear models in 

the feature space. SVM model complexity control and its attractive computational 

formulation have resulted in many successful applications for nonlinear regression 

(Schölkopf et al, 1999). However, in this paper we do not consider nonlinear regression 

problems, since our goal is a better understanding of different loss functions, rather than 

efficient complexity control. 

The primary motivation (for using ε -insensitive loss) appears to be computationally 

efficient SVM regression formulation resulting in a sparse form of SVM solution. 

Namely, the value of ε  controls the number of support vectors (the sparseness of SVM 

solutions) and thus indirectly controls model complexity and generalization. More 

recently, several researchers used SVM-like optimization formulation with different loss 

functions, i.e., squared loss, squared loss with ε -insensitive zone, and Huber loss 

(Vapnik, 1998; Smola et al, 1998; Suykens et al, 2001). In fact, one can use any convex 

loss function under SVM regression formulation; however only ε -insensitive loss yields 

sparse SVM solutions (Vapnik, 1998). 

This paper presents a different interpretation of Vapnik’s ε -insensitive loss, i.e. its 

advantages for finite-sample estimation problems. The main idea of ε -insensitive loss is 

to ignore ‘small’ errors during minimization of empirical risk (7); whereas ‘large’ errors 

are assigned absolute-value loss appropriate for unknown noise density. The conceptual 
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difference between ε -insensitive loss and other types of loss functions (Huber loss, 

squared loss, and least modulus loss) is that the latter do not make qualitative distinction 

between small errors and large errors, which is crucial for finite-sample estimation 

problems. Unfortunately, SVM framework does not provide clear guidelines on how to 

select the value of ε -insensitive zone for a given data set, so in practical studies its 

selection depends on user experience and/or on computationally intensive data-driven 

techniques (Schoelkopf et al, 1999). 

SVM estimates depend on both parameter C and the value of ε  in formulation (14). 

Hence, obtaining optimal SVM solutions for linear regression requires setting optimal 

values for both parameters. Recently, Cherkassky and Ma (2002) proposed a practical 

method for selecting the value of ε  and the value of regularization parameter C for SVM 

regression directly from the training data. Namely, the value of C is chosen as: 

|)3||,3max(| yy yyC σσ −+=                              (16) 

where y  is the mean of the training responses (outputs), and yσ  is the standard 

deviation of the training response values. Prescription (16) can effectively handle outliers 

in the training data. In practice, the response values of training data are often scaled so 

that 
−
y =0; then the optimal C is yσ3 . 

The value of ε  is selected as  

n
nn ln),( τσσε =                                           (17) 
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where σ  is the standard deviation of additive noise and n is the number of training 

samples, and τ  is an empirically determined constant. The value 3=τ  was suggested by 

Cherkassky and Ma (2002). Thus, expression (17) with 3=τ  is used throughout this 

paper for setting the value of ε -insensitive zone. Note that using prescription (17) 

requires estimation of noise level σ ; this can be accomplished using standard noise 

estimation approaches – see Cherkassky and Ma (2002) for details. In the remainder of 

the paper we assume that standard deviation of noise σ  is known (or can be accurately 

estimated from data). However, we point out here that in most practical applications the 

noise density is unknown (and can not be accurately estimated), even when its standard 

deviation can be reliably estimated from the training data. 

Further, it can be shown (Cherkassky and Ma, 2002) that for linear regression 

settings the choice of ε  affects prediction accuracy much more than the choice of C 

parameter (provided that C parameter is larger than the value given by (16)). In other 

words, one can use very large values of C parameter in SVM formulation (14) without 

any degradation in prediction risk. For example, Fig. 2 shows SVM prediction accuracy 

as a function of both parameters, for a representative linear regression data set. As 

evident from Fig. 2, one can use any large C-value (say over 40) and then select ε -value 

to optimize prediction risk. Conceptually, using large C (infinite) values in SVM 

formulation (14) means that such formulation becomes equivalent to minimization of ε -

insensitive loss for the training data, without penalization (regularization) term. This 

enables ‘fair’ comparisons between SVM and other formulations / loss functions (e.g. 

least squares) which do not use regularization term. 
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In the next section we present empirical comparisons for several linear regression 

estimation using three representative loss functions: squared loss, least-modulus and ε -

insensitive loss with selection of ε  given by (17). Our goal is to investigate the effect of 

a loss function on the prediction accuracy of linear regression with finite samples. Even 

though SVM regression has been extensively used for regression applications (Scholkopf 

et al, 1999), its success is mainly due to remarkable ability of SVM models to handle 

nonlinear high-dimensional problems. However, there is little consensus and 

understanding of the importance of ε -insensitive loss itself for standard linear regression 

estimation. The only existing study (Drucker, et al, 1997) showing empirical 

comparisons between SVM and ordinary least squares (OLS) for linear regression makes 

rather indefinite conclusions. This study applies SVM and OLS to a linear regression 

problem with 30 input variables, where regression estimates are obtained from 60 noisy 

training samples, and concludes that at high noise levels SVM is better than OLS, but at 

low noise levels OLS is better than SVM. This study is rather sketchy since it uses a 

single data set for regression comparisons, and does not describe any systematic 

procedure for selecting the value of ε  for SVM regression.  

 

3 Empirical Comparison ________________________________________________ 

This section presents systematic comparisons of several loss functions/methods for linear 

regression. Specifically, we are interested in the following factors that are likely to affect 

generalization performance of SVM, OLS and LM methods, such as: 

- low vs. high-dimensional data sets (target functions); 
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- sparse vs. non-sparse settings (where ‘sparseness’ can be defined as the ratio of the 

number of samples to the number of input variables); 

- percentage of 'important’ or significant input variables for high-dimensional 

problems; 

- the amount of additive noise (measured as SNR) 

- type of noise.  

 

First we describe experimental procedure and then present empirical results. 

Comparisons are organized into 2 groups, that is: large-sample setting for low-

dimensional problems (when the number of samples is significantly larger than the 

number of parameters in linear regression), and high-dimensional or sparse problems. 

For high-dimensional problems (which is the case of practical interest) we also show 

comparisons for various settings corresponding to large/small percentage of significant 

input variables, high/low noise levels etc. All comparisons for different methods are 

shown for three representative unimodal noise densities: Gaussian, Laplacian and 

Uniform. In addition, we show comparisons for bimodal noise density. The goal (of 

comparisons) is to gain better understanding of relative advantages/limitations of 

different methods for linear regression: optimal least squares (OLS), least modulus (LM) 

and SVM regression. Note that SVM method has a tunable parameter ε  selected via 

analytical prescription (17) for all comparisons presented in this paper. Alternatively, 

optimal selection of ε  can be done using resampling methods. We empirically compared 

the resampling approach (via cross-validation) and analytical approach for selecting the 
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value of ε , and found no significant difference in terms of prediction accuracy of SVM 

estimates. 

Training data: we use simulated training data ),...1(),,( niyii =x  with random x -

values uniformly distributed in the input space, and y -values generated according 

to δ+= )(xgy .  

Target functions. Several low-dimensional and high-dimensional data sets are 

generated using the following target functions: 

Low-dimensional         2
21 ]1,0[,712)( ∈+= xxxxg                                          (18) 

High-dimensional function of 20 variables: 

20654321 23344)( xxxxxxxxg +⋅⋅⋅+++++= , 20]1,0[∈x     (19) 

We also considered variations of a high-dimensional function (19) with only a fraction of 

important (or significant) variables, as shown in Table 1. 

Table 1 
 

 Target function 
10% 20321 01.0...01.044)( xxxxxg ++++=  
25% 20654321 01.0...01.023344)( xxxxxxxxg ++++++=  
50% 201110654321 01.0...01.0...23344)( xxxxxxxxxxg +++++++++=  
75% 201615654321 01.0...01.0...23344)( xxxxxxxxxxg +++++++++=

 

Sample size. Various training sample sizes (n= 30,40,50) are used to contrast relative 

performance of different methods under large sample settings and sparse sample settings. 
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The distinction can be quantified using the ratio of the number of samples (sample size) 

to the number of input variables.  

Additive noise. The following types of unimodal noise were used: Gaussian noise, 

uniform noise and Laplacian noise. Notice that squared loss is (asymptotically) optimal 

for Gaussian noise and least-modulus loss is (asymptotically) optimal for Laplacian noise 

density. In addition, we used bimodal noise (see Figure 1d) that is expected to be most 

appropriate for ε -insensitive loss. We also varied the noise level (as indicated by 

different SNR values) for high-dimensional data, in order to understand the effect of 

noise level on methods’ performance. Signal-to-noise ratio (SNR) is defined as the ratio 

of the standard deviation of the true (target function) output values over the standard 

deviation of the additive noise. 

Given a large number of experimental design factors (as defined above), we 

conducted many experiments with different target functions, noise levels etc. This paper 

presents only a small but representative subset of comparisons. However, we emphasize 

that all qualitative conclusions presented in this paper are consistent with a wider set of 

comparison results not shown here due to space limitations. 

Experimental protocol. For a given training sample with specified statistical 

properties (sample size, noise level/type etc. as defined above) we estimate parameters of 

regression via minimization of the empirical risk (7) using 3 different loss functions, i.e., 

standard square loss, modulus loss and ε -insensitive loss (with proposed selection of ε -

value). The quality of each  model is evaluated as its prediction accuracy, measured as 
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mean-squared error (MSE) between (estimated) model and the true target function. This 

quantity is measured using large number of independent test samples uniformly 

distributed in the input space. Specifically, for low-dimensional problems we used 200 

test samples, and for high-dimensional problems 2,000 test samples were used to 

estimate the prediction risk. Since the model itself depends on a particular (random) 

realization of training sample (of fixed size), its (measured) prediction accuracy is also a 

random variable. Hence, we repeat the experimental procedure (described above) with 

many different realizations of training data (100 runs) and show average prediction 

accuracy (risk) for methods’ comparison. Graphical presentation of prediction accuracy 

(risk) for three estimation methods uses the following labels: OLS (for ordinary least-

squares method), LM (for least-modulus method) and SVM (for SVM with ε – 

insensitive loss using proposed optimal selection of ε ). Notice that LM method is a 

special case of SVM with ε -insensitive loss (with ε =0).  

Comparison results. Empirical comparisons for low-dimensional target function (18) 

are summarized in Table 2. The results show average prediction accuracy (MSE) for 

various methods/loss functions observed for different types of noise (with the same SNR 

value). As expected, OLS shows superior performance for Gaussian noise, whereas LM 

is the best for Laplacian noise. For unimodal noise OLS shows best performance overall, 

whereas SVM clearly provides superior prediction performance for bimodal noise. Good 

overall performance of standard OLS can be explained by noting that this data set is an 

example of large-sample setting, i.e. we use 30 samples to estimate 3 parameters of 
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regression function. Hence standard statistical arguments underlying asymptotic 

optimality of different loss functions hold well in this case. 

Table 2: Prediction accuracy for low-dimension data 21 712)( xxxg += , n=30, SNR=2 

Results show the average MSE error (for 100 realizations) for different types of noise. 

 
Unimodal  

Gaussian Uniform Laplacian 
Bimodal 

OLS 0.4210 0.4338 0.4002 0.4807 
LM 0.6560 1.1238 0.3327 2.0734 

SVM 0.5981 0.4487 0.6503 0.1993 
 

As mentioned earlier, SVM method selects the value of ε  using proposed analytic 

expression (17). Empirical results in Fig. 3 are shown to support our claim that 

expression (17) yields (near) optimal selection of ε -values. Namely, Fig. 3 shows 

comparisons of prediction risk obtained for the low-dimensional data set using SVM 

with ε -values chosen around the ‘optimal’ value selected by (17), that is: 

- 50% smaller than selected value (denoted as ‘–50%’ in Fig. 3); 

- 50% larger than selected value (denoted as ‘+50%’); 

- Twice the selected value (denoted as ‘2*Sel’). 

Comparisons of prediction risk shown in Fig.3 (with different ε -values) show that 

expression (17) selects the value of ε -parameter quite well (close to optimal) for 

different types of noise. 
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Next we show comparisons for a high-dimensional target function (19). Results 

shown in Fig. 4 are intended to illustrate how methods’ prediction performance depends 

on the sparseness of training data. This is accomplished by comparing prediction risk 

(MSE) for data sets with different sample sizes (n=30, 40 and 50) under the same 

SNR=2. Results in Fig.4 indicate that SVM method consistently (for all types of noise) 

outperforms other methods under sparse settings, i.e. for 30 samples when the ratio n/d is 

smaller than 2. However, for 50 samples, when this ratio is larger than 2, we approach 

large-sample settings, and the methods’ performance becomes similar. The distinction 

between sparse setting and large-sample setting is not very straightforward as it also 

depends on the noise level. That is why comparisons in Fig. 4 are shown for a given 

(fixed) SNR value for all data sets. Next we show comparisons for the same high-

dimensional target function (19) under sparse setting (n=30 samples) for different noise 

levels (SNR=1,3,5,7) in order to understand the effect of noise level on methods’ 

performance. Results in Fig. 5 clearly show superiority of SVM method for large noise 

levels; however for small noise levels SVM does not provide any significant advantages 

over OLS. Note that MSE results in Fig. 5 are shown on a logarithmic scale, so that the 

difference in prediction performance (MSE) for different methods at high noise levels 

(SNR=1) is quite significant (i.e., of the order of 100% or more). 

Additional experiments with high-dimensional data use high-dimensional target 

functions with a small number of important input variables (shown in Table 1). Here the 

goal is to understand how the methods’ performance is affected by the percentage of 

important variables, under sparse settings. Results presented in Fig. 6 use the same 
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sample size n=30 and noise level SNR=2 for all comparisons. Examination of results in 

Fig. 6 suggests that SVM provides superior performance for all target functions – due to 

sparseness of training data and relatively high noise level. However, relative performance 

of SVM is much better when the percentage of important variables is high. When the 

percentage of important variables is low (say 10%), SVM does not yield significant 

advantages vs OLS; this can be explained by noting that data sets with small number of 

important input variables effectively represent relatively large-sample settings.  

 

4. Summary and Discussion _______________________________________________ 

This paper presents empirical comparisons between several loss functions (methods) for 

linear regression with finite samples. Previous SVM regression comparison studies 

focused mainly on nonlinear regression settings where one needs to select several hyper-

parameters (such as SVM kernel, ε -parameter and regularization parameter) in order to 

obtain good SVM model; and such parameter selection is usually performed by expert 

users and/or using resampling methods (Scholkopf, 1999). In contrast, this paper focuses 

on linear regression and provides an analytic prescription for selecting the value of ε -

insensitive loss.  

Empirical comparisons presented in this paper indicate that SVM approach clearly 

provides better prediction accuracy than OLS and LM for linear regression with sparse 

and noisy data. Our findings contradict a common opinion in the statistical literature 
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(Smola and Schölkopf, 1998; Hastie et al, 2001) that for a given (known) noise density 

there exist an optimal method (loss function).  

Results presented in this paper have a number of practical and conceptual 

implications as discussed next. First, we have demonstrated practical advantages of using 

ε -insensitive loss (with proposed selection ofε -value) for finite-sample linear regression 

problems, when the training data is noisy and sparse. For low-dimensional problems (i.e. 

non-sparse settings) using SVM does not offer any improvement over standard OLS 

method, as can be expected from asymptotic statistical theory. However, advantages of 

SVM approach become apparent for sparse high-dimensional data sets where it 

outperforms ordinary least squares (OLS) even for Gaussian noise. Second, this 

superiority of ε –insensitive loss for settings where OLS method is known to be 

‘statistically optimal’ has an important conceptual implication: statistical results 

developed under asymptotic settings do not hold for finite-sample high-dimensional data 

sets. Moreover, our results suggest that for finite-sample settings one only needs to know 

(or estimate) the standard deviation of noise, rather than its distribution. Third, our 

empirical results help to explain the empirical success of SVM approach for nonlinear 

regression, as explained next. Under standard SVM approach to nonlinear regression one 

first needs to perform a nonlinear mapping from an input space onto high-dimensional 

feature space and then perform linear regression (with special constraints) in this feature 

space according to SVM formulation. Minimization of regularized functional (14) for 

nonlinear regression should always result in sparse settings, where the number of 

parameters (in linear regression) is comparable to the number of training samples. 
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According to findings presented in this paper, for such sparse data sets linear SVM 

should use ε –insensitive loss (rather than alternative loss functions). It may be 

interesting to perform empirical comparisons between several nonlinear SVM regression 

formulations using different loss functions in (14). In contrast to a popular opinion that 

the loss function in (14) should be tailored to particular noise density (Smola and 

Sholkopf, 1998; Hastie et al, 2001) we expect an overall superiority of ε –insensitive loss 

for sparse high-dimensional problems. Further, our results help to understand better 

relative importance of ε –insensitive loss vs regularization term in SVM formulation 

(14). Whereas both factors are important for nonlinear SVM regression, our experience 

suggests that the choice of ε –insensitive loss parameter is much more important for 

linear regression. Even for nonlinear SVM, the quality of SVM solutions is typically 

much more sensitive to proper setting of ε –parameter rather than regularization 

parameter (Cherkassky and Ma, 2002). Finally, we have shown that SVM approach with 

ε –insensitive loss can be successfully used for symmetric bimodal noise distributions. 

This finding may be of practical importance in applications where bimodal noise models 

preclude application of standard OLS and LM methods. 

Conceptually, Vapnik’s loss function with insensitive zone can be viewed as a new 

approach for providing “regularization” for ill-posed estimation problems with sparse 

data. Our empirical comparisons indicate that such an approach can be quite useful for 

sparse high-dimensional data sets, provided that one can control the degree of 

regularization (via the choice of ε -value). This view also leads to novel interpretation of 

SVM formulation (14) where regularization can be performed in two ways: 
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(1) Standard regularization via the choice of parameter C; 

(2) Regularization via the choice of ε -value. 

In this paper we only considered the second approach (by intentionally setting the value 

of C very high). This approach works well for linear regression settings. However, for 

nonlinear SVM (with kernels) we may need to explore more advanced strategies for joint 

regularization (optimization) using both parameters C and ε . This opens new directions 

for SVM research. 
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Figure 1 [Cherkassky]:  (a) Gaussian noise and quadratic loss function 
                                       (b) Laplacian noise and least-modulus loss function 
                                       (c) Uniform noise 
                                       (d) Bimodal noise  
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Figure 2 [Cherkassky]: Prediction Accuracy as a function of epsilon and C-values for 
high-dimension data set 20654321 ...23344)( xxxxxxxxg ++++++= , n=30, SNR=2. 
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Figure 3 [Cherkassky]: Prediction Accuracy for different values of epsilon (-50%, Sel., 
+50%, 2*Sel.) for 21 712)( xxxg += , n=30, SNR=2 for Gaussian noise, Uniform noise 
and Laplacian noise 
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Figure 4 [Cherkassky]: Prediction Accuracy vs. sample size n=30,40,50 for high-dimensional 
data set 20654321 ...23344)( xxxxxxxxg ++++++= , SNR=2 (a) Gaussian noise (b) 
Uniform noise (c) Laplacian noise 
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(c) 

Figure 5 [Cherkassky]: Prediction Accuracy vs. SNR (1, 3, 5, and 7) for high-dimensional data 
20654321 ...23344)( xxxxxxxxg ++++++= , n=30, (a) Gaussian noise (b) Uniform noise 

(c) Laplacian noise 
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Figure 6 [Cherkassky]: Prediction Accuracy vs. %important variables for high-
dimensional data, n=30, SNR=2; (a) Gaussian noise (b) Uniform noise (c) Laplacian 
noise 
 


