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ABSTRACT: We discuss the problem of model complexity control also known as model selection. This problem frequently arises in the context of predictive learning and adaptive estimation of dependencies from finite data. First we review the problem of predictive learning as it relates to model complexity control. Then we discuss several issues important for practical implementation of complexity control, using the framework provided by Statistical Learning Theory (or Vapnik-Chervonenkis theory). Finally, we show practical applications of Vapnik-Chervonenkis (VC) generalization bounds for model complexity control. Empirical comparisons of different methods for complexity control suggest practical advantages of using VC-based model selection in settings where VC generalization bounds can be rigorously applied. We also argue that VC-theory provides methodological framework for complexity control even when its technical results can not be directly applied.
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1. INTRODUCTION 



Various applications and methodologies in statistics, engineering, computer science and social sciences are concerned with the problem of predictive learning from data. In such problems the goal is to estimate unknown dependency (or model) from available data (or training data), in order to use this model for prediction of future samples (or test data). Examples include classification, regression, time series prediction, data mining, object recognition etc. Even though many fields (statistics, neural networks and signal processing, to name a few) use distinctly different terminology and (superficially) different methodologies, there are just a few fundamental issues common to predictive learning. One of such issues is model complexity control.


Traditional statistical approach to estimating models from data is based on parametric estimation. Even though the parametric approach has been quite successful in practice, its applicability is very limited since it assumes that an underlying dependency has a simple parametric form (which is known). Recent approaches to flexible estimation (learning) with finite data aim at achieving high levels of generalization (i.e., prediction accuracy). Such flexible (or adaptive) methods consider a wide class of candidate models of varying complexity. Then the task of learning amounts to selecting the model of optimal complexity and estimating its parameters from available training data. Due to finiteness of training data, the problem of learning is inherently difficult (ill-posed), and most solution approaches fall into two groups:

- Bayesian paradigm emphasizes the need for making some prior assumptions about the underlying dependency, and provides a formal statistical framework for combining these assumptions with data [Bernardo and Smith, 1994; Bishop, 1995].

- Regularization paradigm emphasizes the need to select a model within a set of possible models of varying complexity. The rationale is that for a given finite data set there is a model of optimal complexity providing the best generalization (for future data).


The latter (regularization) approach to learning with finite data is discussed next as it is closely related to the framework of Statistical Learning Theory [Vapnik, 1982, 1995]. Under the regularization approach, one specifies a (nested) set of possible parametric models, so that the union of all models can approximate any function from a given class (i.e., any continuous function). Note that the nested structure of possible models provides a natural ordering according to their complexity. The best predictive model provides an optimal trade-off between the accuracy of explaining (fitting) the training data and the model complexity. The notion of model complexity control is pervasive in all fields concerned with predictive learning, i.e. bias-variance trade-off (in statistics), overtraining (in neural networks) etc. Traditional (statistical) approaches use the number of free parameters to measure the model complexity, and use data-driven (resampling) methods to estimate the prediction error (i.e., error for future or test data) from the training data. Existing analytic approaches for estimating prediction error are based on restrictive (i.e., asymptotic) theoretical assumptions which make them less practical for learning with finite samples. 


Adopting the number of parameters as a measure of complexity has had a profound effect on the development of constructive learning methods: many existing (statistical and neural network) approaches develop predictive models based on a small number of 'strong' features. Classical statistical methods use pre-selected features; whereas more recent 'flexible' approaches select nonlinear features adaptively in a data-driven fashion. All these approaches reduce the problem complexity by selecting a small number of ‘informative’ features. However, there are many challenging applications where this approach (feature selection) does not work well. Such 'difficult' applications include high-dimensional problems such as text categorization, object recognition etc. Recently a new learning methodology called Support Vector Machines (SVM) has been developed for such learning problems [Vapnik, 1995].


The SVM methodology is based on Statistical Learning Theory also known as Vapnik-Chervonenkis (VC) theory [Vapnik, 1982, 1995, 1998]. Specifically, SVM implements the Structural Risk Minimization (SRM) inductive principle developed in VC-theory. SRM is conceptually similar to the regularization approach, in that they both specify a nested set of possible models (this nested set is called a 'structure') and both attempt to select a subset of optimal complexity for given data. The difference is that in SRM:

- model complexity is defined as the VC-dimension [Vapnik, 1982, 1995]. There is no direct correspondence between the number of parameters and the VC-dimension (however they coincide for linear estimators);

- model complexity control can be performed, in principle, via analytic VC generalization bounds developed for finite-sample estimation. Under SRM the optimal choice of model complexity is based on the lowest value of the prediction risk estimated using VC-bounds.


The VC-theory has been known for over 30 years mainly as a mathematical theory; however its conceptual contributions and practical significance are not yet fully appreciated. Recent monographs [Ripley, 1996; Bishop, 1995; Duda et al, 2000; Hastie et al, 2001] suggest that VC- generalization bounds are too conservative to be practically useful. Such conclusions are based on research papers describing attempts to apply and/or modify VC-theory for analyzing generalization performance of neural networks. Much of this work falls short of achieving practical complexity control, for reasons discussed next. Theoretical analysis of generalization performance of feedforward networks [Baum and Haussler, 1989; Blumer et al, 1989] requires training sample size to be linear in the number of adjustable parameters (or network weights). These requirements seemingly contradict empirical success of neural network applications where good generalization performance with finite training samples is often achieved using large-size networks. The explanation is due to observation [Cherkassky and Mulier, 1998] that in practice the network complexity strongly depends on the optimization procedure (learning algorithm) used to train the network. So theoretical estimates of VC-dimension do not reflect the true model complexity of practical neural network implementations. 

On the other hand, recent research [Vapnik, 1998, Cherkassky et al, 1999; Cherkassky and Mulier, 1998] demonstrates practical advantages of VC generalization bounds for regression problems in settings where they can be rigorously applied. Moreover, the conceptual framework of VC-theory can be used for improved model complexity control even when the VC-dimension can not be accurately estimated [Cherkassky and Mulier, 1998]. For example, it is well known that penalizing ‘large’ parameter values (ridge regression) is an effective method for complexity control with linear estimators. Effectively, the VC-dimension of such (penalized) estimators depends on constrained parameter values rather than on the number of free parameters. Extending this idea to nonlinear estimators, Bartlett (1998) developed a theory for generalization performance of neural network classifiers where the network weights are constrained. His work shows (analytically) that the size of a network is not a good measure of its complexity when network parameters are constrained to be small, and helps to explain qualitatively the empirical success of neural network applications.


Since the generalization performance of an estimator depends on several factors, such as the choice of the functional form for an estimator, and the choice of an optimization algorithm, in addition to model complexity control, it is important to separate these issues. However, many comparison studies do not make this distinction clear. As a result, comparison results become difficult to interpret, even for the simple case of linear / penalized linear estimators. Even in this (arguably simple) setting, there is no consensus on model complexity control with finite samples. For example, the classical paper by Dempster et al (1977) presents an empirical comparison of 57 estimation methods for linear regression under parametric setting, i.e. when the parametric form (linear in parameters) is known and one needs to estimate parameters from finite data. An important finding of this study as that ridge regression provides superior and robust performance (relative to other methods), especially with correlated and small input variables. This finding underscores the importance of model complexity control with finite samples, since the ridge regression selects model complexity adaptively (in a data-driven fashion) through the choice of regularization parameter. Note that such a conclusion has not been stated explicitly in the paper by Dempster et al (1977), because they do not separate complexity control from other factors affecting prediction accuracy (such as the choice of functional form of an estimator, and the choice of an optimization algorithm).


This paper describes application of Statistical Learning Theory (or VC theory) to model complexity control. Section 2 reviews mathematical formulation of the learning problem and provides motivation for model complexity control. An overview of classical and VC-based approaches for complexity control and estimation of prediction risk is given in Section 3. Empirical comparisons of various model selection methods for linear estimators are given in Section 5. Empirical comparisons of various model selection approaches for nonlinear signal denoising are given in Section 6. These comparisons demonstrate that an existing framework of VC-theory (when applied with understanding and common sense) leads to practically useful model complexity control. Summary and conclusions are given in Section 7. 

2. STATISTICAL FORMULATION of the LEARNING PROBLEM



A learning method is an algorithm that estimates unknown mapping (dependency) between system's inputs and outputs, from the available data, i.e. known (input, output) samples. Once such a dependency has been estimated, it can be used for prediction of system outputs from the input values. The usual goal of learning is the prediction accuracy, aka generalization.


A generic learning system [Vapnik, 1995; Friedman, 1994] shown in Fig.1 consists of: 

- a Generator of random input vectors 

, drawn from a fixed (unknown) probability distribution 

;

- a System  (or teacher) which returns an output value 

 for every input vector 

 according to the fixed conditional distribution 

, which is also unknown;

- a Learning Machine, which is capable of implementing a set of approximating functions 

, 

 where 

 is a set of parameters of an arbitrary nature. 


The goal of learning is to select a function (from this set) which approximates best the System’s response. This selection is based on the knowledge of finite number (

) of i.i.d. samples (training data) 

, 

 generated according to (unknown) joint distribution 

. 



[image: image8.wmf]original image 

noisy image 

denoised by threshold 

denoised by vc method 

for image size=256*256 


1 set equ_ "" 
1
 


1 set fig_predictive_learning "" 
1
Figure 1. Generic learning system

In this paper we consider the problem of real-valued function estimation from noisy samples. This problem is known in statistics as (nonlinear) regression. In the regression formulation, the goal of learning is to estimate an unknown (target) function 

 in the relationship:








(1)

where the random error (noise) is zero mean, 

 is a 

-dimensional vector and 

 is a scalar output. A learning method (or estimation procedure) selects the 'best' model 

 from a set of (parameterized) approximating functions (or possible models) 

 specified a priori, where the quality of an approximation is measured by the loss or discrepancy measure 

.  A common loss function for regression is the squared error. Thus learning is the problem of finding the function 

 (regressor) that minimizes the prediction risk functional 






(2)

using only the training data 

, 

, generated according to some (unknown) joint probability density function (pdf) 

. Prediction risk functional (2) measures the accuracy of the learning method's predictions of the unknown 

. 


Commonly used parameterization of approximating functions 

 is given as a linear combination of some basis functions:







(3)

Examples of basis functions 

 include polynomials, radial basis functions, sigmoid functions used feedforward networks etc. Further, we can make an important distinction between:

· linear or non-adaptive methods, when basis functions 

 are fixed and do not depend on the training data;

· nonlinear or adaptive methods, when selection of basis functions depend on the training data (more precisely, on the y-values of training samples).

Note that linear parameterization (3) leads to linear least squares parameter estimation for regression problems, whereas nonlinear parameterization results in nonlinear optimization.


The standard formulation of the learning problem (as defined above) amounts to function estimation, i.e., selecting the ‘best’ function from a set of admissible functions 

. Here the ‘best’ function (model) is the one minimizing prediction risk (2). The problem is ill-posed since the prediction risk functional is unknown (by definition). Most learning implement the idea known as 'empirical risk minimization', that is choosing the model minimizing the empirical risk, or the average loss for the training data:





(4)

The ERM approach is only appropriate under parametric settings, i.e. when the parametric form of unknown dependency is known. Under such (parametric) approach the unknown dependency is assumed to belong to a narrow class of functions (specified by a given parametric form). In most practical applications parametric assumptions do not hold true, and the unknown dependency is estimated in a wide class of possible models of varying complexity. Since the goal of learning is to obtain a model providing minimal prediction risk, it is achieved by choosing a model of optimal complexity corresponding to smallest prediction (generalization) error for future data. Existing provisions for model complexity control include [Ripley, 1996; Cherkassky and Mulier, 1998]: penalization (regularization), weight decay (in neural networks), parameter (weight) initialization (in neural network training), and various greedy procedures (aka constructive, growing or pruning methods).

There are three distinct problems common to all methodologies for complexity control: 

First, defining a meaningful complexity index for a set of (parameterized) functions. The usual index is the number of (free) parameters; it works well for (unconstrained) linear models but is not appropriate for approximating functions nonlinear in parameters [Vapnik, 1995]. 

Second, estimation of the unknown prediction risk from the known training data, in order to choose the best model corresponding to smallest prediction risk. These estimates are known as model selection criteria in statistics. 

Third, there is a problem of finding a (global) minimum of the empirical risk. This is an easy task for linear models. With nonlinear estimators an optimization algorithm can usually find only a local minimum.


VC theory [Vapnik, 1982, 1995] provides solution approach to the first two problems, as follows: it defines a measure of complexity (called VC-dimension), and provides analytic (upper) bounds on prediction risk that can be used, in principle, for model complexity control. Various methods for estimating prediction risk (from the training data) are discussed next.

3. COMPLEXITY CONTROL and ESTIMATION of PREDICTION RISK
This section reviews existing methods for model selection, and contrasts them to the method based on VC-theory.  Classical methods for model selection are based on asymptotic results for linear models. Recent approaches [Barron, 1993; Girosi, 1994; Lee et al., 1996] based on approximation theory extend classical rate-of-convergence results to nonlinear models (such as multilayer perceptions); however they are still based on asymptotic assumptions.  Non-asymptotic (guaranteed) bounds on the prediction risk for finite-sample settings have been proposed in VC-theory [Vapnik, 1982]. 


We also point out that there is a subtle but important difference between the goal of accurate estimation of prediction risk and using these estimates for model complexity control with finite samples (the latter is the subject of practical importance). In practice, prediction risk estimates are significantly affected by the variability of finite training samples. Hence, a model selection criterion can provide poor estimates of prediction risk, yet the differences between its risk estimates (for models of different complexity) may yield accurate model selection. Likewise, a model selection criterion may provide an accurate estimate of prediction risk for the poorly chosen model complexity. In this paper we are using/ comparing various bounds on prediction risk with regard to their practical utility for model complexity control (with finite samples). This goal is different from the goal of deriving asymptotic bounds providing accurate estimates of risk under large-sample settings.

3.1 Classical model selection criteria

There are two general approaches for estimating prediction risk for regression problems with finite data: analytical and data-driven. Analytical methods use analytic estimates of the prediction risk as a function of the empirical risk (training error) penalized (adjusted) by some measure of model complexity.  Once an accurate estimate of the prediction risk is found it can be used for model selection by choosing the model complexity, which minimizes the estimated prediction risk.  Various analytic prediction risk estimates have been proposed for model selection. In general, these estimates all take the form of:





(5)

where 

 is a monotonically increasing function of the ratio of model complexity (i.e., the number of free parameters or degrees of freedom) 

 and the training sample size 

 [Hardle, et al. 1988]. The function 

 is often called  penalization factor because it inflates the average residual sum of squares for increasingly complex models. Several forms of 

 have been proposed in the statistical literature, namely Final Prediction Error (fpe) [Akaike, 1970], Schwartz’ criterion (sc) [1978], Generalized Cross-Validation (gcv) [Craven and Wahba, 1979], and Shibata’s Model Selector (sms)[1981]: 

· Final Prediction Error (fpe) [Akaike, 1970]  

 2 set equ_analytic_fpe "" 
2
 
 

· Schwartz’ Criteria (sc) [1978] 
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· Generalized Cross-Validation (gcv) [Craven and Wahba, 1979] 
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· Shibata’s Model Selector (sms) [1981] 
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All these classical approaches are motivated by asymptotic arguments (as sample size n (() for linear estimators and therefore apply well for large training sets. In fact, for large 

, prediction estimates provided by fpe, gcv, and sms are asymptotically equivalent. They are asymptotically unbiased under the assumptions that the noise is independent and identically distributed and the estimator is unbiased. In many cases, classical model selection approaches are applied in practical situations when the underlying assumptions do not hold, i.e., they are applied when the model may be biased or the number of samples is finite. Several generalizations for nonlinear models have been proposed by [Moody, 1991] and [Murata et al., 1994]. These estimates generalize the notion of degrees of freedom to nonlinear models, but they are still based on asymptotic assumptions.


Another popular alternative is to choose model complexity using data-driven resampling. A common example of resampling approach is leave-one-out cross-validation (cv) when the prediction risk is estimated via cross-validation, and the model providing lowest estimated risk is chosen. It can be shown [Ripley, 1996] that cross-validation is asymptotically (for large 

) equivalent to analytic model selection (such as fpe, gcv, and sms). However, the computational cost of cv often becomes prohibitively large for real-life applications. Additional complications arise when using resampling with nonlinear methods (such as neural networks), due to existence of local minima and the dependence of final solution (obtained by an optimization algorithm) on weight initialization [Ripley, 1996]. 

3.2 VC-based complexity control
VC-theory provides a very general framework for complexity control called Structural Risk Minimization (SRM). Under SRM, a set of possible models (approximating functions) is ordered according to their complexity (or flexibility to fit the data). Specifically under SRM the set 

 of approximating functions 

 has a structure, that is, it consists of the nested subsets (or elements) 

 such that












where each element of the structure 

 has finite VC-dimension 

. By design, a structure provides ordering of its elements according to their complexity (i.e., VC-dimension): 


The concept of a structure in VC-theory is related to selecting a functional form of possible models. We illustrate this important concept for the problem of estimating univariate regression (from finite noisy samples) using a set of algebraic polynomials. For this problem, we can define 3 different structures (all using algebraic polynomials as a functional form):

(a) Dictionary structure, i.e., polynomials of m-th degree (m = 0,1,2,…) with coefficients estimated from data via linear least squares;

(b) Penalized structure, i.e. taking a polynomial of fixed large degree (say m=10) with constraints on the norm of its coefficients; so the coefficients are estimated via penalized least squares;

(c) Sparse polynomials of degree m, i.e., polynomials that contain exactly m polynomial terms (of arbitrary integer degree) with coefficients determined by least squares fitting. The choice of polynomial terms corresponds to feature selection, aka variable selection. Here selection of optimal features (providing smallest training error) leads to combinatorial optimization.
Even though each structure uses the same functional form (polynomials) it has totally different complexity ordering. Moreover, each structure requires a different optimization procedure, and has different statistical estimation properties. It is worth noting here that forming a structure (complexity ordering) on a set of approximating functions reflects a priori knowledge under VC-theoretical framework. In other words, choosing a structure for a given problem is outside the scope of VC-theory, such a choice should be driven by application requirements. In the case of feedforward neural networks the dictionary structure corresponds to the usual approach of controlling network complexity via the number of hidden units; the penalized structure corresponds to using weight decay for a network of fixed (large) size. The sparse structure approach is not commonly used with neural networks; however it is often used in statistical and pattern recognition methods as a pre-processing step (known as feature selection). Even though a combination of several structures is commonly used in practice (i.e., variable number of hidden units along with weight decay can be used during neural network training), this  complicates clear understanding of model complexity control (vs the choice of structure). Hence, in the framework of VC-theory, we advocate meaningful comparisons by applying different model selection criteria to the same structure. This common-sense requirement is often overlooked in empirical comparison studies.


Specifying a structure (a set of admissible models) along with optimization (parameter estimation) algorithm is analogous to selection of (implicit) priors for the learning problem [Cherkassky and Mulier, 1998]. However, note that VC-theory does not specify the choice of a structure. Selection of appropriate structure is driven by application-domain-specific knowledge outside the VC-theory. 

According to SRM, solving a learning problem with finite data requires a priori specification of a structure on a set of approximating functions. Then for a given data set, optimal model estimation involves two tasks: (1) Selecting an element (subset) of a structure (having optimal complexity), and (2) Estimating the model from this subset, where the model parameters are found via minimization of the empirical risk (i.e., training error). 


SRM provides analytic upper bounds on the prediction risk that can be used for model selection [Vapnik, 1982, 1995, 1998]. For regression problems with squared loss the following bound on prediction risk holds with probability 

:





(6)

where 

 is the VC-dimension of the set of approximating functions and 

  is a constant which reflects the 'tails of the loss function distribution', i.e. the probability of observing large values of the loss, and 

 is a theoretical constant. Note that the VC-bound (6) for regression has general form similar to (5).


For practical use of the bound (5) for model selection, one needs to set the value of theoretical constants 

, 

, and the confidence level 

. Choosing practical values of these constants as discussed in [Cherkassky and Mulier, 1998, Cherkassky et al, 1999] and substituting them into (6) gives the following penalization factor which we call Vapnik's measure (vm):








(7)

where p=h/n. For linear estimators, i.e. algebraic polynomials of degree m, VC-dimension h = m+1. Penalization factor (7) was used for VC-based complexity control in several empirical comparisons [Cherkassky and Mulier, 1998, Cherkassky et al, 1999; Cherkassky and Shao, 1998]. These comparisons suggest that Vapnik's measure (7) provides superior model selection than classical analytic model selection criteria and resampling methods (cross-validation) for linear regression problems, and for signal denoising applications.

VC-theory differentiates between two distinct settings for learning problems: 'large-sample' when the number of samples is much larger than the model complexity (i.e. p=h/n is small, say less than 0.15) vs 'finite' or 'small'-sample setting when the number of samples is comparable to VC-dimension. For the large-sample setting the denominator of (6) is (approximately) 1, so the VC-bound is minimized when the numerator of (6) is minimized. However, under finite-sample setting minimization of the VC-bound yields a trade-off between the numerator term (training error) and the denominator. In this case, an important issue is to find an optimal model complexity for a given (finite) training data.

Constructive implementation of SRM can be described as follows: For a given training data, estimate the model minimizing the empirical risk for the functions from each element 

 . Then for each element of a structure 

 the guaranteed risk is found using the bound provided by (6). Finally an optimal structure element 

 providing minimal guaranteed risk is chosen.


There is a common opinion that VC-bounds are too crude for practical model selection [Ripley, 1996; Bishop, 1995]. This viewpoint is in complete disagreement with the main premise of this paper. There are several likely causes for this disagreement:

First, the VC bounds are often applied with the worst-case estimates of the parameter values in (6) cited from the original Vapnik's papers. For practical problems, this leads to poor (too conservative) model selection. The premise of this paper is that VC-theory provides an analytical form of the bounds up to the value of constants. Selection of the constant values has to be verified empirically for a wide range of practical problems. In this paper and in our earlier work we used the same penalization factor (7) for complexity control of different estimators (linear, penalized linear, wavelet) on various data sets.

Second cause of misconception is using VC bounds to estimate the generalization error of feedforward neural networks. Here the common approach is to estimate the bound on the generalization error (of a trained network) using theoretical estimates of the VC-dimension as a function of the number of weights [Baum and Haussler, 1989; Koiran and Sontag, 1996]. This generalization bound is then compared against the actual generalization error (measured empirically), and a conclusion is made regarding the poor quality of VC bounds. The problem with this approach is that the "theoretical" VC dimension can be quite different from the "actual" VC dimension which takes into account the regularization effect of neural network training algorithm [Cherkassky and Mulier, 1998]. 

Third, the VC-bounds are sometimes contrasted to theoretical bounds developed in approximation theory [Barron, 1993; Girosi, 1994] and PAC learning theory [Lee et al, 1996; Anthony and Bartlett, 2000]. These asymptotic bounds introduce the penalization factor of the form 

 which is similar to classical model selection approaches. Theoretical analyses based on approximation theory [Barron, 1993; Girosi, 1994] require that the target function (being estimated) is rather smooth in order to guarantee fast asymptotic rate of convergence. In particular, more smoothness requirements should be imposed on higher-dimensional functions. These asymptotic rate-of-convergence results lead to a rather pessimistic conclusion: fast rate of approximation is possible only for rather smooth functions (e.g., we cannot expect to obtain good estimates for discontinuous functions). However, note that this conclusion is based on the asymptotic framework. It does not imply that nonasymptotic estimates can be much better [Vapnik, 1998]. Recently, Vapnik [1998, pp. 239-240] explored the connection between rate-of-convergence bounds and finite-sample VC bounds for regression case, and he showed analytically that asymptotic bounds can be derived from the VC bounds in the asymptotic limit.

4. COMPLEXITY CONTROL for LINEAR METHODS
Empirical comparisons of classical methods for model selection with VC-based approach using penalization factor (7) for linear estimators have been reported in [Cherkassky and Mulier, 1998; Cherkassky et al, 1999]. These comparisons use continuous and discontinuous univariate target functions (see Fig. 2) with x-values uniformly distributed in a [0,1] interval, and y-values corrupted by gaussian noise. Experimental set-up [Cherkassky et al, 1999] covers a wide range of training sample sizes (from 30 to 1,000); noise levels (SNR = 0.1 to 10); and two types linear estimators using algebraic polynomials and (bounded) trigonometric polynomials (Fourier expansion). Here approximating functions are polynomials (of different degrees) with coefficients estimated (from data) via linear least squares. This corresponds to the dictionary structure discussed in section 3.2. 


With linear estimators, model selection amounts to choosing the degree of a polynomial or choosing the number of terms in a Fourier expansion, for a given training sample. The quality of an estimate is measured as the mean-squared-error MSE or 

 distance between the true function and the model chosen by a model selection method. The quality of regression estimates is affected by a random training sample. For a meaningful comparison, the fitting/model selection experiment is repeated 300 times with different random training samples of the same size, and the resulting empirical distribution of MSE or RISK is shown (for each method) using box plots.  Standard box plot notation specifies marks at 95, 75, 50, 25 and 5 percentile of an empirical distribution of the MSE.

Representative comparisons for finite-sample setting are shown in Fig. 3 for sine-squared target function and in Fig.4 for discontinuous (piecewise polynomial) target function.  Better prediction performance of a model selection approach corresponds to lower values of (prediction) risk as well as narrower box plots of risk (narrow box plots indicate that a method is robust with respect to random training sample variations). As evident from Figs. 3 and 4, the VC-based approach (marked vm) provides lower values of prediction risk (MSE) than other methods. This is achieved by choosing the model complexity very conservatively (low) - see box plots on the bottom of Figs. 3 and 4. These comparison results also suggest that the differences in methods’ prediction accuracy (Risk) become more exaggerated with (unbounded) polynomial estimators, and less pronounced with (bounded) trigonometric estimators. However, it is interesting to note that VC-based method yields estimates with (roughly) the same value of prediction accuracy and model complexity (DoF) for both types of estimators. It can be seen by comparing the box plots of Risk and DoF for the vm method in parts (a) and (b) of Figs. 3 and 4. The fact that these box plots in (a) and (b) are very similar, suggests that with small samples the prediction accuracy depends mainly on model complexity control, rather than on the type of approximating functions (i.e., polynomial vs. trigonometric basis functions).


Extensive comparisons presented in [Cherkassky et al, 1999] suggest that under finite-sample settings VC-based complexity control yields consistently more accurate predictions than classical model selection approaches (including cross-validation cv), whereas for large-sample problems (i.e., 1,000 samples) all model selection approaches give similar prediction accuracy. The same VC-bound (7) has been used for penalized linear estimators, i.e. algebraic or trigonometric polynomials of large fixed degree (25 was used) with a ridge penalty on the norm of coefficients [Cherkassky et al 1999]. In this formulation the value of regularization parameter ('lambda') is chosen by a given model selection method, where in place of the number of free parameters in classical methods (5) and in VC bound (7) we used the 'effective' degrees of freedom of a penalized linear estimator based on the eigenvalues of an equivalent kernel representation [Hastie and Tibshirani, 1990; Bishop, 1995; Cherkassky and Mulier, 1998]. Comparison results [Cherkassky et al, 1999] are qualitatively similar to the non-penalized case, in that the VC-method consistently yields more accurate model selection than classical methods (5), for a wide range of sample sizes, noise levels and two target functions shown in Fig. 2. VC complexity control achieves better prediction performance by selecting lower effective DoF than other methods.
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Figure 2. Target functions used in the comparison
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(a) Polynomial estimation.
(b) Trigonometric estimation.

Figure 3.  Results for the sine squared target function with sample size of 30 and SNR=2.5.
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(a) Polynomial estimation
(b) Trigonometric estimation

Figure 4.  Results for the piecewise polynomial target function with sample size of 30 and SNR=2.5. 

5. COMPLEXITY CONTROL for SIGNAL DENOISING

In Signal Processing, functions (signals) are estimated as a linear combination of orthonormal basis functions:





(8)

where x denotes a continuous input variable (i.e., time) for univariate signals, or a 2-dimensional input variable (for 2D signals or images). The bias term 

 is often omitted since signals are zero mean. 

Signal denoising formulation assumes that y-values of available training data are corrupted by noise, and the goal is to estimate the ‘true’ signal from noisy samples. Thus signal denoising is closely related to the regression formulation of the learning problem (presented in Section 2). Specifically, signal denoising formulation (commonly used in signal processing) can be defined as a standard function estimation problem  with additional simplifications:

(a) fixed sampling rate in the input (x) space. This means there is no statistical uncertainty for x-values of training and test data;

(b) low-dimensional problems, that is 1 or 2-dimensional signals;

(c) signal estimates are obtained in the class of orthogonal basis functions 

. 

Examples of orthonormal basis functions 

 include Fourier series and, more recently, wavelets. Assuming that the basis functions in expansion (8) are (somehow) chosen, estimation of the coefficients in a linear expansion becomes especially simple due to orthogonality of basis functions - and can be performed using standard signal processing algorithms, such as Discrete Fourier Transform (DFT) or Discrete Wavelet Transform (DWT). 

According to VC framework, parameterization (8) specifies a generic structure or complexity ordering (indexed by the number of terms m) used in signal processing. Particular ordering of the basis functions (i.e., wavelet coefficients) in (8) according to their importance for signal estimation should reflect a priori knowledge about the properties of a target signal being estimated. Hence different orderings result in different denoising methods. Namely, fixed ordering of the basis functions (i.e., harmonics) in parameterization (8) independent of data results in linear filtering methods. On the other hand, recent wavelet thresholding methods [Bruce et al, 1996; Donoho and Johnstone, 1994; Donoho, 1995] select wavelet basis functions adaptively in a data-dependent fashion. A common approach is to order wavelet coefficients according to their magnitude. 

Wavelet thresholding methods use the following signal estimation or denoising procedure:

(1) apply Discrete Fourier Transform (DFT) or Discrete Wavelet Transform (DWT) to n samples (noisy signal) yielding n Fourier (or wavelet) coefficients;

(2) order Fourier (wavelet) coefficients (usually according to their magnitude);

(3) select m most ‘important’ Fourier coefficients in ordering (2) according to some thresholding rule;

(4) generate (denoised) signal estimate via inverse DFT (or DWT) from selected coefficients.

Existing wavelet thresholding methods: SURE, VISU, HYBRID, MINIMAX and MAD, all of which are a part of the WaveLab package (available at http://playfair.stanford.edu/~wavelab) developed at Stanford University, effectively follow the above denoising procedure. Most denoising methods use ordering (2) according to the magnitude of the wavelet coefficients. The main difference between wavelet thresholding methods is in a procedure for choosing the threshold (Step 3). Typically, the threshold value is determined based on certain statistical models/assumptions about the noise and/or target signal. For example, VISU provides analytic prescription for threshold as a function of the number of samples and the standard deviation of noise (known or estimated). Another popular method is to choose the threshold value minimizing Stein’s Unbiased Risk Estimate (SURE), where SURE is an analytic estimate of prediction risk derived under certain assumptions. The very existence of so many different wavelet thresholding methods suggests their limited practical value in situations where restrictive assumptions (underlying these methods) do not hold.

One can readily interpret the above procedure using the framework of VC-theory [Cherkassky and Shao, 2001]. Namely, estimation of wavelet coefficients (parameters in expansion (8)) via DWT in Step 1 corresponds to minimization of empirical risk. Ordering of wavelet/ Fourier coefficients in Step 2 implements the choice of a structure. Since ordering (or selection of basis functions) is performed in data-dependent fashion, wavelet thresholding is an example of nonlinear or adaptive learning method[Donoho et al, 1998]. Finally, thresholding in Step 3 corresponds to complexity control or model selection. Denoising accuracy of wavelet thresholding algorithm depends on 3 factors: the type of basis function chosen, ordering of basis functions (choice of a structure) and thresholding rule (complexity control). Cherkassky and Shao [1998, 2001] specify a particular ordering of wavelet coefficients, suitable for denoising of univariate signals. In their structure, (wavelet or Fourier) basis functions are ordered according to their coefficient values adjusted (divided) by frequency. This ordering effectively penalizes higher-frequency basis functions:







(9)

Cherkassky and Shao [1998, 2001] also use VC penalization factor (7) for choosing a threshold. When applying VC-bound for model selection, the number m of most important wavelet (Fourier) coefficients in ordering (9) can be used as an estimate of VC-dimension. The optimal number of wavelet (Fourier) coefficients chosen by thresholding method in Step 3 is also denoted as DoF (degrees-of-freedom) in experimental results discussed next.


[Cherkassky and Mulier, 1998, Cherkassky and Shao, 2001] performed empirical comparisons of the VC-based denoising with several wavelet thresholding methods: SURE (with hard thresholding), VISU (with soft thresholding), HYBRID, MINIMAX and MAD, all of which are a part of the WaveLab package (available at http://playfair.stanford.edu/~wavelab) developed at Stanford University.  These comparisons performed on various nonstationary 1D signals indicate that the VC-based approach achieves more accurate denoising than wavelet thresholding methods under finite-sample settings, whereas under large-sample settings all methods provide similar estimation accuracy. Fig. 5 shows two target signals used for empirical comparisons, where estimation (denoising) was performed using 128 points (sample size) with additive gaussian noise (SNR = 2.5). All thresholding methods use the same symmlet wavelets. The comparisons are shown only with SURE method using hard thresholding and with VISU method using soft thresholding, due to space limitations. See [Cherkassky and Shao, 1998, 2001] for complete details. Comparison results in Fig.6 are based on many (300) realizations of a random signal, so that the resulting empirical distribution of the signal estimation error and the number of wavelet coefficients (or degrees-of-freedom DoF) chosen by each method are displayed using standard box plot notation.  In Fig. 6, NRMS denotes the L2 distance between the true signal and its estimate normalized by the standard deviation of the true signal. Extensive comparisons [Cherkassky and Shao, 1998, 2001] indicate that VC-based wavelet denoising method is more flexible and robust than existing wavelet denoising methods for univariate signals. Standard wavelet thresholding methods tend to perform well only under restricted settings. For example, results in Fig.6 suggest that SURE method performs well for the Blocks signal but fails for Heavisine signal, whereas VISU method performs better for the Heavisine signal but fails for the Blocks. In contrast, the VC-method (marked vm) shows consistently good performance for both signals.
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Figure 5. Target functions used for comparisons
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Figure 6. Comparison results for wavelet model selection.


Possible applications and extensions of VC-based signal denoising include denoising of ECG signals [Cherkassky and Kilts, 2001] and image denoising, as discussed next. Extension of VC-denoising approach to 2D signals (images) involves calculating 2D discrete wavelet transform of an image, specifying a suitable ordering of he wavelet coefficients according to their 'importance' and finally choosing an optimal number of terms (wavelets) from this ordering. The main research issue here is specifying suitable orderings of 2D wavelet basis functions, which reflect general properties of natural images. Preliminary comparisons show that an ordering penalizing higher-frequency wavelets similar to (9) in the 2D case in conjunction with proposed VC complexity control yields a practical image denoising method that is superior to Donoho’s level-dependent thresholding [Donoho, 1992; Donoho et al, 1998] for representative synthetic and natural images – for example, see comparison results in Fig. 7. For the cross-diagonal image shown in Fig.7, VC denoising method selects 532 wavelet coefficients and yields better denoising (smaller MSE) than Donoho’s thresholding, which selects 714 coefficients. The process of VC model selection for denoising the image in Fig. 7 is detailed in Fig.8: for a specified ordering of the wavelet coefficients (i.e. magnitude adjusted by scale as in (9)) we calculate the VC-bound as a function of training error and DoF (the number of chosen coefficients). The optimal model complexity corresponds to the minimum of this bound (see Fig. 8). The testing error in Fig. 8 is not known to the VC method and is shown for explanation. Notice how accurately the VC-method determines the optimal model complexity (it coincides almost perfectly with the minimum of measured testing error), even though the estimates of testing error provided by the VC bound are very inaccurate. 

Empirical success of VC-based signal denoising has several methodological implications. First, it shows the importance of model complexity control for finite sample settings. Technically, all practical signal estimation problems are of finite-sample nature. Hence the VC-based approach may be competitive vs existing wavelet thresholding methods that are theoretically justified under asymptotic assumptions. Second, signal denoising formulation provides an ideal testbed for the VC-based approach for nonlinear estimators, since with orthogonal basis functions the empirical risk (using squared loss error) can be readily minimized. Hence, VC-based wavelet thresholding is the first example of successful analytic model complexity control for nonlinear estimators. We also point out that VC-based signal denoising approach described in this paper uses the number of wavelet coefficients (degrees-of-freedom) as an estimate of the VC-dimension in penalization factor (7). Strictly speaking, DOF is not an accurate estimate of the VC-dimension for data-dependent structure (9). Further improvements in signal denoising may be possible using more accurate estimates of the VC-dimension for this setting, and we are currently working in this direction [Shao and Cherkassky, 2001].
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Figure 7. Comparison of Donoho’s level-dependent thresholding and VC-denoising. 
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Fig. 8. Image denoising using VC-bound for complexity control.

7. SUMMARY and DISCUSSION

This paper describes important issues for model complexity control (or model selection) using the framework provided by VC theory. It is argued that VC-theory (developed for finite-sample learning problems) is more appropriate than traditional statistical approaches to model complexity control based on asymptotic assumptions. We have also shown several empirical comparisons, namely for linear estimators and for nonlinear wavelet thresholding, showing practical advantages of VC-based complexity control for finite-sample estimation problems. Even though all technical results and empirical comparisons in this paper are given for the problem of estimating real-valued functions with squared loss (regression formulation), we emphasize the methodological aspects of applying VC-theoretical results for model complexity control that are valid for other learning problem formulations as well. Our main conclusion/recommendation is that VC generalization bounds for regression can and should be used for model complexity control when these bounds can be rigorously applied. We hope to see new practical research on applying VC-bounds for complexity control under classification (pattern recognition) formulation and other learning problems.


The main practical and methodological concern for future research is model complexity control for nonlinear estimators. So in conclusion, we consider principal challenges for practical model selection using VC-bounds for nonlinear estimators:

(a) minimization of empirical risk. The problem of finding a global minimum is a difficult task for nonlinear estimators, and this leads to numerous nonlinear optimization heuristics.

(b) estimating VC-dimension. This is a very difficult task for nonlinear estimators. For example, for feedforward neural networks using (standard backpropagation training) the VC-dimension is smaller than the number of parameters (weights). For other nonlinear estimators such as sparse polynomials implementing the idea of sparse feature selection the VC-dimension is larger than the number of parameters (polynomial degree) and its upper and lower bound can be analytically estimated [Vapnik, 1995]. A practical alternative to analytic estimation of the VC-dimension may be measuring the VC-dimension experimentally [Vapnik et al, 1994; Shao et al, 2000].

(c) dealing with correlated (non i.i.d.) training data. Note that whereas all major theoretical results developed in VC-theory assume i.i.d. additive noise in the training data, this assumption may not hold in some applications.

Note that 3 factors (above) complicate practical use of VC-bounds for model complexity control with nonlinear estimators. Each of these factors may have a non-trivial and counter-intuitive effect on model complexity. In addition, there may be confounding effects between these factors, i.e., a nonlinear optimization technique may have non-trivial regularization effect on the complexity (VC-dimension) of an estimator [Cherkassky and Mulier, 1998]. The challenge of future research is to develop practically robust and theoretically sound methods for complexity control that address each of these factors.
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(a) Piecewise polynomial 
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(b) Sine squared function 
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