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a b s t r a c t

We investigate a multi-agent planning problem, where each agent aims to achieve an individual task
while avoiding collisions with other agents. Each agent’s task is expressed as a Time-Window Temporal
Logic (TWTL) specification defined over a discretized environment. We propose a distributed receding
horizon algorithm for online planning of agent trajectories. We show that under mild assumptions on
the environment, the resulting trajectories are always safe (collision-free) and lead to the satisfaction of
the TWTL specifications or a finite temporal relaxation. Accordingly, each agent is guaranteed to safely
achieve its task, possibly with some minimal finite delay. Performance of the proposed algorithm is
demonstrated via numerical simulations and experiments with quadrotors.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

The control and coordination of multi-agent systems for pack-
ge delivery, disaster relief, warehouse logistics, smart trans-
ortation, or persistent surveillance have received significant at-
ention in recent years (e.g., [1–5]). Collision avoidance is critical
or the safe operation of multi-agent systems while performing
uch complex tasks over a shared environment. Since the com-
lexity of joint planning grows exponentially with the number
f agents, significant effort has been devoted to the design of
istributed algorithms with safety and performance guarantees.
n this paper, we propose a distributed algorithm for satisfying
omplex high-level specifications while ensuring safety.

.1. Related work

In the literature, potential fields (e.g., [6]), sequential con-
ex programming (e.g. [7]), priority based planning (e.g., [8]),
ontrol barrier functions (CBFs) (e.g., [9]) or buffered Voronoi
ells (e.g., [10]) have been employed for distributed collision
voidance. More recently, some of these methods have been
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United States by Honeywell Aerospace and MnDRIVE, University of Minnesota,
United States.
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extended to account for constraints on agent dynamics as well
as deadlock detection and avoidance (e.g., [11,12]). In particu-
lar, [12] explicitly defines different types of deadlock which may
occur, and how those deadlocks are accounted for through their
implementation of CBFs. There also exist methods such as optimal
reciprocal collision-avoidance (ORCA) [13] and a buffered Voronoi
cell collision-avoidance strategy which requires less information
than ORCA and can produce smooth collision-free trajectories
with reduced number of deadlocks [14]. However, these methods
do not guarantee deadlock avoidance. Other approaches such
as distributed model predictive control (e.g. [15,16]), differential
games (e.g., [17]), and game theoretic methods (e.g., [18]) have
also been used for distributed planning. The methods described
thus far typically do not accommodate complex spatio-temporal
requirements that can be expressed as temporal logics.

Recently, there has been a significant interest in the analysis
and control of dynamical systems under temporal logic specifica-
tions. For instance, linear temporal logic (LTL) [19] has been ex-
tensively used in motion planning and control of robots (e.g., [20–
22]). To ensure collision avoidance while satisfying more complex
tasks defined as LTLs in a distributed manner, hybrid controllers
can be employed, which can essentially combine a high-level
mission planner with a local planner which enforces collision
avoidance (e.g., [23,24]). While these results are promising, LTL
cannot express tasks with explicit time constraints. For example,
consider an agent that is required to perform the following task:
‘‘visit A for 1 time unit within 5 time units, and after this visit
B for 3 time units within 10 time units, and visiting C must be
performed after visiting both A and B twice’’. Such tasks with
time constraints can be expressed via bounded temporal logics
(e.g., [25–28]).
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Ensuring safety under bounded temporal logics for multi-
gent systems has received considerable attention in recent years
e.g., [29–32]). When it is impossible to find safe paths that satisfy
he original specifications, it may be desired to satisfy some
elaxed versions of the specifications instead. The framework
n [33] gives feedback on why the specification is not satisfiable
nd how to modify it. In [34], the robots slow down to give
heir iterative optimization algorithm more time to solve when
ecessary. The framework in [32] looks to minimize the viola-
ion by considering both hard and soft constraints, where the
ard constraints (such as collision avoidance) must be satisfied.
lternatively, our algorithm allows for the temporal relaxation of
ime-window temporal logic (TWTL) specifications, and we show
hat, under mild assumptions on the environment topology, our
lgorithm ensures the completion of all TWTL specifications with
inite temporal relaxation.

This work is closely related to [20,29,35]. Similar to this paper,
multi-agent receding horizon algorithm is proposed in [20]

o generate each agent’s path independently using only local
nformation. However, each task was defined by LTL (which can-
ot express explicit time constraints) and collision avoidance
as not considered. In [35], collision avoidance was ensured by
enalizing transitions in the centralized graph which captures
he environment and TWTL specifications for all agents in the
ystem. This centralized algorithm is not scalable as the number
f agents increases. Moreover, in [35], if a safe path satisfying
he TWTL cannot be found, the algorithm terminates and does
ot allow for relaxations of the TWTL specifications. Finally, the
ork in [29] considers a global task that needs to be achieved
y the multi-agent system and allows for temporal relaxation
ith TWTL specifications. However, collision avoidance is not

ncorporated in path planning.
The collision avoidance procedure in this work is closely re-

ated to [36,37]. In [36], a distributed prioritized planning al-
orithm is introduced, and [37] is essentially an asynchronous
xtension of [36] called revised priority planning. These algo-
ithms assume complete peer-to-peer communication of trajec-
ories while planning, and the entire path must be calculated
efore execution which does not lend itself well to unexpected
nterruptions. Our proposed collision avoidance procedure dy-
amically allocates priorities based on how close the agents are
o completing their tasks. Our algorithm differs from previous
ersions of distributed prioritized planning (e.g., [36,37]) by (1)
etecting and resolving deadlocks (under mild assumptions on
he environment), (2) considering partial/local information while
omputing agent paths in a receding horizon manner using dy-
amic programming, and (3) having the capability of changing
oal regions of agents (allowable by the temporal logic) while
voiding collisions and resolving deadlocks (whereas state-of-
he-art collision avoidance algorithms assume fixed goal regions
or each agent).

.2. Contributions

This paper introduces a distributed algorithm for safe sat-
sfaction of TWTL specifications, which can efficiently express
omplex time bounded tasks [28], for multi-agent systems op-
rating in shared environments. In this paper, each agent is
ssigned with an individual TWTL specification and is assumed to
ove over a discretized environment. Agents communicate with

he other agents in their local neighborhoods to plan collision-
ree paths in a receding horizon manner. The main contribution
f this paper is a distributed algorithm for safe satisfaction of
WTL specifications by resolving conflicts via online re-planning,
elaxing time windows if infeasibility occurs, and resolving pos-
ible deadlocks when detected. We theoretically show that the
2

proposed algorithm produces individual agent paths that avoid
both collisions and deadlock, and complete tasks in finite time.

Some preliminary results of this work has been presented
in [38]. This paper is a significant extension of [38], and the
main differences are as follows: (1) [38] shows that if the en-
vironment has n-connectivity where n is the number of agents,
there will not occur any deadlocks. Thus, [38] shows that agent
paths with finite temporal relaxations can always be found under
this environment assumption. In this paper, we eliminate the
n-connectivity assumption and introduce a deadlock resolution
algorithm that can resolve conflicts under an assumption that
is milder than n-connectivity (i.e., the premise of Lemma 1).
We also prove that the proposed algorithm can find paths with
finite relaxations by resolving deadlocks (Theorem 1); (2) in this
paper, we generalize the formulation and introduce a mapping
for the conflicting transitions. Accordingly, one can flexibly define
conflicting transitions depending on the problem’s assumptions
and the capabilities of the low-level controller. (3) Moreover, [38]
finds agent paths via exhaustive search. In this paper, we im-
plement dynamic programming, which dramatically reduces the
computational time to solve for the agent paths; (4) Finally, we
present a benchmark analysis and compare our algorithm with
some of the well-known methods in addition to different priority
settings.

1.3. Organization

The remainder of the paper is organized as follows: Section 2
introduces TWTL, its temporal relaxation, and some graph the-
ory preliminaries. Section 3 states the problem. The proposed
algorithm and theoretical results are presented in Section 4. Ex-
perimental results on a team of quadrotors, numerical results,
and benchmark analysis are shown in Section 5. The paper is
concluded with a summary and possible future work in Section 6.

2. Preliminaries

2.1. Notation

We denote Z,Z+,R,R+ as the set of all integers, positive
integers, real numbers, and positive real numbers, respectively.
Throughout this paper, t denotes discrete time. Sets are often
given by capital letters, S, and lower case letters denote a member
of a set, s ∈ S. Vectors or sequences are shown in bold, s.
Cardinality is indicated by |·| (i.e., the number of elements in a
finite vector, sequence, or set), and 2S indicates the power set (set
of all subsets) of S.

2.2. Time Window Temporal Logic (TWTL)

Syntax and Semantics: The syntax of TWTL is defined as:

φ := α |φ1 ∧ φ2 |φ1 ∨ φ2 | ¬φ |φ1 · φ2 |Hdα | [φ][a,b],

where φ is a TWTL specification, α ∈ AP is an atomic proposition
that has a binary truth value (e.g., being at region α or not) and
AP is the set of atomic propositions; ∧, ∨, and ¬ are the Boolean
operators for conjunction, disjunction, and negation, respectively;
· is the concatenation operator such that φ1 ·φ2 specifies that first
φ1 and then immediately φ2 must be satisfied. The semantics are
defined with respect to finite output words o over AP where o(t)
denotes the discrete-time element on o. The hold operator Hdα

specifies that an atomic proposition α ∈ AP should be true for
d time units (i.e., o |= Hdα if o(t) = α ∀t ∈ [0, d]), while the
within operator [φ][a,b] bounds the satisfaction of φ within a time
window [a, b].



R. Peterson, A.T. Buyukkocak, D. Aksaray et al. Robotics and Autonomous Systems 142 (2021) 103801

T
l
d
w

u
s
[
v

Fig. 1. [Left] Conventional dFSA of a TWTL φ, [Right] Annotated dFSA that represents all temporal relaxations of φ.
t
(

emporal Relaxation: Given a TWTL specification, its temporal re-
axation can be written by adding slack variables to the time win-
ows of each hold operator to represent shorter or longer time
indows. For instance, consider the following TWTL formula:

φ = [H2A][0,5] ·
[
H1B ∧ [H2C][0,6]

][2,10]
In plain English, φ can be interpreted as: ‘‘Service A for 2 time

nits within the time bound [0,5], then immediately after this,
ervice B for 1 time unit and service C for two time units within
0,6], which both must be performed within [2,10]’’. The relaxed
ersion of φ is written as:

φ(τ) = [H2A][0,5+τ1] ·
[
H1B ∧ [H2C][0,6+τ2]

][2,10+τ3]

where τ = (τ1, τ2, τ3) ∈ Z3 is the temporal relaxation vector.
Overall, the temporal relaxation of φ(τ) is quantified by |τ|TR =
maxj(τj) [28].

For any TWTL specification, φ, an annotated deterministic
finite state automaton (dFSA) can be constructed that captures
all feasible temporal relaxations of φ. Specifically, for the example
given above, this means the dFSA captures all possible values of
(τ1, τ2, τ3) ∈ Z3 which modify the time windows of the initial
TWTL formula.

Definition 1 (Annotated Deterministic Finite State Automaton [28]).
Consider a TWTL formula φ that is defined over the set of atomic
propositions AP . An annotated dFSA of φ represents all temporal
relaxations of φ, and it is a tuple A∞ = (SA∞ , s0, Σ, δA∞ , FA∞ )
where

• SA∞ is a finite set of states;
• s0 ∈ SA∞ is the initial state;
• Σ = 2AP is the input alphabet;
• δA∞ : SA∞ ×Σ → SA∞ is the transition function;
• FA∞ ⊆ SA∞ is the set of accepting states.

Consider a TWTL specification φ = [H2B][0,4], which means
that ‘‘service region B for two consecutive time steps within a
time window [0, 4]". A conventional dFSA of φ represents all
possible satisfactory cases within the specified time window. For
instance, the left graph in Fig. 1 illustrates the conventional dFSA
of φ. On the other hand, the right graph in Fig. 1 illustrates the
annotated dFSA that captures all satisfactory cases for all tempo-
ral relaxations of φ. This is mainly achieved by adding backward
edges, which also result in a more compact representation for
the annotated dFSA. In this paper, we construct the annotated
dFSA of each TWTL specification, and the reader is referred to [28]
for further details on the construction and properties of the
annotated dFSA.

Once we construct the annotated dFSA, we also add a self-
transition to each accepting state s ∈ F . This modification
A∞

3

enables an agent to continue mission execution after it satisfies
its specification.

2.3. Graph theory

A weighted directed graph is a tuple G = (X, ∆, w) where
X is a set of nodes, ∆ ⊆ X × X is a set of edges between the
nodes, and w : ∆ → R+ denotes the weight function. We use
∆in

x , ∆out
x ⊆ ∆ to denote the set of incoming and outgoing edges

of a node x ∈ X . Accordingly, ∆x = ∆in
x ∪∆out

x denotes the set of
all edges incident to x. A node x′ ∈ X is said to be an out-neighbor
of another node x ∈ X if (x, x′) ∈ ∆. We use N (x) to denote the set
of out-neighbors of x. For brevity, we will use the term ‘‘neighbor’’
when referring to an ‘‘out-neighbor’’. We use NH (x) to denote the
set of all nodes that are reachable from x in at most H hops.

A graph is strongly connected if there exists a path from
any node x to any other node x′. A path x on a graph G is a
sequence of nodes such that there exists an edge from any node
in x to the next node in the sequence. We use |x| to denote
the path length, i.e., the total number of edges traversed on x.
The weighted graph distance between the nodes, d(x, x′), is equal
to the cumulative weight of edges traversed along the shortest
(minimum cumulative weight) path from x to x′.

Let X ′ ⊆ X be a subset of nodes. The set X ′ induces a sub-graph
that is the graph with the node set X ′ and the edge set consisting
of the edges between the nodes in X ′. A (strongly) connected
component in G is a maximal sub-graph in which every node is
reachable from every other node in the sub-graph.

3. Problem statement

3.1. Agent model

Dynamics: We consider a set of identical agents, N = {1, . . . ,
n}, moving in a discretized 3D environment, whose abstraction
is initially given as a graph G = (X, ∆, w). In general, several
methods (e.g., [39,40]) can be used to construct such an abstrac-
tion; however, the construction of the abstraction is not in the
scope of this paper. Given an environment graph, G, we model
the dynamics of each agent as a deterministic weighted transition
system. Moreover, the agents move synchronously on G meaning
state transitions for any agent happen at the same time.

Definition 2 (Deterministic Weighted Transition System). A de-
erministic weighted transition system (dWTS) is a tuple T =
X, x0, ∆, w, AP, l) where:

• X is a finite set of states;
• x0 ∈ X is the initial state;
• ∆ ⊆ X × X is the set of transitions;
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• w : ∆→ R+ is the weight function;
• AP is a finite set of atomic propositions;
• l : X → 2AP is the labeling function.

We make a mild assumption that the transition system T is
strongly) connected, that is, any x′ ∈ X can be reached from
ny x ∈ X via a finite number of transitions. If this assumption
oes not hold, then there exists a state x′′ in the environment

such that some states are not reachable from x′′. This would
cause some arbitrary specifications to be infeasible due to the
lack of basic connectivity requirements of the environment. To
avoid such infeasibilities, we exclude the structural issues of the
environment by assuming it strongly connected.

A path (or run) of the system is a sequence of states x =
x0x1 . . .. This path x generates an output word o = o0o1 . . .,
where ot = l(xt ), ∀t ≥ 0. The language corresponding to a
transition system T is the set of all generated output words,
denoted by L(T ). The weight of a transition can be defined by
the time or input (e.g., fuel) cost required to traverse transitions
or a combination of the two. Without loss of generality, we will
consider normalized weights, i.e., w(x, x′) ∈ (0, 1] for all (x, x′) ∈
∆.
Communications:We consider a setting where each agent plans its
own trajectory in a receding horizon manner to safely complete
its own task. Accordingly, for any horizon length H ≥ 1, each
agent needs to communicate with the other agents within 2H-
hops of its current position on the environment graph to compute
a collision-free path over the next H time steps. We assume that
the agents have such local (2H-hop) communication capability,
and we use N2H

i ⊆ N to denote the set of all agents within 2H-
hops of agent i’s current position. Note that we do not assume a
separate communication graph for agents. Communicating with
agents within 2H-hop neighborhood implies that communicating
with agents that are 2H-hop distance away from the agent’s
current position. Such a local communication capability defines a
connected multi-hop communication network for each agent. We
use N i ⊆ N to denote the set of agents that are connected to agent
through such multi-hop communications. Accordingly, N i is the

smallest set of agents that satisfy the following two conditions:

i ∈ N i, and N2H
j ⊆ N i, ∀j ∈ N i. (1)

Note that both N2H
i and N i are determined by the current posi-

tions of the agents and change over time as the agents move. In
our proposed algorithms, such local communications are mainly
used to provide each agent iwith two types of information: (1) H-
hop path of each agent in N2H

i , and (2) current position, priority,
and update indicator of each agent in N i. These variables will be
clearly defined in Section 4.
Specifications: Each agent i aims to satisfy a TWTL formula, φi,
that is defined over the atomic proposition set, AP , of the tran-
sition system Ti. It is assumed that agents do not know about
the other agents’ specifications. In the presence of violations,
instead of terminating the mission, each agent i tries to satisfy
a minimal temporal relaxation of φi, i.e., φi(τ i), which will be
formally defined in the problem statement.

3.2. Problem statement

Suppose that there are n identical agents, each of which has its
own respective transition system Ti. We address the problem of
planning paths such that each agent satisfies its individual TWTL
specification while avoiding collisions with the others. In order to
enforce collision avoidance, the agents require some representa-
tion of infeasible transitions (i.e., transitions which may result in

collision).

4

Definition 3 (Conflicting Transition). A conflicting transition is a
transition which is not allowed while a transition (x, x′) is being
traversed.

For example, if an agent takes a transition (x, x′) to move to
state x′, then another agent located at x′ may not be allowed to
stay in the same state. Then, given a transition (x, x′), the transi-
tion (x′, x′) is defined as a conflicting transition. A mapping of all
conflicting transitions is defined for every transition (x, x′) ∈ ∆ as
CG , where CG : ∆→ 2∆. A particular set of conflicting transitions
or some transition (x, x′) is denoted as CG(x, x′). Hence, when an
agent takes a transition (x, x′), the other agents cannot take any
of the transitions in CG(x, x′) in the same time step. We make the
following mild assumptions on the mapping CG .

Assumption 1. All conflicts are local on G such that

(x, x′) ∈ CG(y, y′)⇒ x ∈ N 2(y), (2)

and they are symmetric, i.e., for every x, x′, y, y′ ∈ X

(x, x′) ∈ CG(y, y′) ⇐⇒ (y, y′) ∈ CG(x, x′). (3)

Furthermore, a self-transition can only conflict with the transi-
tions incoming to that state, i.e.,

CG(x, x) ⊆ ∆in
x , ∀x ∈ X . (4)

Accordingly, we say that the paths of agents are safe if the
concurrent transitions do not conflict with each other.

Definition 4 (Safe Path). A path of agent i, xi = xitx
i
t+1 . . . over

the environment graph G = (X, ∆, w) is safe if, for all t ≥ 0 and
for all j ̸= i, (xit , x

i
t+1) /∈ CG(x

j
t , x

j
t+1).

We aim to solve a multi-agent path planning problem which
results in safe paths over G that satisfy the individual TWTL
specifications with minimal temporal relaxation.

Problem 1. Let a multi-agent system consist of n identical
agents, each of which has a transition system Ti and an individ-
ual TWTL specification φi. Find safe paths x1, . . . , xn that satisfy
minimally relaxed TWTL specifications φ1(τ1), . . . , φn(τn), i.e.,

min
x1,...,xn

n∑
i=1

|τ i
|TR

s.t. (xit , x
i
t+1) /∈ CG(x

j
t , x

j
t+1), ∀i ̸= j ∈ {1, . . . , n},

oi |= φi(τ i), ∀i ∈ {1, . . . , n}.

(5)

where oi is the output word associated with the state path xi
= xi0x

i
1 . . . over Ti, and |τ i

|TR ∈ Z is the temporal relaxation of
φi.

3.3. Challenges of a centralized solution

The multi-agent problem defined in (5) can be solved via an
automata-theoretic approach. To this end, a product automaton
Pi can be constructed for each agent given its transition system
Ti and its dFSA A∞,i. The purpose of the product automaton
is to encode all possible satisfactory cases given the feasible
movement on the transition system.

Definition 5 (Weighted Product Automaton). Let T = (X, x0, ∆, w,

AP, l) be a transition system and A∞ = (SA∞ , s0, Σ, δA∞ , FA∞ )
be a finite state automaton capturing all temporal relaxations of a
TWTL specification. A (weighted) product automaton P = T ×A∞
is a tuple P = (SP , p0, ∆P , wp, FP ), where

• S = X × S is the finite set of states;
P A∞
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• p0 := (x0, s0) ∈ SP is the initial state;
• ∆P ⊆ SP × SP is the set of transitions;
• wp : ∆P → R+ is the weight function defined as: wp(

(x, s), (x′, s′)
)
= w

(
(x, x′)

)
;

• FP = X × FA∞ is the set of accepting states.

Let p = (x, s) ∈ SP and p′ = (x′, s′) ∈ SP be states in product
utomaton P . A transition from p to p′, i.e., (p, p′) ∈ ∆P , implies
transition (x, x′) ∈ ∆ and δ(s, l(x′)) = s′. The notions of path
nd acceptance are the same as in the dFSA. A satisfying run of T
ith respect to φ can be obtained by computing a path from the

nitial state to an accepting state over P and projecting the path
nto T .
The centralized solution of (5) requires construction of an

ggregated product automaton Pfull = Tfull ×A∞,full where Tfull =

1 × T2 × · · · × Tn, and A∞,full = A∞,1 × A∞,2 × · · · ×

∞,n. Such an aggregated product automaton captures all possi-
le agent movements and enables to find safe paths satisfying the
WTL specifications (or their temporal relaxations). While such
n approach can result in optimal agent paths, the complexity of
onstructing Pfull exponentially grows as the number of agents
increases. Hence, we propose a distributed approximate solu-

ion to (5) by constructing the individual product automaton of
ach agent and solve a planning problem over individual product
utomata in a distributed fashion.

. Receding horizon safe path planning with TWTL satisfaction

The proposed distributed algorithm comprises two parts. In
he offline portion, a product automaton Pi is constructed for each
gent given its transition system Ti and dFSA A∞,i (representing
ll temporal relaxations of a TWTL specification φi). The energy
f each state p ∈ Pi is computed as will soon be discussed.
In the online portion of the algorithm, agents move according

o their updated H-hop paths pi at each time step over Pi. Note
hat an updated path computed over Pi is pi = (xit , s

i
t )(x

i
t+1, s

i
t+1)

. . , thus the corresponding path xi on Ti can always be extracted
rom pi (using the projection of the path pi onto Ti).

Whenever an agent encounters other agents in its local neigh-
orhood, a negotiation protocol, which assigns priorities to the
gents, is performed. This protocol is required to decide which
gents are ‘‘yielded’’ to by considering their respective paths
or collision avoidance. Such a priority assignment is partially
chieved by using an energy function defined over the product
utomaton states.

efinition 6 (Energy Function). The energy of a state p over a
roduct automaton P is defined similar to [41] as,

(p,P) =

{
min
p′∈FP

d
(
p, p′

)
, if p ̸∈ FP ,

0, otherwise.
(6)

where d
(
p, p′

)
is the weighted graph distance between p and p′.

If there is no such reachable accepting state p′ ∈ FP , the energy
of p is E(p,P) = ∞. Accordingly, the energy function serves
as a measure of ‘‘progress’’ toward satisfying the given TWTL
specification. Any states in P with infinite energy, E(p,P) = ∞,
are pruned from P to ensure the satisfiability of the specification.
Note that the energy function, E(p,P), differs for each agent since
each agent has a different product automaton, Pi, with different
accepting states, FPi .

Definition 7 (Agent Priorities). Each agent i ∈ {1, . . . , n} has a
time-varying priority determined by π i

t = (i, ηi
t ), where

ηi
t =

⎧⎨⎩
1

E(pit ,Pi)
, if pit ̸∈ FPi ,
0, otherwise.

5

Fig. 2. Outline of the proposed algorithm.

Agent i has higher priority than agent j, i.e., π i
t > π

j
t , if

ither of the following is true: (1) ηi
t > η

j
t , (2) ηi

t = η
j
t and

< j. Accordingly, no pair of agents have equal priorities and Πt
enotes the sequence of agent ID numbers sorted based on their
riorities from the highest to the lowest.

In the remainder of the paper, we will omit the time index
f Πt whenever it is clear from the context. In accordance with
he agent priorities as defined above, the highest priority agent
s the one who has not completed its task but is the closest
o completion. Agents who have completed their tasks have the
owest priority. The ID numbers are only used to break ties (lower
D number implies higher priority). In our proposed planning
pproach, each agent i yields to the other agents with higher
riority by avoiding transitions in conflict with their transitions,
.e.,

xit , x
i
t+1) /∈ CG(x

j
t , x

j
t+1), ∀j : π

j
t > π i

t . (7)

Since the conflicts are symmetric as per (4), (7) is equivalent
to the safety constraint in (5). We say that an agent i is in
deadlock if it has no feasible transitions (xit , x

i
t+1) to satisfy (7).

Resolving such deadlocks requires re-planning for some higher
priority agents as we will explain in the next subsection.

Definition 8 (Deadlock). We say that an agent i is in deadlock at
time t if, given (xjt , x

j
t+1) for all j such that π

j
t > π i

t , there exists
o feasible transition (xit , x

i
t+1) ∈ ∆ that satisfies (7).

4.1. Algorithm descriptions

The high-level outline of the proposed algorithm is shown in
Fig. 2. Note that the proposed algorithm shown is for a single

agent and runs for each agent separately in a distributed manner.
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Prior to execution, the dFSA is constructed from the agent’s
respective TWTL formula φi, the agent’s product automaton Pi is
generated, and the energy of each state in the product automaton
E(·,Pi) is computed.

We use N2H
i ⊆ N to denote the set of all agents within 2H

ops of agent i’s current position and N i ⊆ N to denote the set of
agents that may indirectly affect agent i’s current plan as per (1).
Note that when the agents have a communication range of at least
2H hops, each agent i can exchange information with the agents
in N2H

i via direct communications and with the agents in N i via
ulti-hop communications (messages relayed by intermediate
gents). In our proposed algorithms, such local communications
re used to provide each agent i with two types of information:
1) H-hop path pj = pjt , p

j
t+1, . . . , p

j
t+H of each agent j ∈ N2H

i , and
2) current position xjt , priority π

j
t , and update indicator U j

flag of
ach agent j ∈ N i. The update indicator is required for a proper
ath update protocol. Furthermore, when agent i is in deadlock,
ll agents in N i share their current state pjt ∈ SPj , and all higher

priority agents HP i ⊆ N i share their desired next state pjt+1 ∈ SPj
with agent i. The need for this information is discussed below in
further detail.

We now consider Algorithms 1–3, which run online at every
time step, then discuss Alg. 4 which is performed only if deadlock
occurs. Note in Alg. 1, whenever agent i ‘‘obtains’’ information
from other agents it is assumed that the agent broadcasts a
request to the desired agents and that request for information is
satisfied (i.e., the information is communicated to agent i at that
moment). This is similarly performed in Alg. 4. First, we discuss
Alg. 1 which takes in the initial information computed offline.

In Alg. 1, agent i first computes its priority based on Defini-
tion 7. Then, it obtains the priorities and current positions from
all other agents in N i (line 5). Next, the priority ordering for
all N i agents is computed using Definition 7 (line 6). The set
f agents in the local neighborhood N2H

i which have a higher
riority, HPi ⊆ N2H

i , is computed, and agent i obtains the update
ndicator from each of these agents (line 7). The loop in lines 8–
2 is incorporated to ensure that all agents in HPi have updated
heir paths (based on their local neighborhoods) before agent i’s
ath can be updated. If lines 10–12 are executed this means a
igher priority agent was found to be in deadlock and the next
esired state for agent i, pides, which ensures deadlock resolution

was found in Alg. 4. Therefore, the updated path can be generated
(line 11) and the standard receding horizon update is not required
(line 12). The loop in lines 8–12 is required to ensure the path
information obtained from all agents in agent i’s local neighbor-
ood, N2H

i , is current (line 13), and that proper conflict transitions
are generated by Alg. 2 (line 14). These conflicting transitions,
C∆ ⊆ ∆, are then used in Alg. 3 (line 15) in order to find a finite
horizon safe path over Pi based on Definition 4. Line 16 ensures
the agent has an H-hop path since Alg. 3 may result in varied path
engths (discussed later).

If the agent is in deadlock (determined by Alg. 3), then the
urrent state is obtained from all agents in N i and the desired
ext state is obtained from all higher priority agents in HP i ⊆ N i

to be used in Alg. 4 (line 18). The set of desired next states for
all corresponding agents required for deadlock resolution (this
includes agent i), Pt+1, is returned by Alg. 4 (line 19). The desired
next state for agent i is extracted from Pt+1, the updated H-hop
path is generated, and the update flag is set to true (lines 20–22).
Then the next desired state for each agent corresponding to Pt+1,
found in Alg. 4, is broadcast to those agents (line 23).

Whether deadlock occurred or not, agent i next obtains the
update indicator from all other agents in N i (line 24). The loop in
lines 25–28 ensures synchronous movement amongst all agents
in N and updating the local path if a new next state is received
i

6

Algorithm 1: Online Safe Path Planning for Agent i
Input: Pi, E(·,Pi), CG;G - PA, Energy of PA states, Conflict

mapping, Environment graph
1 Note: pit =

(
xit , s

i
t

)
is an element of pi = pit , . . . , p

i
t+H ;

2 Initialization: xit = pix,t ; t = 0; U i
flag = false

3 while (1) do
4 Compute π i

t via Definition 7 ;
5 Obtain π k and xkt ∈ X , from all agents k ∈ N i ;
6 Compute priority ordering Π for all agents k ∈ N i ;
7 Compute set of higher priority neighbors HPi ⊆ N2H

i , and
obtain U j

flag from all j ∈ HPi;

8 while U j
flag is false for any agent j ∈ HPi do

9 Obtain U j
flag from all j ∈ HPi;

10 if pides is received from a higher priority agent then
11 pi = pit , p

i
des, . . . , p

i
des;

12 U i
flag = true; jump to line 24;

13 Obtain pj from all j ∈ HPi agents;
14 C∆ ← Alg2

(
HPi, pit , pj|∀j ∈ HPi, CG,Pi

)
15 pi,U i

flag ,Dflag ← Alg3(Pi, pit , C∆)

16 Append the last element of pi at the end of pi for H − |pi|

times;
17 if Dflag == true then
18 Obtain pkt from all k ∈ N i, and pkt+1 from all k ∈ HP i

agents;
19 Pt+1 ← Alg4(pkt and pkt+1∀k ∈ N i, Π, CG,G);
20 pides ∈ Pt+1;
21 pi = pit , p

i
des, . . . , p

i
des;

22 U i
flag = true;

23 Broadcast desired next state pkdes ∈ Pt+1 to the
corresponding agents;

24 Obtain Uk
flag from all agents k ∈ N i;

25 while Uk
flag is false for any agent k ∈ N i do

26 Obtain Uk
flag from agents k ∈ N i;

27 if pides is received from a lower priority agent then
28 pi = pit , p

i
des, . . . , p

i
des;

29 Move to pit+1; U i
flag = false; t = t + 1;

from a lower priority agent due to deadlock. As in conventional
receding horizon approaches, only the first new state pit+1 of the
generated path is executed and the time is updated (line 29).
Algorithm 2: Generate Conflict Transitions for Agent i

Input: HPi, pit , CG , Pi - Agents with higher priority than agent i,
current state of agent i, conflict mapping, product
automaton

Input: pj| ∀j ∈ HPi - Recall pj = pjt , . . . , p
j
t+H

Output: C∆ - Set of conflict transitions
1 Note: xih ̸= xjh,∀ j ∈ HPi
2 Initialization: C∆ = ∅, C∆,h = ∅

3 C∆,h = {(x, x′) | (x, x′) ∈ CG(x
j
h−1, x

j
h), ∀j ∈ HPi};

4 C∆ = C∆ ∪ C∆,h, ∀h ∈ {1, . . . ,H};
5 if HPi == ∅ and E(pit ,Pi) > 0 then
6 C∆ = {(xit , x

′) from (pit , p
′) ∈ ∆Pi |E(p

′,Pi) ≥ E(pit ,Pi)};
7 return C∆

In Alg. 2 (called from line 14 of Alg. 1), the conflict set, denoted
by C∆ ⊆ ∆, is accounted for in order to guarantee a safe
update in Alg. 3. The conflict set, C∆, enforces that transitions
which may result in conflict, defined by the mapping C (see
G
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Assumption 1), are not traversed (line 3). If any conflicts at hop h,
∆,h, are found, they are added to the set of conflict transitions,
.e., C∆,h ⊆ C∆, where their associated hop h is preserved (line
). Lines 5–6 ensure the energy of the highest priority agent is
onotonically decreasing by making transitions to higher energy
tates infeasible for the first hop only. This is required in order to
uarantee progress toward TWTL formulae satisfaction discussed
n Section 4.2-Theorem 1

Algorithm 3: Receding Horizon Plan for Agent i
Input: Pi, pit - Product automaton and current state
Input: C∆ - Set of conflict transitions
Output: pi,U i

flag ,Dflag - Conflict-free path; Update flag; Deadlock
flag

1 Note: C∆,h ⊆ C∆ is the conflict set of transitions at hop h;
2 for h = 1 : H do
3 Generate SPi,h, ∆Pi,h, reachable states and transitions;
4 SPi,h = SPi,h \ {(x

′, s) ∈ SPi,h| (x, x
′) ∈ C∆,h};

5 ∆Pi,h = ∆Pi,h \ {
(
(x, s), (x′, s′)

)
∈ ∆Pi,h| (x, x

′) ∈ C∆,h};
6 if ∆Pi,h = ∅ then
7 if h == 1 then
8 U i

flag = false and Dflag = true;
9 return pit , U

i
flag , Dflag

10 else
11 h = h− 1;
12 exit the for loop;

13 for each state p ∈ SPi,h do
14 if p ∈ FPi then
15 exit both for loops;

16 Hnew = h;
17 target_state = argmin

p∈SPi,Hnew

E(p,Pi) ;

18 if Hnew == 1 then
19 pi = pit , target_state;
20 else
21 pi =

DP
(
pit , target_state, {SPi,1, . . . , SPi,Hnew }, {∆Pi,1, . . . , ∆Pi,h}

)
;

22 U i
flag = true and Dflag = false;

23 return pi,U i
flag ,Dflag

Alg. 3 essentially generates the set of all feasible (conflict-free)
tates of Pi that can be reached in H-hops. First, the product
utomaton state with minimum energy (target_state) is chosen,
hen a minimum cost path from the current node pit to the
arget_state is generated. In further detail, the sets SPi,h ⊆ SPi
and ∆Pi,h ⊆ ∆Pi with the associated hop h are first generated
(line 3). Next, any conflicting states (pwith x′ where (x, x′) ∈ C∆,t )
and conflicting transitions ((p, p′) with (x, x′) ∈ C∆,t ) are removed
from the sets SPi,h and ∆Pi,h (lines 4–5).

Instead of generating a sub-graph of all states that can be
reached from pit in H-hops, i.e., NH (pit ), the sets SPi,h ⊆ SPi
and ∆Pi,h ⊆ ∆Pi are generated; where SPi,h is the set of states
that can be reached at hop h, and ∆Pi,h is the set of transitions
that can be taken at hop h. These are used for two reasons: (1)
this allows for proper handling of collision-avoidance at each hop
h without excess pruning that could lead to infeasibilities, and
(2) this facilitates the Dynamic Programming (DP) algorithm to
generate a ‘‘min-cost’’ path ([42], Chapter 11). Alternatively, SPi,h
and ∆Pi,h can be thought of as a stage in the sequence.

Line 6 checks if there are no feasible transitions at hop h. If this
occurs at the first hop, h = 1, then the agent is in deadlock and
Alg. 3 is broken out of early (lines 7–9). If there are no feasible
transitions at a later hop, h > 1, then this means a full H-hop path
7

will not be obtained, however the agent is not in deadlock (lines
10–12). Lines 13–15 check if any of the states in SPi,h ⊆ SP are
accepting states. If that is the case, then the loops are broken out
of early since any accepting state p ∈ FPi has E(p,Pi) = 0; this
is the best state that can be reached in the least number of hops.
Next, Hnew is assigned (line 16) which accounts for paths shorter
than H hops due to exiting the previous loop (lines 2–15) early
for the reasons previously stated. The minimum energy state that
can be reached after Hnew hops is chosen as the target_state (line
17). Accordingly, the goal becomes to find the minimum cost path
over Pi reaching the lowest energy state in Hnew hops.

Note that if the path is only 1 hop, it is simply from the current
state to the neighboring target_state (lines 18–19). Otherwise, in
line 21, the dynamic programming (DP) algorithm back traverses
from the target_state to the current state pit using states of SPi,h ⊆

SPi and transitions of ∆Pi,h ⊆ ∆Pi in order to only generate fea-
sible paths over Ti. The minimum cost path is generated using a
standard DP algorithm (see [42], Chapter 11). After the minimum
cost path over Pi from pit to target_state is obtained, the update
flag is set to true, deadlock flag to false (line 22), then both flags
and the conflict-free path are returned to Alg. 1 (see Fig. 3).

Algorithm 4: Deadlock Resolution
Input: Π; CG; G - Priority ordering, conflict mapping,

environment graph
Input: pkt ∀k ∈ N i and pkt+1 ∀k ∈ HP i - Current and next states

Output: Pt+1 - Next states within N i neighborhood
1 Note: Xt , Xt+1, and Pt+1 are in order of highest to lowest priority.
Recall p = (x, s).

2 Initialization: Xt = {x
Π(1)
t , . . . , xΠ (|N i|)

t };

Xt+1 = {x
Π(1)
t+1 , . . . , xΠ (|HP i|)

t+1 };
3 Initialization: Pt+1 = ∅; Pflag = false; xD = xit ;
4 while {xD} ̸= ∅ do
5 for k = 1 : |Xt+1| do
6 if Xt+1(k) == xD then
7 if ID of Xt+1(k) belongs to Π (1) then
8 Pflag = true;
9 exit while loop;

10 else
11 Get Π (·) corresponding to k;

12 Pt+1 = Pt+1 ∪ pΠ (·)
t ;

13 Xt+1 = Xt+1 \ {xD};
14 xD = Xt (Π (·));
15 jump to line 4;

16 {xD} = ∅
17 if Pflag == true then

18 Pt+1 = {p
Π (1)
t+1 , pΠ (2)

t , . . . , pΠ(|N i|)
t };

19 G′ =
(
X, ∆ \ CG(x

Π (1)
t , xD), w)

)
;

20 xT = argmin
x′∈X\Xt

d(xD, x′);

21 x = Dijkstra
(
xD, xT ,G′

)
;

22 for j = 1 : |x|−1 do
23 if x(j) ∈ Xt then
24 Denote m as the agent ID occupying x(j);
25 Broadcast x(j+ 1) to agent m, and obtain state

pmt+1 = (x(j+ 1), s) ∈ SPm reached from pmt in 1-hop;
26 Find index l in Π corresponding to agent m;
27 Pt+1(l) = pmt+1;

28 return Pt+1
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Fig. 3. Illustration of deadlock resolution using Alg. 4 for priority ordering
Π = {A1, A2, A3, A4, A5}. In this example, CG (x, x′) = ∆in

x′ ∪ {(x
′, x)} for every

x, x′) ∈ ∆. Note, Alg. 4 is called twice due to the given priority ordering.
lack arrows indicate the environment transitions, ∆, an agent’s desired next
ransition is shown by a green dashed arrow, and in (c) the path found in Alg.
line 21 is shown by the blue dashed arrows. This is only a portion of an

nvironment for illustration purposes. (For interpretation of the references to
olor in this figure legend, the reader is referred to the web version of this
rticle.)

Lastly, Alg. 4 (called from line 19 of Alg. 1) is required to
esolve any deadlocks that might occur. Alg. 4 generates the set of
ext states, denoted Pt+1, for the set of agents in N i required for
eadlock resolution. Agent i stays stationary (i.e., pit+1 = pit ), if
higher priority agent (let us call it agent j) desires to occupy
gent i’s current state in G (i.e., xjt+1 = xit ) then agent j will

also be stationary. Now, if another agent in N i ⊆ N i (let us
call it agent k) desires to occupy agent j’s current state in G
(i.e., xkt+1 = xjt ) then agent k will also remain stationary. This
‘‘cascading’’ goes on until either (1) an agent is not required to
be displaced, meaning the remaining agents in HP i will remain
ith their initially desired next states pt+1, or (2) the highest

priority agent desires to displace a deadlock state, denoted xD. If
the latter occurs, then all agents in N i, except the highest priority
gent, are initially set to remain stationary. Then, the agent being
isplaced by the highest priority agent finds a shortest path over
′ (where G′ excludes transitions made infeasible by the highest
riority agent’s desired next transition) from its current state to
he closest unoccupied state in G′ using Dijkstra’s shortest path
lgorithm. Note the highest priority agent is always yielded to in
rder to guarantee progress toward TWTL formulae satisfaction
iscussed in Section 4.2-Theorem 1.
In further detail, Alg. 4 first generates sets Xt , Xt+1 in order of

highest to lowest priority from the given inputs (line 2). The set
of desired next states Pt+1 is initially empty, the path flag, Pflag ,
is initially set to false, and the deadlock state, xD, is the current
state of agent i (line 3). Line 4 indicates that the loop executes
until there is no longer a deadlock state (or is exited early). The
inner loop (lines 5–15) checks if a higher priority agent desires
to occupy the assigned deadlock state xD. If it is found that the
agent in HP i which desires to occupy xD at its next state xt+1 is
the highest priority agent (line 7), then Pflag is set to true and
he while loop is exited (lines 8–9). If the agent which desires
o occupy xD is not the highest priority agent, then this agent
will be stationary (i.e., pt+1 = pt ) and added to the set of desired
next states Pt+1 (lines 11–12). The current deadlock state is then
removed from the set of next states X which are searched
t+1

8

through (line 13); the current state xt (of the agent which desires
to occupy xD) is assigned as the updated deadlock state (line 14),
and this process is then repeated (line 15). If none of the desired
next states xt+1 ∈ Xt+1 correspond to the deadlock state, xD, then
there is no other deadlock state and the while loop is exited (line
16).

Now, if the Pflag is set to true, then all agents in N i (except the
highest priority agent) are assigned to stay at their current state
(line 18). The updated environment graph G′ excludes transitions
made infeasible due to the highest priority agent’s desired next
transition (line 19) (note that here, xD ∈ X is the desired next
state for the highest priority agent). The closest unoccupied state
is found and assigned to be the target state xT (line 20). A shortest
path x, from xD to xT , is then computed over G′ using Dijkstra’s
algorithm (line 21). Then, a message passing protocol (e.g., [43])
is followed for safe next state reassignment. Specifically, if an
agent is found to be currently occupying a state on the path x,
including the agent occupying xD, (line 23), this agent, denoted m,
is assigned the next state along the path. This next state is then
broadcast to agent m, where agent m obtains the state p ∈ SPm
that can be reached in 1-hop from its current state pmt (i.e., pmt+1 =
(x(j + 1), s) ∈ SPm | x(j + 1) ∈ N 1

m) (line 25). Then the desired
next state for agent m is updated in the set Pt+1 (lines 26–27),
nd this procedure is repeated (lines 22–27) until the entire path
of possible occupied states) has been checked. Note that the last
tate x(|x|) is not checked since this state is not initially occupied.

.2. Performance guarantees

In this section, we will show that an agent i always finds a safe
ath over the environment graph G by executing the proposed
lgorithm. Moreover, we show that the resulting path satisfies
ither the original TWTL formula or a finite relaxation of it, φi(τ i).

emma 1 (Deadlock Resolution). Let Assumption 1 hold and let n
gents follow Alg. 1 in an environment G = (X, ∆, w) such that for
very (x, x′) ∈ ∆, each (strongly) connected component in
′
= (X, ∆ \ CG(x, x′), w)

contains at least n states and any shortest path x = x0x1 . . . on G′

is conflict-free, i.e.,

(xixi+1) /∈ CG(xj, xj+1), ∀xi, xj ∈ x. (8)

Then, at any time t ≥ 0 each agent i moves to its next state
pit+1 = (xit+1, s

i
t+1) such that

(xit , x
i
t+1) /∈ CG(x

j
t , x

j
t+1), ∀i ̸= j ∈ {1, . . . , n}. (9)

Proof. See Appendix A. □

Theorem 1 (Finite Relaxation). Let Assumption 1 hold and let
n agents follow Alg. 1 in an environment G = (X, ∆, w) such
that for every (x, x′) ∈ ∆, each (strongly) connected component
in G′ = (X, ∆ \ CG(x, x′), w) contains at least n states and any
shortest path x = x0x1 . . . on G′ is conflict-free, i.e., (xixi+1) /∈
CG(xj, xj+1), ∀xi, xj ∈ x. Then, each agent i satisfies its TWTL
specification φi(τ i) such that |τ i

| <∞.

Proof. See Appendix A. □

5. Experimental results and evaluation

The code base for trajectory generation is derived from the
PyTWTL1 package which handles the construction of A∞ corre-
sponding to a given TWTL specification, φ, and the creation of the

1 hyness.bu.edu/twtl.

http://sites.bu.edu/hyness/twtl/
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product automaton P given a particular transition system T . The
algorithms presented in this paper which are integrated into the
PyTWTL framework as well as a video of the experiment can be
found at https://github.com/pete9936/pyTWTL_ObsAvoid.

Our proposed algorithm is verified experimentally on a team
of five Crazyflies 2.0. This is conducted in a 3 m × 3 m × 1.5 m
motion-capture space, corresponding to the environment shown
in Fig. 4, using a VICON camera system with 8 cameras. We
use the Crazyswarm2 package to perform the low-level controls
algorithms, communication, and interface of the VICON system
with the Crazyflies. Details of which can be found in [44]. The
experiments were carried out on a desktop with 4 cores running
Ubuntu 16.04, 4.0 GHz CPU, and 32 GB of RAM.

5.1. Scenario 1

This scenario considers five quadrotors in the environment
shown in Fig. 4 with a narrow corridor. The scenario shows both
the collision avoidance and deadlock resolution protocols. Initial
agent priority ordering corresponds to Π = {A1, A3, A4, A5, A2},
where Agent 1 has the highest priority (and maintains highest
priority until its task completion) and therefore completes its
task, φ1, without yielding to other agents. Deadlock occurs twice
in this scenario and is resolved using Alg. 4.

This scenario illustrates how our algorithm is useful in dealing
with complex specifications. For a pick-up and delivery task, it
may be the case that multiple agents desire to deliver to the
same location, however, if the desired location is currently oc-
cupied then an alternative near-by location can be used instead.
Many path planning algorithms which consider collision avoid-
ance (e.g., [45]) cannot account for such a scenario. While this
is just one example, the ability to account for alternative drop-
off locations using local information (and enforcing safety) is a
notable property of our algorithm. We depict this scenario on
the environment shown in Fig. 4, where the following temporally
relaxed TWTL formulae are considered:

φ1 = [H2A][0,3+τ11 ] · [H1D][0,5+τ12 ] · [H0B1][0,5+τ13 ]

φ2 = [H3(B ∨ C)][0,6+τ21 ] · [H2E][0,7+τ22 ] · [H0B2][0,3+τ23 ]

φ3 = [H2(B ∨ C)][0,6+τ31 ] · [H2E][0,7+τ32 ] · [H0B3][0,3+τ33 ]

φ4 = [H2(B ∨ C)][0,6+τ41 ] · [H2E][0,7+τ42 ] · [H0B4][0,3+τ43 ]

φ5 = [H2A][0,5+τ51 ] · [H1F ][0,5+τ52 ] · [H0B5][0,5+τ53 ]

All five TWTL specifications are examples of servicing in se-
quence which can be thought of as pick-up and delivery tasks
while starting and ending at the agent’s base. In practice, these
task specifications can be made far more complex due to the
richness of the TWTL language. It should be noted that not all
agents will remain in their designated bases since agents which
have reached an accepting state (i.e., completing the task) will
yield to other agents in the environment which have not yet
reached an accepting state (higher priority agents). This is made
possible due to the self-loop of the accepting states of the dFSA,
FA∞ .

For the 4 × 7 × 1 environment shown in Fig. 4, each re-
spective agent has a transition system Ti of (19; 105) states3
and transitions, and similarly sized product automaton Pi of ≈
(80; 440) states and transitions. The algorithm’s offline initializa-
tion (generating A∞,1...5, P1...5, E1...5) takes 0.31 s. Generating the
ollision-free paths (the online portion of our algorithm) with a

2 https://github.com/USC-ACTLab/crazyswarm.
3 The transition system contains only the feasible states, not the states with
bstacles.
9

Fig. 4. Scenario-1: The 3D discretized environment shared by 5 agents. Initial
positions given by the green nodes, obstacles are shown in red, three pick-up
regions (A, B, C) are shown in blue, and three drop-off regions (D, E, F) are
shown in yellow. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Table 1
Temporal relaxation (τ ) of paths.

Nominal paths Safe paths

x1 x2 x3 x4 x5 x1S x2S x3S x4S x5S

τ1 0 0 0 −1 0 0 +1 +4 +4 +7
τ2 0 0 0 0 −1 0 +6 0 +1 0
τ3 0 −1 −2 −1 0 0 −1 −2 −1 0

horizon length H = 2 takes 0.07 s. However, the metric of greater
concern is the average time for an individual agent’s receding
horizon update which is ≈ 0.7 ms, which is fast enough for
real-time execution.

Each agent computes its nominal path over its product au-
tomaton Pi (from the agent’s initial state pi0 to an accepting
state in FPi via a Dijkstra’s weighted shortest path algorithm)
irrespective of other agents’ paths. These nominal paths give a
baseline metric for temporal relaxation (Table 1). The temporal
relaxation for both the nominal and collision-free policies for each
agent are given in Table 1. Recall that negative relaxation of the
TWTL formulae implies that the formulae are satisfied within a
stricter time window than was originally allotted.

For the given scenario, some snapshots of the experiment at
notable instances are shown in Fig. 5, and priority ordering at a
given time step is evident by looking at Fig. 6. Notice that while
agents are yielding to those of higher priority, their energies do
not decrease (seen in Fig. 6).

5.2. Scalability analysis

In this section, we run some simulations to demonstrate the
scalability of the proposed algorithm. First, we explore the impact
of horizon length (H) on the average time for an individual agent’s
path update. We consider Scenario 1 in this study, and the results
are reported in Fig. 7. In this figure, the average iteration time
is an average of all agents and all iterations for the respective
run. Note that by using our dynamic programming based receding
horizon algorithm, the execution time growth is approximately
linear with respect to H .

The proposed algorithm runs over a product automaton which
captures both the transition system and the automaton of an
agent. The size of the product automaton has a direct effect on
the computation time of the algorithm. So, we present some
results to illustrate the influence of the product automaton size.
Fig. 8 depicts various points corresponding to different sizes of
product automata that are obtained by different environments
and varying lengths of TWTL specifications. For example, the first

https://github.com/pete9936/pyTWTL_ObsAvoid
https://github.com/USC-ACTLab/crazyswarm
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Fig. 5. Scenario 1: At t = 1 agent 2 yields to agent 4 due to priority ordering (see Fig. 4); At t = 6 agent 5 triggers deadlock resolution, Alg. 4; At t = 7 agent 4
triggers deadlock resolution; At t = 16 agent 1 has already finished its task and has since yielded to other agents still in progress (this is why agent 1 is not still at
its base); At t = 18 agent 2 finally begins its delivery at E and agent 3 returns to base; At t = 22 agents 2 and 5 return to their bases and all agents have completed
their tasks.
three points in Fig. 8 represent missions executed in Scenario 1
(Fig. 4) under varying lengths of TWTL specifications. The first
point in Fig. 8 corresponds to the case when the agents try to
achieve the original TWTL specifications of Scenario 1. In that
case, the product automaton has approximately Pi ≈ (80; 440)
tates and transitions for each agent. The second and third points
orrespond to the TWTL formulae in Scenario 1 concatenated by
tself once and twice, respectively. By doing that, the lengths of
10
the specifications increase and the formulae enforce the agent
to repetitively achieve its pick-up and delivery task (e.g., com-
plete the pick-up and delivery task, and immediately after that
complete the same task). For points 2 and 3, the correspond-
ing sizes of the product automata are Pi ≈ (140; 760) and Pi
≈ (200; 1100), respectively. The fourth point corresponds to a
scenario over a 6 × 6 × 3 environment with TWTL specifications
similar to Scenario 1 (P ≈ (395; 6060)). The fifth point runs
i
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Fig. 6. Scenario-1: The agent energy values are shown as well as the collective
nergy of the system. These energy values correspond to each state along the
ath which leads to satisfaction of each agents’ respective TWTL formula.

Fig. 7. Impact of horizon length on execution time.

he scenario without returning to the base4 on a 6 × 12 × 4
environment (Pi ≈ (750; 12700)), while the sixth point presents
the full scenario on the 6 × 12 × 4 environment where each
agent has Pi ≈ (1000; 16900) states and transitions. Overall,
Fig. 8 shows that an agent’s path update scales approximately
linearly with the size of P using our algorithm.

We also investigate how the number of agents affect the
online execution time of the proposed algorithm. To this end,
we gradually increase the number of agents in the simulations
(up to 10 agents) and assign them with TWTL specifications of
similar structure to those in Scenario 1. Fig. 9 shows that the
online execution time (i.e., the average iteration time) increases
approximately linearly with the number of agents. Note that the
average iteration time is an average of all agents and all iterations
for the respective run. Also, it is observed that the average time
for an individual agent’s path update grows less than linearly
with respect to the number of agents in the environment since
this depends only on the number of agents in neighborhood N i
defined as in (1).

4 This implies a shorter TWTL formula than the case in point 6 where the
ask structure is pick-up, delivery, go to base.
11
Fig. 8. Impact of product automaton, Pi , size on execution time.

Fig. 9. Impact of the number of agents on execution time.

.3. Benchmark analysis

In the benchmark analysis, the proposed distributed algo-
ithm is compared with some of the widely used approaches
n the literature, i.e., ORCA [13], a centralized solution based on
he mixed-integer linear program (MILP) encoding of temporal
ogic specifications [46,47], and an automata-theoretic central-
zed solution whose challenges are described in Section 3.3. We
lso compare our priority ordering method with that of a fixed-
andom-priority ordering as well as a ‘‘longest first’’ priority
rdering which gives agents with higher energy as defined by
q. (6) a higher priority.
The benchmark analysis is implemented for n = 3 agents, and

horizon length of H = 2. Local specifications for three agents
re given in different 3 × 6 × 1 environments (shown in Fig. 10)

which include randomly placed bases, goal regions, and static
obstacles. The TWTL specifications run over these environments
are given as:

φ1 = [H1P1][0,5+τ11 ] ·
(
[H3D1] ∨ [H3D2] ∨ [H3D3]

)[0,7+τ12 ]

2 = [H1P1][0,5+τ21 ] ·
(
[H3D1] ∨ [H3D2] ∨ [H3D3]

)[0,7+τ22 ]

3 = [H1P2][0,5+τ31 ] ·
(
[H3D1] ∨ [H3D2] ∨ [H3D3]

)[0,7+τ32 ]

Since TWTL does not have a MILP encoding and the authors
f [28] state that TWTL and MTL have similar expressivity, we for-
ulate a MILP with MTL specifications. To this end, we write the
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Fig. 10. Environments 1–4 for benchmark analysis: Env. 1 (top left), Env. 2 (top right), Env. 3 (bottom left), Env. 4 (bottom right).
TL specifications equivalent to the above TWTL specifications.

1 = ♢[0,4]

(
□[0,1]P1 ∧ ♢[1,5]

(
□[0,3]D1 ∨ □[0,3]D2 ∨ □[0,3]D3

))
2 = ♢[0,4]

(
□[0,1]P2 ∧ ♢[1,5]

(
□[0,3]D1 ∨ □[0,3]D2 ∨ □[0,3]D3

))
3 = ♢[0,4]

(
□[0,1]P2 ∧ ♢[1,5]

(
□[0,3]D1 ∨ □[0,3]D2 ∨ □[0,3]D3

))
here □[a,b] and ♢[a,b] denotes always and eventually operators
f MTL, respectively, with the time window [a, b]. Note that
he equivalent MTL specifications include many nested operators
hat result in more complex representations than TWTL specifi-
ations [28]. The optimization problem with MTL specifications
s solved to find satisfying trajectories in a centralized manner.
afety constraints are applied such that xit − xjt > rmin, ∀t, ∀i, j

with i ̸= j. The agents are represented with single integrator
dynamics which are allowed to move along either cardinal or
diagonal directions by constraining the velocities as vi

x,t , v
i
y,t ∈

{−0.5, 0, 0.5}/∆t m/s, ∀i, t where 0.5 m is the cardinal transi-
tion length in the environment graph. The time step ∆t is selected
in accordance with the TWTL application. We refer the reader
to [46] for further details relating to the symbols and syntax of
MTL and its encoding into MILP .

Since logical expressions such as disjunction cannot be defined
in ORCA, and there are three delivery regions which agents are
free to choose between, a total of 33

= 27 runs for each of the four
environments in Fig. 10 are implemented to examine all possible
delivery options. In each run, an order of goal regions to be visited
is defined for each agent with the required number of multiplicity
of the regions that agents need to hold in. Since the holding
operation of TWTL is not preemptive, whenever an agent’s hold-
ing is interrupted by another one (due to collision avoidance
effort), we reset the holding requirement for that agent. We
observe that ORCA may fail when multiple agents are required
to hold in the same delivery region which makes ORCA prone to
oscillations and deadlocks, especially when agents have common
regions of interest. Note that in the only 3! = 6 of the runs per
environment, the agents are provided unique delivery options. In
the implementation of ORCA, again 0.5/∆t m/s velocity limit is
applied where agents can see other agents and obstacles within
a horizon of 2 hops as in the TWTL application.
12
The automata-theoretic centralized solution to the safe multi-
agent path planning problem with TWTL specifications requires
the construction of a global product automaton that includes
the transition system and automaton states of all agents. In the
scenarios above with three agents, the transition system of each
agent has 15 states,5 and the resultant product automaton for a
single agent with the TWTL specification presented above has 39
states for the Environments 1 and 2, and 51 states for the Envi-
ronments 3 and 4. Accordingly, the centralized solution requires
the generation of a product automaton that has ∼ 393 or ∼ 513

states. Such a centralized approach finds the optimal trajectories,
but it is not scalable, which is one of the main reasons why we
propose a distributed solution in this paper.

5.3.1. Time complexity
The mission completion times as well as total run-times (in-

cluding the offline computation for TWTL) are shown for different
methods in Table 2. Note that the average completion time for
ORCA is the average of the trials which were able to finish the
servicing and holding requirements of all agents regardless of
their finishing time. The number of successful ORCA trials (out
of 27 runs per environment) were 12 (44.44%), 20 (74.07%),
14 (51.85%), and 6 (22.22%) for Environments 1, 2, 3, and
4, respectively. The main reason for such behavior is the lack
of decision-making ability of the agents in terms of high-level
planning such as waiting for others to finish their ongoing ser-
vice tasks (holding) instead of interrupting them. Moreover, we
observe that only a few of the trials over Environments 1 and 2
resulted in trajectories satisfying the TWTL specification within
the desired time windows. None of the trials in Environments
3 and 4 satisfy the specification before the TWTL deadline. This
alone however does not lead to infeasible trials since ORCA has no
explicit time limit consideration. The agents simply try to reach
their goals as soon as possible while avoiding collisions so we
treat these results as the best ORCA can perform.

The results of the ORCA trials in terms of mission completion
time together with TWTL (centralized and distributed) and MILP-
MTL solutions are illustrated in Fig. 11. As it can be seen, the

5 Each environment in Fig. 10 has 15 feasible states without any obstacles.
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Fig. 11. The mission completion time for TWTL (both the proposed distributed approach and the centralized version), MILP with MTL constraints, and ORCA including
in (fastest), max (slowest), and mean of the completion times. Note that the time horizons of the initial TWTL specifications are 13 time steps, and MILP-MTL does
ot optimize temporal relaxation.
RCA method leads to a distribution of mission completion times
nd does not result in completing the mission in desired time
indows in most of the cases although there exists a feasi-
le solution. MILP-MTL solves for optimal trajectories satisfying
quivalent temporal logic (MTL) specifications in a centralized
anner by formulating an optimization problem with approxi-
ately 2800 variables, where the temporal logic is encoded as a
onstraint. The MILP approach does not accommodate temporal
elaxation. Accordingly, when the time bounds of the mission
re tight and the agents have to violate the specifications, the
ILP approach cannot provide trajectories servicing the desired

ocations, whereas our TWTL method allows for temporal relax-
tions in case of infeasible mission specifications. On the other
and, the automata-theoretic centralized approach with TWTL
pecifications requires constructing a global product automaton
or each environment. Even after pruning the infeasible states
multiple agents occupying the same location) and conflicting
ransitions (Definition 3), the sizes of the global product automata
re PEnv.1

full ≈ (45870; 2819728), PEnv.2
full ≈ (45870; 2065584),

PEnv.3
full ≈ (106050; 9202735), and PEnv.4

full ≈ (106050; 8210137),
respectively. Such an approach provides the fastest mission com-
pletions (the optimal solution) but requires an enormous amount
of computation time as shown in Table 2 and Fig. 11. Overall,
these empirical results indicate that our proposed distributed
approach can produce near-optimal solutions with significantly
reduced computation times.

5.3.2. Priority orderings
Our priority ordering method which gives priority to agents

with lower energy defined by (6) was run on the four environ-
ments shown in Fig. 10 as well as an additional 6 environments,
for a total of 10 different 3 × 6 × 1 environments. All but one
environment produced successful trials. The unsuccessful trial
occurred due to a violation of the environment property defined
in Lemma 1, i.e., in an environment G = (X, ∆, w) such that
for every (x, x′) ∈ ∆, each (strongly) connected component in
G′ = (X, ∆ \ CG(x, x′), w) contains at least n states (where n = 3
here).

A fixed-random-priority ordering for the three agents was
considered on environments 1–4. All combinations of priority

orderings were considered in these cases yielding 6 different

13
Table 2
The comparison of mission completion time step and total run-time. Columns
represent the results of the proposed distributed strategy with TWTL spec-
ifications, the centralized automata-theoretic solution with TWTL specifica-
tions, ORCA method, and MILP solution under equivalent MTL constraints,
respectively.
Scenario Parameters TWTL

distributed
TWTL
centralized

ORCA (average,
fastest)

MTL
MILP

Env. 1 Mission
completion step

12 10 31.17, 12 13

Total run-time (s) 0.16 5900 0.013, 0.012 43.53

Env. 2 Mission
completion step

10 9 29.40, 13 13

Total run-time (s) 0.15 5800 0.013, 0.012 14.64

Env. 3 Mission
completion step

11 11 43.36, 17 13

Total run-time (s) 0.18 62000 0.014, 0.013 47.16

Env. 4 Mission
completion step

12 11 35.67, 26 13

Total run-time (s) 0.20 58000 0.015, 0.013 18.07

orderings for each environment giving a total of 24 trials. Once
an agent completed its task, that agent is assigned lowest overall
priority (same as our method) so the agent may avoid blocking
the environment for other active agents. The change in com-
pletion time for the team of agents using fixed-random-priority
ordering was not statistically significant. Furthermore, a fixed-
random-priority ordering does not guarantee a Lyapunov-like
convergence to ensure a finite temporal relaxation as our priority
ordering method does (see Theorem 1).

A priority ordering based on giving higher priority to agents
with higher energy as in Def. (6) was investigated but is unsuit-
able for TWTL specifications. This is due to the hold operators
since agent priorities may oscillate when two or more agents
desire to go to a common goal region. Performing this priority
ordering method for the given specifications produced infeasible
trials for all 10 environments. This priority ordering method
may possibly work better when considering physical distance as
the ‘‘Energy Function’’ as in [48], but in the case of temporal

logic specifications the satisfaction of the specification should be
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taken into account which is why we have defined priority as in
Definition 7.

6. Conclusions and future work

We presented an algorithm for generating collision-free paths
or a multi-agent system which satisfy individual tasks encoded
s TWTL specifications in finite time. The proposed algorithm
akes advantage of the offline computation of each agent’s prod-
ct automaton and use them to generate safe paths in an on-
ine fashion. The proposed algorithm guarantees both collision
voidance among agents and the satisfaction of the given TWTL
ormula (with a finite relaxation) given some mild assumptions
n the environment. Simulation and experimental results show
hat the proposed algorithm can be used in real-time applications
nd scales well with increasing environment size and number of
gents. Future work may include extending the ideas in this paper
o account for heterogeneous teams and asynchronous move-
ent. Moreover, further improvements can be done to the cur-

ent algorithm by incorporating sampling-based ideas to reduce
omputational complexity and still provide optimality guarantees
e.g., [49,50]).
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ppendix A

.1. Proof of Lemma 1

Since the conflicts are symmetric as per (4), (9) is equivalent
o (7). Accordingly, first we will show that at any time t ≥ 0,
each agent i who reaches the last line of Alg. 1 and moves to the
computed pit+1 satisfies (7). For the sake of contradiction, suppose
that this is not true and there exists j ̸= i such that π i

t < π
j
t and

xit , x
i
t+1) ∈ CG(x

j
t , x

j
t+1). Note that there are two possibilities for

pit+1: (1) p
i
t+1 was determined by the agent itself using Alg. 4 (line

12), or (2) pit+1 was determined by a lower priority agent using
Alg. 4 due to deadlock (line 23). We will show that both of these
two cases lead to contradiction.

Case 1: Let pit+1 be determined by agent i. Due to (2), agents
with conflicting transitions must be within 2 hops from each
other. Hence, xjt ∈ N 2(xit ). Accordingly, (x

i
t , x

i
t+1) would be in-

cluded in C∆ of agent i (Alg. 2, line 3). Since Alg. 3 generates a
path pi in sub-automaton P ′i ⊆ Pi that is pruned of C∆ (lines
4–5), we end up with a contradiction: (xit , x

i
t+1) /∈ CG(x

j
t , x

j
t+1).

Case 2: If pit+1 was determined by a lower priority agent using
Alg. 4, then there are two possibilities:

• Case 2a (pit+1 = pit ): If agent i was asked to stay stationary
(in lines 12 or 18 in Alg. 4), due to (3), a conflict could occur
only if another agent attempted to move to agent i’s state.
However, if Pflag = false, lines 11–15 in Alg. 4 would stop
any agent attempting to move to i’s state. If Pflag = true, then
agent i was made stationary in line 18 and its desired next
state was not modified in lines 23–27 of Alg. 4. This implies
that agent i was not on the shortest path computed in line
21, which is from the next state (xD) of the highest priority
agent in N i, i.e., Π (1), to the nearest unoccupied state in
G′ = (X, ∆\CG(x

Π (1)
t , xD), w). Note that such a shortest path

always exist due to the premise of Lemma 1, which states
that every connected component on G′ must have at least
14
n nodes (hence an unoccupied state). Since all agents in N̄i
other than the highest priority agent and the agents on the
shortest path are asked to remain stationary, due to (3), i
is again guaranteed to not have any conflicts, leading to a
contradiction.
• Case 2b (pit+1 ̸= pit ): if agent i was asked to move to

specific state pit+1 by a lower priority agent, then it must
be on the shortest path computed in line 21. Since this
path is computed on G′, which is the original graph minus
all the edges in conflict with the planned transition of the
highest priority agent in N̄i, we know that none of the
agents moving along the path will have a conflict with the
highest priority agent. Furthermore, since any shortest path
on G′ is conflict-free as per the premise of Lemma 1, these
agents will not have any conflicts with each other either.
Finally, every other agent who is not on the shortest path
will remain stationary (hence they cannot have any conflicts
with i either). Consequently, once again i is guaranteed to
not have any conflicts, leading to a contradiction.

Accordingly, each agent i who reaches the last line of Alg. 1
and moves to the computed pit+1 is guaranteed to satisfy (7).

Next, we will show that every agent i is guaranteed to reach
the last line (line 29) of Alg. 1. Note that it can be shown that
no infinite loop is possible in Algs. 2, 3, 4, which can be called
during the execution of Alg. 1. Furthermore, for each agent i, U i

flag
starts as false in each t and if it ever becomes true it stays true
until line 29. Moreover, each agent i reaches line 29 if and only if
Uk
flag is true for all k ∈ N i. For the sake of contradiction, suppose

that there exist agents whose Uflag never becomes true during the
execution in time t , and let i be the highest priority agent among
such agents. Accordingly, since U j

flag is true for all π i
t < π

j
t , agent

i must have passed the while loop in lines 8–12 and reached line
15 (or jumped to line 24 with an updated path from Alg. 4) where
Alg. 3 returns either of the following : (1) U i

flag is true and Dflag is
false, or (2) U i

flag is false and Dflag is true. Even if the second case
occurs, U i

flag will eventually become true in line 18 after agent i
runs Alg. 4. Hence, we reach a contradiction. Since U i

flag eventually
becomes true for every agent i, all agents are guaranteed to reach
line 29 in their runs of Alg. 1. As per the first part of the proof,
their transitions will satisfy (8).

A.2. Proof of Theorem 1

In light of Lemma 1, we know that when the premise of the
theorem holds, agents make conflict-free transitions at each time
t ≥ 0. Here, we will show that under such transitions realized
by Alg. 1, the energy of the highest priority agent in the system
strictly decreases in each time step until all agents have zero
energy, i.e., they all have satisfied their specifications.

Suppose that agent i has the highest priority, i.e., π i
t > π

j
t ,∀j ∈

N \ {i} at time t . Then Alg. 2 (line 6) always updates C∆ with the
transitions that drive agent i to higher energy states in the next
time step, i.e., C∆ = {

(
(xit , s

i
t )(x

i
t+1, s

i
t+1)

)
∈ ∆Pi,1|E(p

i
t+1,Pi) ≥

E(pit ,Pi)}. Accordingly, line 5 in Alg. 3 guarantees to prune the
higher energy states in the next hop hence E(pit+1,Pi) < E(pit ,Pi)
is always true.

Given that agent i was the minimum energy agent at time t ,
one can state E(pmin

t ,Pmin) = E(pit ,Pi). Moreover, by definition,
E(pmin

t+1,Pmin) ≤ E(pit+1,Pi). Overall, the previous three energy
relations imply E(pmin

t+1,Pmin) < E(pmin
t ,Pmin), i.e., the smallest

positive energy strictly decreases even when the highest priority
agent has changed. Therefore, in a system with a finite number
of agents moving in a finite graph, all agents reach an accepting
state p ∈ FP with E(p,P) = 0 in a finite number of transitions
since E(pi ,P ) ̸= ∞ by the pruning of infinite energy states.
t i
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Appendix B. Supplementary data

Supplementary material related to this article can be found
nline at https://doi.org/10.1016/j.robot.2021.103801.
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