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Abstract— In this paper, we consider a package delivery
drone that is desired to simultaneously perform aerial mon-
itoring as a secondary mission. To integrate this secondary
mission, we utilize a reward function representing the value
of information gathered via aerial monitoring. We use time
window temporal logic (TWTL) specifications to define the pick-
up and delivery tasks while utilizing reinforcement learning
(RL) to maximize the expected sum of rewards. The high-
level decision-making of the drone is modeled as a Markov
decision process (MDP). In this regard, we extend the previous
work where a model-free RL algorithm was used to solve
this optimization problem. We propose a modified Dyna-Q
algorithm to address the shortage of online samples. We provide
extensive simulation results to compare the performance of the
model-free and hybrid RL algorithms in this application and
investigate the effect of the different system parameters on the
overall performance.

I. INTRODUCTION

Delivery and aerial monitoring are two major applications
of unmanned aerial vehicles, or drones, that have been
expanding rapidly (e.g., [1], [2], [3], [4]). In many cases,
a delivery drone is equipped with a camera and can si-
multaneously perform aerial monitoring (e.g., infrastructure,
environment, traffic) as a secondary task by modifying its
route accordingly. Motivated by such a multi-use of drones,
we investigate the high-level planning of a delivery drone
for performing optimal aerial monitoring while maintaining
probabilistic guarantees on the successful completion of its
pick-up and delivery tasks as a constraint.

A pick-up and delivery task requires an agent to take
a path that visits specific locations in a particular order,
usually during specific time windows. Finding such paths
can be posed as vehicle routing problems (VRPs), which
are typically NP-hard and solved approximately (e.g., [5],
[6], [7]). However, standard formulations of VRPs do not
yield a compact representation of the feasible trajectory set
to be used as a constraint in the proposed aerial monitoring
problem. One way to incorporate such trajectories defined by
complex specifications is to use temporal logics (TLs), which
have been used for control and planning of autonomous
systems in various applications (e.g., [8], [9], [10], [11]). In
this paper, we utilize time window temporal logic (TWTL)
[12], which can be used to encode pick-up and delivery tasks
with time-windows.
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In this paper, we consider a high-level planning problem
modeled as a Markov decision process (MDP), where the
reward encodes the value of data collected in aerial mon-
itoring, under TWTL constraints, which encode the pick-
up and delivery tasks. In this formulation, each region in
the discretized mission area yields a reward representing
the value of monitoring that region. A finite set of pick-
up and delivery tasks are defined using TWTL. The drone
is randomly assigned a task from this set in each episode.
Considering the uncertainty in the system dynamics and the
reward distribution over the mission area, we propose a con-
strained learning problem to find an optimal routing policy
for each pick-up and delivery task. Such an optimal policy
maximizes the expected sum of rewards while satisfying the
corresponding TWTL constraint with a desired probability.
This paper extends our prior work in [13], which utilized
a modified Q-learning (model-free RL) algorithm to learn
optimal routing policies [14]. Here, we propose a modified
Dyna-Q (hybrid RL) algorithm that achieves a significantly
faster learning rate than the model-free approach in [13].
Such a faster learning rate typically yields a better policy
after a finite learning horizon. We demonstrate the perfor-
mance of the proposed hybrid RL algorithm and compare it
to the model-free RL algorithm via extensive simulations.

This paper is organized as follows: Section II presents an
overview of related work. Section III reviews the essential
background of the basic concepts including TWTL, MDP,
and Dyna-Q framework. In Section IV, we state the problem
after introducing the system model and the system definition.
In Section V, we thoroughly explain the algorithms that
are the foundation of the proposed method. Section VI
demonstrates the simulation results and discusses the results.

II. RELATED WORK

Model-free reinforcement learning (RL) algorithms can
be successfully used to learn optimal policies in MDPs
through trial and error (e.g., [15]). Model-free RL algorithms
often require a significantly large number of interactions
with the environment when the state-space is large. In
principle, model-based RL algorithms are considered more
data-efficient (e.g., [16], [17]). However, the success of the
model-based approaches strongly depends on the environ-
ment model, and the trade-off comes into the picture in the
form of bias and computational cost [18]. A new breed of
RL, also referred as hybrid RL (e.g., [19], [20], [21], [22]),
has emerged to inherit the advantages of both methods.

In many applications, autonomous agents need to oper-
ate under constraints on their trajectories due to safety or



critical mission requirements. In such constrained settings,
traditional RL algorithms facilitate learning optimal feasible
solutions by severely penalizing infeasible actions. However,
this is not a viable approach for most physical systems
since constraint violations during training may correspond
to catastrophic or unacceptable events (e.g., [23], [24]).
The area of safe RL is mainly focused on addressing
this limitation (e.g., see [25] and the references therein).
Safe RL aims to guarantee safety during the training while
maximizing the total expected reward. Many different ap-
proaches have been proposed to learn the optimal policy
under safety considerations. In [26] and [27], the authors
offer an algorithm where the exploration phase is modified
by incorporating the prior knowledge of the mission to
avoid risky actions. Such a biased exploration often leads
to a sub-optimal policy, and it may even be an infeasible
option for satisfying complex constraints. Some studies (e.g.,
[28], [29], [30]) apply invariance-based approaches or model
predictive control (MPC) for model-based methods to ensure
safety constraints, which approximately correspond to a
limited family of temporal logic specifications. Authors of
[31], [32] propose a switch structure between the backup
controllers to guarantee safety. While these approaches may
ensure that the probability of violating the constraints falls
to zero over time, they do not ensure constraint satisfaction
during the learning phase. Some works (e.g., [33]) have
introduced barrier functions to avoid unsafe actions during
the learning; however, they cannot accommodate complex
constraints (e.g., temporal logics). There also exist some
safe RL methods that can incorporate linear temporal logic
constraints [34], [35] but these works do not provide formal
probabilistic guarantees on constraint satisfaction (e.g., not
ensuring the probability of constraint satisfaction greater
than a desired threshold). To address this limitation, in [14],
we have proposed a constrained exploration strategy that
achieves bounded TL constraints with a desired probability
during RL. In this paper, we build on the method in [14]
to develop a constrained Dyna-Q algorithm for achieving
optimal aerial monitoring with delivery drones.

III. PRELIMINARIES

A. Time Window Temporal Logic (TWTL)

In this paper, we use TWTL to express pick-up and deliv-
ery tasks. This section includes some essential information
on TWTL, and the reader is referred to [12] for further
details. Let AP be a set of atomic propositions, each of
which has a truth value over the state-space. Consider that
AP = {A} denotes the region A over the state-space. If the
system is inside region A, the atomic proposition A becomes
true, otherwise, it becomes false. TWTL is defined over the
set AP with the following syntax:

φ ::= Hdx|Hd¬x|φ1∧φ2|φ1∨φ2|¬φ1|φ1.φ2|[φ1]
[a,b],

where
• x is either the true constant > or an atomic proposition

from AP;

• ∧, ∨, and ¬ are the conjunction, disjunction, and
negation Boolean operators, respectively;

• . is the concatenation operator;
• Hd with d ∈ Z≥0 is the hold operator;
• [][a,b] with 0≤ a≤ b is the within operator.

The semantics of TWTL are defined according to the finite
output words o over an AP, and o(k) refers to the kth element
on o. For any x ∈ AP, the hold operator Hdx indicates that
x should be true (serviced) for d time units (i.e., o |= Hdx
if o(t) = x ∀t ∈ [0,d]). The within operator [φ ][a,b] means
that the satisfaction of φ is bounded to the time window
[a,b] (i.e., o |= [φ ][a,b] if ∃k ∈ (0,b− a) s.t. o′ |= φ where
o′ = o(a+ k) . . .o(b)). Finally, the concatenation of φi and
φ j (i.e., φi ·φ j) designates that the first φi must be satisfied
and then immediately after that φ j must be satisfied.

The satisfaction of a TWTL formula is checked within
bounded time. We define the time-bound of a TWTL formula
φ (i.e., ||φ ||) as the maximum time required to satisfy φ . The
time-bound can be recursively determined as follows:

||φ ||=


max(||φ1||, ||φ2||) if φ ∈ {φ1∧φ2,φ1∨φ2}

||φ1|| if φ = ¬φ1
||φ1||+ ||φ2||+1 if φ = φ1.φ2

d if φ ∈ {Hdx,Hd¬x}
b if φ = [φ1]

[a,b]

The syntax and semantics of TWTL enable one to define
rich specifications. For example, ”service region R1 for 4
time units within [0, 7] and service region R2 for 1 time
unit within [6, 12]” can be defined as a TWTL formula as
follows:

φ1 = [H4 R1]
[0,7]∧ [H1 R2]

[6,12] (1)

Moreover, a pick-up and delivery task can be defined as a
TWTL formula:

φ2 = [H10 Lp]
[0,40].[H10 Ld ]

[0,40], (2)

which means that ”Within 40 time units, go to the pick-up
location Lp and hold for 10 time units; immediately after
that, within 40 time units, go to the delivery location Ld and
hold there for 10 time units.” For this TWTL specification,
the time-bound becomes ||φ2||= 40+40+1 = 81.

TWTL specifications can be temporally relaxed by defin-
ing some slack variables added to the time windows of the
specification [36]. For example, the relaxed version of the
previous pick-up and delivery task φ2 becomes

φ = [H10 Lp]
[0,40+τ1].[H10 Ld ]

[0,40+τ2], (3)

which implies that ”within (40+τ1) time units, first go to Lp
and wait there for 10 time units; and immediately after that
within (40+τ2), go to Ld and wait there for 10 time units.”
The time-bound of this relaxed specification is parametric
and calculated as 80+ τ1 + τ2 + 1. Note that if τi > 0, then
the corresponding time window is extended (i.e., a task is
allowed to be finished after its deadline). However, if τi < 0,
then the corresponding time window is shortened (i.e., a task



is allowed to be finished earlier than its deadline). Overall,
the temporal relaxation is formally defined as follows:

Definition 1 (τ− Relaxation of φ [12]). Let τ ∈ Zm, where
m is the number of within operators contained in φ . The τ−
relaxation of φ is a feasible TWTL formula φ(τ), where each
subformula of the form [φi]

[ai,bi] is replaced by [φi]
[ai,bi+τi ]

Definition 2 (Temporal Relaxation). Given a TWTL speci-
fication φ , let φ(τ) be a feasible relaxed formula with a
relaxation vector τ ∈Zm. The temporal relaxation of φ(τ) is
defined as |τ|T R = max j(τ j).

A deterministic finite-state automaton (DFA) is a graphical
representation to encode the satisfactory cases of a TWTL
specification. This representation mainly holds sufficient
information to monitor the progress towards the TWTL
satisfaction. Moreover, a DFA can also be constructed for
a temporally relaxed TWTL specification.

Definition 3 (Deterministic Finite-State Automaton)[12] A
DFA is a tuple A = (Q,qinit ,AP,δ ,FA ) where,
• Q is a finite set of states;
• qinit ∈Q is the initial state;
• AP is the input alphabet;
• δ : Q×AP×Q 7→Q is the transition function;
• FA ⊆Q is the set of accepting states.

Consider a pick-up and delivery task expressed as a TWTL
specification φ = [H0 pick− up][0,3+τ1].[H0 delivery][0,5+τ2],
which implies that go to pick-up region within [0,3+ τ1],
and immediately after that go to the delivery zone within
[0,5+τ2]. The corresponding DFA of this relaxed specifica-
tion is shown in Fig. 1, where q0 is the initial state, q2 is
the accepting state, and state transitions occur when pick-up
and/or delivery are observed. Note that any path that starts
from q0 and ends at q2 is a satisfactory case. For example, the
drone can pick-up the package at the current time t and then
deliver it at t +1. As depicted in Fig. 1, the path q0,q1,q2 is
a satisfactory case over the DFA. Furthermore, a drone that
starts at a non-pick-up state (q0) can spend the first two time
steps to reach the pick-up location (staying at q0 for two
time steps), and then pick-up the package (moving to the
state q1), and then spend one time step to go to the delivery
location (staying at q1) and then deliver (moving to q2). This
case is also satisfactory, and we can encode it as a path over
the DFA as follows: q0,q0,q0,q1,q1,q2.

Fig. 1. DFA representation of [H0 pick−up][0,3+τ1 ].[H0 delivery][0,5+τ2 ]

B. Reinforcement Learning

Markov decision process (MDP) is a suitable framework to
model the decision-making under stochastic dynamics, and
it is formally defined as follows:

Definition 4 (Markov Decision Process) An MDP is a tuple
M = (S,A,P,R) where,
• S denotes the state-space;
• A is the set of actions;
• P : S×A× S 7→ [0,1] is a probabilistic transition rela-

tion;
• R : S 7→ R is a reward function.

A canonical learning problem in the reinforcement learn-
ing literature assumes that the transition probability function
P is unknown. The goal is to find an optimal control
policy π : S→ A that maximizes the expected cumulative re-
ward (i.e., E

[
∑

T
k=0 r(sk+1)

]
or E

[
∑

∞
k=0 γkr(sk+1)

]
) where

gamma is the discount factor and r(sk) is the reward received
at state sk.

Q-learning [37] is a model-free reinforcement learning
algorithm that can find the optimal policy through the agent’s
interaction with the environment. Consider that an agent’s
decision-making is modeled as an MDP. Starting from a
state s ∈ S, the agent chooses an action a ∈ A, which takes
it to state s′ and leads to a reward r ∈ R. Accordingly, the
following update rule is followed,

Qk+1(s,a) = (1−αk)Qk(s,a)+αk[r+ γ max
a∗∈A

Qk(s′,a∗)]

(4)

where α ∈ (0,1] is the learning rate. It has been shown that
if every action a ∈ A is repeatedly chosen in each state s
for an infinite number of times, and α decays appropriately,
then Q−function converges to the optimal Q∗ function with a
probability of one [37]. Finally, the optimal policy becomes
π∗(s) = argmax

a∈A
Q∗(s,a).

Note that Q-learning is a model-free approach that relies
only on the real interactions with the environment. While
Q-learning has theoretical guarantees for optimality, it re-
quires sufficiently many interactions with the environment
to converge to a good solution. Alternatively, there also
exist model-based learning approaches, which construct the
transition probabilities and reward function from a small
set of interactions with the environment [38]. While model-
based techniques converge to good solutions faster than
model-free techniques, they suffer from the bias of the data
used to create the model. Dyna-Q algorithm [38] is a hybrid
learning method that integrates Q-learning with a model
that is constructed internally. Overall, Dyna-Q relies on
both real interactions with the environment and hypothetical
interaction through the internal model. Alg. 1 shows the
pseuodo-code of Dyna-Q, where lines 1-6 are the same
steps from Q-learning, line 7 is the update of the internal
model form the observed experiences, and lines 8-12 are to
sample randomly only from the state-action pairs that have
previously experienced.



Algorithm 1: Dyna-Q [38]
1 : Initialize Q(s,a) and Model(s,a) for all s ∈ S and a ∈ A(s) ;
2 : Do forever:
3 : s←− current state;
4 : a←− ε−greedy;
5 : Take action a, observe the reward r and the next state s′;
6 : Q(s,a)←− Q(s,a)+α[r+ γ maxa Q(s′,a)−Q(s,a)];
7 : Model(s,a)←− r,s′ ;
8 : Repeat nsamples times:
9 : s←− random previously observed state;
10 : a←− random action previously taken in s;
11 : r,s′←−Model(s,a);
12 : Q(s,a)←− Q(s,a)+α[r+ γ maxa Q(s′,a)−Q(s,a)];

IV. PROBLEM STATEMENT

System and Environmental Model: In this paper, we model
the high-level decision-making of a drone as an MDP, which
is a suitable mathematical framework for stochastic decision-
making. We assume that the drone can select an action from
a set of motion primitives, and the consequence of an action
is uncertain. To illustrate this, Fig. 2 shows the consequence
of various actions. For example, if the intended action is
North (N), there is a high probability that the drone will go
up (following blue arrow) but there is a small probability that
it can move along NE, NW, or stay (following a red arrow).
Overall, the blue arrow arrows indicate the most probable
state transition upon taking a particular action while the red
arrows indicate the other states that can be unintentionally
reached. In this paper, we assume that the agent does not
know the true probability distribution of an action.

Fig. 2. Blue arrows indicate the intended action, red arrows indicate the
uncertainty in the intended action. Intended actions from the top left corner
to right bottom corner : N, NE, E, SE, S, SW, W, NW, Stay

We consider an agent moving over a discretized m× n
environment, and each discrete state is an MDP state, si ∈
S, i = {0,1, ...,m× n− 1}. The set of actions at each state
is A = {N,NE,E,SE,S,SW,W,NW,Stay}. The probability
of transition between the states is denoted by P : S×A×
S 7→ [0,1]. Finally, each state has a corresponding reward
(i.e., r(si) ∈ R for all si) that is according to the value of
information gathered via aerial monitoring.
Mission Definition: In this paper, we use relaxed TWTL
specification to define pick-up and delivery tasks that can

be defined in the following form:

φtask = [Ht1 Pick][0,T1+τ1].[Ht2 Deliver][0,T2+τ2], (5)

which means that “go to the pick-up location and stay there
for t1 time units within [0,T1 + τ1], and immediately after
that, go to the delivery zone and stay there for t2 time units
in the following T2+τ2 time steps. Note that the time-bound
of this relaxed task is ||φtask||= T1 +τ1 +T2 +τ2 +1 and we
will enforce that T1 + τ1 + T2 + τ2 + 1 = T1 + T2 + 1. Here,
T1+T2+1 corresponds to the time-bound of the specification
with no relaxation.

The reason we consider a relaxed specification but en-
forcing its time-bound to the time-bound of the non-relaxed
specification is because of the following reason. Due to
uncertainties and disturbances in logistic, air traffic, etc., a
package delivery drone might experience delays in real-life
scenarios. Consider a case where the drone is assigned to a
delivery task with a time-bound of 41, and it is expected to
complete the pick-up within the first 20 time units. However,
it can take more than 20 time units (say 25 time units)
because of the unexpected impediments. In this case, the
drone needs to compensate for the time lost during the
pick-up. Therefore, it will automatically regenerate a new
trajectory to finish the delivery part within 15 time units. As
a result, the pick-up and delivery task will still be finished
within 41 time units because the time-bound is constrained.
Namely, the drone is imposed that any delay during pick-up
needs to be compensated for during the delivery. Likewise,
the extra time can be spent for the delays during the delivery
part when the pick-up part takes less time than expected.
Problem Statement: A reinforcement learning problem under
dynamically arriving TWTL tasks has been introduced in
[13], which is formally defined as follows:

Problem 1 [13] Given an MDP M = (S,A,P,R) modeling
the high-level decision-making of a drone, the transition
probabilities P is initially unknown and r

(
s(t)
)
∈ R is the

reward observed at state s(t)∈ S. Let Φtasks be a set of TWTL
specifications defining the potential pick-up and delivery
tasks where each task has a time-bound of T . The order
of arriving tasks are initially unknown to the drone and
each task arrives to the environment in periods of T . The
objective is to learn the optimal control policy π∗ : S→A that
maximizes the expected sum of rewards while also ensuring
that, at each episode, the resulting trajectories satisfy the
corresponding TWTL formula with a probability of more than
a desired threshold Prdes ∈ (0,1), i.e.,

π
∗ = argmax

π
Eπ

[ ∞

∑
t=0

γ
tr
(
s(t)
)]

such that

Pr
(
on |= φn(τn)

)
≥ Prdes, ∀φn(τn) ∈ Φtasks,

||φn(τn)|| ≤ T, ∀n ∈ {1, ...,Nepisode},

(6)

where φn(τn) represents a task arriving at each episode, on =
l
(
s(1)

)
, ..., l

(
s(T )

)
is the output word of the episode in which

sn = s(1)s(2) . . .s(T ) is the state trajectory of episode n and
l(.) : S→ AP is the labeling function, and Nepisode is the total
number of episodes.



While we use the same problem formulation as in [13], in
this paper, we propose a novel and efficient solution to it.

V. PROPOSED METHOD

In this section, we build a framework, where we combine
the Dyna Q-learning algorithm and the definition of the
TWTL, to solve Problem 1. First, we construct a product
MDP between an MDP and a DFA. A product MDP encodes
the feasible movements over the physical environment as
well as keeping the track of the TL constraint satisfaction.
Each state in a product MDP contains information on both
MDP and DFA states. We formally define it as follows:

Definition 5 (Product MDP) Given the DFA of a TWTL
formula A = (Q,qinit ,AP,δ ,FA ), an MDP M = (S,A,P,R),
a set of atomic propositions AP, and a labelling function
l : S 7→ AP, a product MDP is a tuple P = M ×A =
(SP , pinit ,A,∆,RP ,FP) where,
• SP = S×Q is a finite set of states;
• pinit = S×{qinit} ∈ SP is the set of initial state;
• A is the set of actions;
• ∆ : SP × A × SP 7→ [0,1] is the probabilistic tran-

sition relation such that ∆(p,a, p′) = P(s,a,s′) and
δ (q, l(s))= q′ for an action a∈A and two product MDP
states p = (s,q) ∈ SP and p′ = (s′,q′) ∈ SP ;

• RP : SP 7→R is the reward function such that RP(p) =
R(s) for p = (s,q) ∈ SP ;

• FP = (S×FA )⊆ SP is the set of accepting states.

During a mission, it is crucial to track the remaining time
because we consider time-bounded missions. However, a
product MDP does not accommodate any information about
the remaining mission time. To address this, we define a
time-product MDP that also holds the time information.
Therefore, a time-product MDP state encodes a physical
state, the TL task progression, and the current time. The
formal definition of a time-product MDP is given as follows:

Definition 6 (Time-Product MDP) Given a product MDP
P = (SP , pinit ,A,∆,RP ,FP) and a time set T =
{1, .., t, ..,T}, a time-product MDP is a tuple PT = P ×
T = (ST

P , pT
init ,A,∆

T ,RT
P ,FT

P ) where,
• ST

P = SP ×T is a finite set of states;
• pt = (p, t)∈ ST

P is a time-product MDP state at the time
instance t ∈T ;

• pT
init = pinit ×T is the set of initial states where pT

init ⊆
ST

P ;
• A is the set of actions;
• ∆T : ST

P×A×ST
P 7→ [0,1] is the probabilistic transition

relation such that ∆T (pt ,a, pt+1) = ∆(p,a, p′) for an
action a ∈ A and two time-product MDP states pt =
(p, t) and pt+1 = (p′, t +1) ∈ ST

P ;
• RT

P : ST
P 7→R is the reward function such that RT

P(pt)=
RP(p) for pt = (p, t) ∈ ST

P ;
• FT

P = (FP ×T )⊆ ST
P is the set of accepting states.

Overall, a time-product MDP state contains all the required
information to achieve constrained RL during a mission, i.e.,

pt = (p, t) = (q,s, t) where pt is a time-product MDP state at
the current time t, p is the corresponding product MDP state,
s is the corresponding MDP state, and q is the corresponding
DFA state.

The proposed method consists of offline and online parts.
In the offline part, we construct the time-product MDPs for
each pick-up and delivery task φi ∈Φtasks. We utilize Alg. 2,
proposed in [14], to quantify the worst case probability of
constraint satisfaction in the remaining k time steps from a
given time-product automaton state. The feasible next states
are determined for each action a that can be taken at each
state pt (line 8 in Alg. 2). An action a is pruned from
the feasible action set of pt , i.e., Act(pt), if the worst case
satisfaction probability of any state in the set of potential
next states is smaller than the desired probability (lines
12-13 in Alg. 2). Alg. 2 relies on the assumption in [14,
Assumption 1]. More specifically, given some ε ∈ [0,1], it is
assumed that 1) the transitions that occur with a probability
of at least 1− ε are known, and 2) each feasible transition
can be reverted in the next time step with a probability of
at least 1− ε . Note that knowing the transitions that occur
with a probability of at least 1−ε does not require knowing
the actual transition probabilities. Instead, it only requires
knowing which transitions are sufficiently likely (depending
on ε) to occur for each state-action pair. For example,
for a mobile agent with the actions as in Fig. 2, suppose
that each action (e.g., ”move up”) results in moving to the
desired cell with a probability of 0.9 or to another adjacent
cell with a probability of 0.1. While the actual values of
these probabilities are unknown, some prior information may
indicate that, for each action, the only transition that occurs
with a probability of at least 0.7 (ε = 0.3) is moving to the
desired cell. In that case, any feasible transition can also be
reverted with of probability of at least 0.7 by choosing to
move back to the previous location in the next time step.

Algorithm 2: Offline construction of the pruned time-product MDP [14]
Input: T (episode length), ε (estimated motion uncertainty)
Input: M (MDP), Φ (temporal logic task), Prdes (desired satisfaction probability)
Output: PT (pruned time-product MDP)
1 : Create FSA of φ , A = (Q,qinit ,AP,δ ,FA );
2 : Create product MDP, P = M×A = (SP , pinit ,A,∆,RP ,FP);
3 : Create time-product MDP, PT = P×{0, . . . ,T −1}= (ST

P , pT
init ,A,∆

T ,RT
P ,FT

P );
4 : Calculate the distance-to-FP , i.e., dε(pt) for all pt ∈ ST

P ;
5 : Initialization: Act(pt) = A for all pt ∈ ST

P
6 : for each non-accepting state pt ∈ ST

P \FT
P

7 : for each action a ∈ Act(pt)
8 : Find N(pt ,a) = {(r, t +1)|∆(p,a,r)> 0} (states reachable from pt under a);
9 : dmax = max

rt+1∈N(pt ,a)
dε(rt+1);

10 : k = T − t−1 (the remaining episode time);
11 : imax = b k−1−dmax

2 c;

12 : if (imax ≥ 0 and
imax
∑

i=0

(k−1)!
(k−1−i)!i! ε i(1− ε)k−1−i < Prdes) or (imax < 0)

13 : Act(pt) = Act(pt)\{a} ;
14 : end if
15 : end for
16 : end for
17 : PT = (ST

P , pT
init ,Act : ST

P → A,∆T ,RT
P ,FT

P );

We introduce Alg. 3 based on Alg. 2 to create a set of
time-product MDPs corresponding to the tasks in the set
Φtask because each of them has a different DFA. While it
is not known in which order the tasks are arriving, with



the knowledge of Φtask set, we construct the time-product
MDPs in an offline fashion. Lines 1-3 in Alg. 2 construct
the product MDPs, DFAs, and time-product MDPs for each
task in Φtask by using the off-the-shelf tool proposed in [12].
Line 4 calculates the distances corresponding to each time-
product MDP, which is the measure of the task progress at
any given time-product MDP state as defined in [14, Def.
5]. Then, lines 6-19 of Alg. 2 are called to create the pruned
action spaces of each state of the time-product MDPs.

Algorithm 3: Offline construction of the time-product MDPs
Input: T (episode length), ε (estimated worst case motion uncertainty), M (MDP)
Input: Φtasks (pick-up and delivery tasks), Prdes (desired satisfaction probability)
Output: PT

φi
(pruned time-product MDPs) for every φi ∈Φtasks

1 : Create corresponding DFAs for every task φi ∈Φtasks : Aφi = (Qφi ,qinit,φi ,APφi ,δφi ,FAφi
);

2 : Create corresponding product MDPs: Pφi = M×Aφi = (SPφi
, pinit,φi ,Aφi ,∆φi ,RPφi

,FPφi
);

3 : Create time-product MDPs, PT
φi

= Pφi ×{0, . . . ,T −1}= (ST
Pφi

, pT
init,φi

,Aφi ,∆
T
φi
,RT

Pφi
,FT

Pφi
);

4 : Calculate the distance-to-FPφi
, i.e., dε

φi
(pt

φi
) for all pt

φi
∈ ST

Pφi
based on [14];

5 : Initialization: Actφi(pt
φi
) = Aφi for all pt

φi
∈ ST

Pφi
and φi ∈Φtasks

6 : for iφi = 1 : NΦtasks
7 : Iterate over lines 6 - 19 of Algorithm 2;
8 : PT

φi
= (ST

Pφi
, pT

init,φi
,Actφi : ST

Pφi
→ Aφi ,∆

T
φi
,RT

Pφi
,FT

Pφi
);

9 : end for

In the online part of the proposed method, we introduce
Alg. 4, where we implement a Dyna Q-learning algorithm
under persistent TWTL constraints. In line 3, a task φi from
the set of Φtasks is randomly assigned at the beginning of each
episode. At any time-product MDP state pt

φi
, the agent selects

an action based on the policy πε
GO if the feasible action set

Act(pt
φi
) is empty (line 7). Here, the policy πε

GO results in the
selection of an action that leads to the most progress from
the current state to the constraint satisfaction under the most
likely state transitions (i.e., minimizing the distance to the set
of accepting states under ε-stochastic transitions as defined
in [14, Def. 6]). Otherwise, the agent selects an action from
Act(pt

φi
) (line 9). Accordingly, the agent observes the reward

r and the next state pt+1
φi

to update the Q-table using the
equation (4) (lines 11-12). Then, the agent updates the model
(line 13) and does the planning based on the model (lines
14-19). Under this learning algorithm, the Q-table converges
to its true value as the number iterations goes to infinity (e.g.,
see [37] for the convergence proof).

VI. SIMULATION RESULTS AND DISCUSSION

In this section, we discuss the simulation results, imple-
mented using Python 2.7, on a PC with an Intel i7-7700HQ
CPU at 2.8 GHz processor and 16.0 GB RAM. It is assumed
that it takes one time unit to move from a cell to an adjacent
cell. In [13], the authors propose a model-free RL approach
to solve Problem 1. They present a case study where an agent
learns the optimal policy for a monitoring mission while
it persistently completes the arriving pick-up and delivery
tasks. In this paper, we propose a hybrid RL approach
to improve the sample efficiency. We conduct extensive
simulations to reveal the performance difference between Q-
learning and Dyna-Q architecture. We also investigate the
effect of the action uncertainty on the reward optimization,
and the scalability of the algorithm.

Algorithm 4: Dyna-Q learning under persistent TWTL constraints
Input: Pruned time-product MDPs PT

φi
= (ST

Pφi
, pT

init,φi
,Actφi : ST

Pφi
→ Aφi ,∆

T
φi
,RT

Pφi
,FT

Pφi
)

for every φi ∈Φtasks
Output: π (policy maximizing the sum of rewards under TWTL constraints)
1 : Initialization: Initial Q−table
2 : for ep = 1 : Nepisode
3 : Assign a random task φi from Φtasks;
4 : pt

φi
= (pinit,φi ,0);

5 : for t = 0 : T −1
6 : if Act(pt

φi
) = /0

7 : a = πε
GO(pt

φi
);

8 : else
9 : Select an action a from Actφi(pt

φi
) via ε−greedy or π;

10 : end if
11 : Take the action a, observe the reward r, and the next state pt+1

φi
= (pφi , t +1);

12 : Q(pt
φi
,a) = (1−αep)Q(pt

φi
,a)+αep

[
r+ γ max

a′
Q(pt+1

φi
,a′)
]
;

13 : Model(pt
φi
,a′)←− r, pt+1

φi
;

14 : for = 1 : Nsamples
15 : ptr

φi
←− random previously observed state;

16 : ar←− random action previously taken in ptr
φi

;
17 : rr, ptr+1

φi
←− Model(ptr

φi
,ar);

18 : Q(ptr
φi
,ar) = (1−αep)Q(ptr

φi
,ar)+αep

[
rr + γ max

a′r
Q(ptr+1

φi
,a′r)

]
;

19 : end for
20 : π(pt

φi
) = argmax

a
,Q(pt

φi
,a));

21 : pt
φi
= pt+1

φi
;

22 : end for
23 : end for

A. Randomly Generated Pick-up and Delivery Locations

The objective of this section is to explore the effects of
the different environments on the performance of the Dyna-
Q algorithm. We create a 7×7 environment with obstacles
and reward regions as in Fig. 3 (a). Given two pick-up and
two delivery locations (p1, p2,d1, and d2), we define a set of
pick-up and delivery missions consisting of the combinations
of these locations as in Φtasks = {φp1d1 ,φp1d2 ,φp2d1 ,φp2d2}.
For example, φp1d1 encodes a pick-up and delivery mission
where the pick-up and delivery locations are p1 and d1,
respectively. Accordingly, we randomly generate pick-up and
delivery locations to create ten different sets of pick-up and
delivery missions, i.e., Φall = {Φtasks1 , ...,Φtasksn , ...,Φtasks10}
for n = {1, ...,10}. Here, each Φtasksn contains four pick-up
and delivery tasks {φp1d1 ,φp1d2 ,φp2d1 ,φp2d2} for randomly
generated p1 and d1. Thus, Φall contains ten sets of four
randomly generated pick-up and delivery tasks. Based on the
previously defined family of TWTL specifications for pick-

(a) (b)

Fig. 3. A grid environment where blue, green, red cells respectively,
represent the pick-up regions, the delivery regions, and the obstacles.
Gray cells are the regions where monitoring is rewarded. (a) Simulation
environment with obstacles and reward regions, (b) Φtasks2 , an example of
randomly generated pick-up and delivery pairs.



up and delivery tasks, a generic pick-up and delivery mission
for each combination of a pick-up and delivery locations is
defined as

φpid j = [H1 pi]
[0,10+τp].[H1 d j]

[0,10+τd ], i, j ∈ {1,2}, (7)

and we enforce the time-bound ||φpid j || ≤ 10+10+1 = 21.
The specification φpid j with its time-bound restriction means
that ”Within 21 time units, first go to a pick-up region pi
and hold there for 1 time unit. Then, go to a delivery region
d j and hold there for 1 time unit.”. A complete environment
with a random example of pick-up and delivery pairs, Φtasks2
is shown in Fig. 3 (b).

Figure 4 demonstrates a realistic scenario, constructed us-
ing the ROS package in [39], corresponding to the abstracted
7×7 environment in Fig. 3 (b). While the package contains
different drone dynamical models, we specifically use Asctec
Firefly micro air vehicle (MAV) in our high-fidelity simula-
tions (see [40] for specifications). In the considered scenario,
the drone picks-up the package from a post-office (blue
regions) and delivers it to a mailbox (green regions) while
avoiding the flight near to the radio tower (red region). It
also performs environmental monitoring around the oak tree
region (black region) as it executes its pick-up and delivery
mission. Our proposed algorithm generates the sequence of
waypoints, and the drone follows these waypoints in the
high-fidelity simulation.

We define a measure, β@episode as in (8) to compare
the sample efficiency between the model-free and hybrid
learning methods over a certain number of episodes. Higher
β@episode values indicate that Dyna-Q performs better. If
β@episode = 1, then both algorithms have the same sample
efficiency over the given number of episodes. For example,
β@10000 would indicate the relative sample efficiencies of
Dyna-Q architecture and Q-learning over 10000 episodes.

β@episode =

(
episode reward using - Dyna-Q

episode reward using - Q-learning

)
@episode

(8)

We simulate each ten different task set in Φall by im-
plementing both model-free and hybrid learning approaches
over 100000 episodes. We repeat each simulation ten times
to compare the average results. Important parameters used
in the simulations are summarized in Table I.

(a) (b)

Fig. 4. A small-city environment where blue, green, red rectangles
respectively, represent the pick-up regions, the delivery regions, and the
obstacles. Black rectangle is the region where monitoring is rewarded. (a)
Bird’s eye view of the environment (b) A snapshot taken during the pick-up.

In Table I, Prdes is the desired probability of constraint
satisfaction, ε is the algorithm parameter (we assume that
we know the set of states reachable under a taken action
with a probability greater than 1−ε), Nsamples is the number
of samples used for the model-based learning, Nepisodes is the
total number of episodes, and ε−greedy is the parameter for
ε-greedy policy followed in line 9 of Alg. 4. Note that since
a task φpid j ∈ Φtasks is randomly assigned at each episode
(Alg. 4, line 3), and Φtasks has in total four pick-up and
delivery tasks, each task φpid j are simulated over 25000
(Nepisodes/4) episodes on average.

Prdes ε Nsamples Nepisodes ε−greedy
0.85 0.05 10 100 000 0.1

TABLE I
SIMULATION PARAMETERS OF DYNA-Q VS Q-LEARNING

The simulation results are summarized in Table II. The
results show that Dyna-Q performs better in all cases. On
the one hand, we observe that β@25000 is very close to 1 in
the same cases which indicates that the performance of the
algorithms is very close to each other in these cases. On the
other hand, there are significant differences in some cases.
For example, in Φtasks2 illustrated in Fig. 3, we observe that
the sample efficiency of the algorithms are is close to each
other for the tasks φp1d1 and φp2d1 . The detailed results for
this case are shown in Fig. 5. Considering the task φp2d1 ,
the agent needs to visit both p2 and d1 to satisfy the task.
The proposed algorithm provides a probabilistic satisfaction
guarantee of the task. Therefore, the agent needs to pass
through the states adjacent to p2 and d1. Since the same
satisfaction guarantee is provided in both Dyna-Q and Q-
learning, and d1 is adjacent to a reward region, this leads the
agent to quickly learn the locations of the reward regions
regardless of the method used. Consequently, we observe
that β@25000 value is 1.02 for the task φp2d1 .

We observe a similar condition in the case of φp1d1 ∈
Φtasks2 that also yields β@25000=1.02. In other words, even
when the agent randomly wanders at the initial episodes,
it is highly possible that it will hit a reward region. Then,
the value function will be updated accordingly. This will
cause the sample efficiencies to be very similar in both
methods. Likewise, we observe such conditions in other task
sets (e.g., φp2d2 in Φtasks3 and φp1d2 in Φtasks9 ). However,
the benefit of using Dyna-Q is revealed when the reward
is relatively far away from both the pick-up and delivery
locations. For example, the task φp1d2 ∈ Φtasks2 (see Fig. 3
(b)) has β@25000 = 1.44 that indicates Dyna-Q performing
significantly better. In this case, the agent needs extra effort
to discover the location of the reward region because p1
and d2 are very close to each other, i.e., it is likely that the
task can be completed without visiting any reward regions
when the agent has no information about the environment at
the initial episodes. As a result, extra sampling offered by
the Dyna-Q architecture accelerates the learning process and
yields a higher β@25000 value.



(a) (b)

(c) (d)

Fig. 5. Comparison of Dyna-Q and Q-learning for Φtasks2 . Pick-up and delivery tasks: (a) φp1d1 , (b) φp1d2 , (c) φp2d1 , and, (d) φp2d2 . The results are
smoothed over 2500 episodes.

Φtasks1 Φtasks2 Φtasks3 Φtasks4 Φtasks5 Φtasks6 Φtasks7 Φtasks8 Φtasks9 Φtasks10
φp1d1 1.24 1.02 1.34 1.41 1.07 1.12 1.03 1.04 1.41 1.62
φp1d2 1.38 1.44 1.28 1.15 1.25 1.18 1.26 1.12 1.01 1.37
φp2d1 1.04 1.02 1.38 1.30 1.14 1.01 1.18 1.27 1.04 1.08
φp2d2 1.08 1.16 1.01 1.14 1.11 1.44 1.16 2.19 1.11 1.03

TABLE II
β@25000 VALUES FOR EACH TASK SET AND CORRESPONDING PICK-UP AND DELIVERY MISSIONS

Size Nsamples
# of product MDP
states of each task

# of
episodes

# of
tasks

Episode
length

Avg. time to calculate
each distance function Total run time

200×200 10 79993 100 000 25 201 40 [mins] 1240 [mins]

TABLE III
SIMULATION PARAMETERS OF THE LARGE ENVIRONMENT

B. Effect of the Algorithm Parameter ε

The proposed algorithm probabilistically guarantees the
successful completion of the pick-up and delivery task while
optimizing the expected sum of rewards. This is achieved by
calculating the worst case probability of satisfaction based
on the algorithm parameter ε . Note that, in the case study,
we assume that each action in Fig. 2 leads to following the
blue arrow with a probability of 1− εunc and one of the red
arrows with a probability of εunc. We assume that the value
of εunc is unknown and ε ≥ εunc is an overestimation of it.
When ε is much greater than εunc, our algorithm gets more

cautious and gives initial priority to constraint satisfaction as
it considers that the system has higher uncertainty.

In Fig. 6, we demonstrate some simulation results to show
how different values of εunc affect the collected rewards. We
randomly generate an environment with four pick-up and
delivery location pairs with the parameters with Prdes = 0.75,
Nepsiodes = 100000, Nsamples = 10, εunc = 0.03. We repeat
each case ten times to compare the average results.

The results show that as ε increases, the collected rewards
always decrease. This indicates that the agent gives more
priority to constraint satisfaction to guarantee the probability



(a) (b)

(c) (d)

Fig. 6. Effect of the algorithm parameter ε on the collected rewards. Pick-up and delivery tasks of a randomly generated set Φtasks: (a) φp1d1 , (b) φp1d2 ,
(c) φp2d1 , and, (d) φp2d2 . Results are smoothed over 2500 episodes.

of satisfaction at least 75%. In other words, it eliminates
exploration due to the overestimation of the uncertainty in
actions, which in return, leads to the decline in the collected
rewards. Therefore, the selection of algorithm parameter ε

needs to be handled attentively.

C. Scalability

We formulate the problem using a discretized environment
while the real environments are most often continuous.
Discretization of a continuous environment may result in
significantly large number of states depending on the fineness
of the discretization. Therefore, we conduct a simulation
in a large environment to investigate the scalability of the
algorithm with the parameters summarized in Table III. We
observe that the most of the computation cost originates
from the calculation of the distance function (performed
offline). We randomly created 25 pairs of pick-up and
delivery locations. Each requires around 40 minutes, in total
1000 minutes, to calculate the distance functions. Recalling
that the distance function is calculated off-line, and we run
the simulations on a regular laptop, the total run time can
significantly be reduced using supercomputers.

VII. CONCLUSION

We considered the problem of learning optimal rout-
ing policies for delivery drones to perform optimal aerial

monitoring while successfully completing their pick-up and
delivery tasks with a desired probability. We formulated
this problem as a Markov decision process under temporal
logic (TWTL) constraints encoding the pick-up and delivery
tasks. We presented a modified Dyna-Q algorithm, which
adjusts the set of allowable actions as needed based on a
conservative estimation of the probability of satisfying the
TWTL constraint in the remaining time. Accordingly, the
proposed algorithm can be used to learn optimal routing poli-
cies with probabilistic guarantees on constraint satisfaction
throughout the learning process. Furthermore, such a hybrid
reinforcement learning algorithm achieves a faster learning
rate compared to model-free methods (e.g., Q-learning) due
to its improved sample efficiency. We demonstrated the
performance of the proposed algorithm and compared it to
a model-free approach [13] via extensive simulations.

As a future direction, we aim to extend our proposed
approach to systems with continuous states and actions using
methods such as deep Q-learning. Furthermore, we aim to
extend our methods to dynamic environments, where the
constraint satisfaction requires reaching the accepting states
on a time-varying graph (time-product MDP) (e.g., [41]).
We are also interested in extending our methods to multi-
UAV systems where the vehicles are coupled through their
objectives and constraints (e.g., [42], [43]).
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