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1 Introduction

The last decade has brought a rapid growth in demand for fast and error-resilient telecom-
munication services. In accordance with this growth, broadband wireless networks have
become an integral part of the global communication infrastructure. Provisioning of
quality-of-service (QoS) in broadband wireless networks requires coping with the chal-
lenges brought by the wireless interface, and allocating resources available at different
layers among nodes, links, and end-to-end connections. Nonlinear optimization tools have
been successfully adopted to analyze and design algorithms that fulfill such requirements;
see e.g., [12,18,35,53] and references therein. Optimal network designs are obtained by
formulating a constrained optimization problem involving variables from different lay-
ers, and by exploiting information about the wireless channel. Solving such optimization
problems dictates how resources are allocated across different layers, while network control
protocols follow from the algorithms used for this solution. One of the most challenging
issues to cope with in designing optimal cross-layer resource allocation schemes for wire-
less networks is the presence of fading. Fading renders wireless channels random, degrades
the communication performance, and leads to location-dependent and time-varying link
capacities. As a result, cross-layer schemes are required to account for the fading nature of
the channel, and implement mechanisms to deal with it. Such schemes should be able to
effectively exploit the diversity provided by the channel, and adapt the resource allocation
to the channel state information (CSI) available.

Capitalizing on optimization theory and stochastic approximation tools, this chapter
deals with channel-adaptive algorithms that allocate resources at transport, network, link,
and physical layers. These algorithms emerge from the solution of constrained optimiza-
tion problems that take into account the QoS, the interaction among layers, and the CSI
available.

The model describing the multi-hop wireless network as well as its most relevant
operating conditions are as follows. Nodes receive packets from the application layer
intended for different destinations. Flow control and routing decisions respond to packet
arrivals, and the long-term average end-to-end rates entail different utility levels. At the
link layer, two different models are considered, whereby nodes access either orthogonally
or non-orthogonally a set of parallel flat fading channels. Orthogonal here means that if
a terminal is transmitting, no other link interfering with this transmission can be active;



see e.g., [18, Example 2.3, [64]. Constraints on the links that can be simultaneously
activated are typically called interference constraints, and a resulting feasible set of links
is called schedule or link activation set. In the non-orthogonal case, all link transmissions
are allowed to use all channels, and interfering transmissions are treated as noise. The
link rates are then functions of the signal-to-interference-plus-noise-ratio (SINR). At the
physical layer, nodes can adapt their instantaneous power and rate loadings per fading
realization, while also optimizing their average power consumption. The main difficulty
to solve the resulting channel-adaptive optimization is due to the link layer. In the
orthogonal case, link scheduling per fading realization may be a complex task, while in
the non-orthogonal case the SINR dependence couples the power allocation decisions, and
the problem is in general non-convex, and thus challenging.

There is a large body of works treating network optimization and control. The ones
focusing on wireless multi-hop networks with the aforementioned media access types are
briefly outlined next.

General cross-layer optimization problems are formulated in [10,11,13,17,21,30,31,33,
34,47,49,51-53,55,63,64,66]. Most rely on a dual approach to solve the problem, except
for [11], [53, Sec. 3.4] which use a primal-dual method; [63,64] are based on scaled gradient
projection; [55] utilizes a cross decomposition approach. Various layered architectures and
network control algorithms result from the approach followed in each work. With regards
to the physical and link layers, the aforementioned works can be classified as follows:

e An abstract (convex) link layer rate region is used in [33].

e Link activation sets are considered in [10,34,53], whereby links have fixed capacities.

e Link capacities as functions of resource allocation quantities local to each link are
used in [31,66]. This model emerges typically when there are enough orthogonal
signaling dimensions allocated a priori.

e Interference constraints are introduced in [51], while adopting link capacity as a
function of the power allocation over that link.

e High-SINR or related approximations of the link capacities as functions of the SINR
are adopted in [11,64].

e Low-SINR approximations for the link capacities are adopted in [13,47].

e A staircase or a step function of the SINR and interference constraints are consid-
ered in [21,55]. Moreover, half-duplex constraints are considered in [63]. The link
capacity is a function of the SINR, because interference is still present under such
constraints.

e Capacities are kept as generic functions of the SINR or the power allocations at all
links in [30,49, 52].

e The information-theoretic log(1 + SINR) model is used in [17,64].

Suboptimal low-complexity approaches where the link-layer rate region is substituted by
an achievable inner bound have also been pursued [5,9, 14, 32,67, 68]; such approaches
are also termed “layered.” The premise for this substitution is that methods applicable
to wireline networks can then be used for routing and congestion control. In general,
it is important to stress that the vast majority of the aforementioned prior art assumes
that wireless channels are deterministic. Exceptions include [10, 30, 34], which also deal
with random channels taking values from a finite set; [31] where the random channels are
modeled as stationary and ergodic processes; and [17,49,51,52] which consider continuous
fading.

The works mentioned in the previous paragraph rely on nonlinear optimization tools



to solve the resource allocation task. Differently, [15,16,19,41-43,65] develop resource
allocation schemes by using a Lyapunov stability approach. Those are built upon dynamic
backpressure policies, first introduced in the seminal work of [58]. Specifically, the routing
and scheduling components here are based on differential backlogs, capturing the differ-
ences between queue lengths of neighboring nodes in the network. An important feature
in these works is the introduction of virtual queues in order to ensure that constraints on
long-term average quantities (e.g., power) are satisfied [41]. Moreover, congestion control
is added based on utility maximization, following a dual [15,19,42], or, a primal-dual
approach [16]. The overall framework is also referred to as stochastic network optimiza-
tion; see [18] for a tutorial treatment. Recent extensions explicitly deal with wireless links
that are not reliable [44,50]. A related approach to backpressure policies also uses queue
lengths as a basis for generic network utility maximization problems [57].

Accounting for wireless fading effects represents the main difference of this chapter’s
themes from most of the state-of-the-art works in the literature. In the cross-layer opti-
mization of orthogonal-access networks, instantaneous constraints involving link capacities
are considered, whereby an instant corresponds to a fading realization. Such constraints
differ from those found elsewhere in the cross-layer optimization literature. In the non-
orthogonal case, continuous fading induces a favorable hidden convexity structure [52],
which in turn can be used for efficient algorithmic solutions to the cross-layer optimization
problem.

The remainder of the chapter is structured as follows. Starting with the orthogonal for-
mulation, the model of the multi-hop network and the operation of the network, link, and
physical layers are described in Section 2. The cross-layer design problem is formulated
in Section 3, having as optimization variables the average end-to-end rates, instantaneous
network layer flows, link schedules, average power consumption, and instantaneous power
allocations across tones. Higher average end-to-end rates and lower average powers are
promoted by considering rate-utility and power-cost functions whose inputs are variables
averaged over all possible states of the fading channel. Section 4 shows how the optimal
cross-layer resource allocation can be expressed as a function of the instantaneous CSI
and the optimal Lagrange multipliers associated with the optimization problem. An of-
fline scheme based on smooth subgradients is developed in Section 5.1 in order to obtain
optimal Lagrange multipliers, which are subsequently used in an online fashion for net-
work control in Section 5.2. Using stochastic approximation tools [24], online schemes are
proposed in Section 6.1 to estimate the multipliers. Convergence and optimality of the
stochastic schemes is characterized. By establishing relationships between the Lagrange
multipliers and the queue lengths in the network, as in e.g., [18, Sec. 4.10], [38], [34], queue
stability and average queue delay of the developed schemes are discussed in Section 6.2.
Next, the focus is placed on networks with non-orthogonal access, where the link capacity
becomes a function of the SINR, giving rise to non-convezity in general. The cross-layer
optimization problem and its duality properties are the subjects of Section 7.1. A sub-
gradient descent algorithm along with weighted running averages of the primal iterates
are then developed in Section 7.2. The overall scheme yields a near-optimal solution to
the cross-layer resource allocation problem, which is subsequently employed for network
control. Finally, Section 8 concludes this chapter.



2 System Description

In this section, the architecture and operation of the wireless multi-hop network model
is described. Consider a multi-hop wireless network with I nodes. Two nodes i, j in
{1,...,I} are physically linked if they can communicate with each other. The set of
nodes that a node ¢ can communicate with constitutes the neighborhood of ¢, and is
denoted by A (7). Node connectivity is captured by a directed graph G where vertices
correspond to wireless nodes and an edge connecting two vertices is present only if the
nodes represented by the vertices are close enough to be physically linked. Hence, nodes
1 and j are connected through two directed edges: the link (4, ) from 4 to j; and the link
(4, 1) from j to i.

Nodes can transmit over a set of K flat fading parallel channels, indexed by k €
{1,...,K}. The terms channels, tones, and bands are used interchangeably throughout
this chapter. Zero-mean additive white Gaussian noise (AWGN) with variance U;—C is
assumed added at the receiver j over channel k. The kth channel’s instantaneous power
gain from node ¢ to node j is denoted by hﬁ i Specifically, hﬁ ; 1s the squared magnitude
of the fading coefficient. The overall channel is described by vector h, which collects all
hf, ; gains. Channels are assumed stationary and ergodic, and are allowed to be correlated
across links, tones, and time.

When both receivers and transmitters have access to an accurate estimate of h, the
system can be designed using perfect CSI (P-CSI). Since P-CSI may not be realistic in
some practical scenarios [25], one is also interested in designing the system based of Q-CSI.
For such a case, the range of values each hﬁ ; takes is divided into non-overlapping regions;

k

4,37
its quantized version hf? (equivalently, only a binary codeword is available indexing the
k
likewise h? is random, taking vector values from a set with finite cardinality. Although h
will be used as the default notation for the CSI, the problem formulation and derivations
up to Section 6 are valid both for the P-CSI and the Q-CSI cases. P-CSI is assumed

throughout Section 7. Differences will be stressed wherever needed.

and instead of the analog-amplitude A} ., receivers and transmitters have available only

region h; ; falls into). Since hf ; 1s random, hf? is also a discrete random variable; and

The goal is to develop adaptive algorithms that use the instantaneous CSI to allocate
resources at the network, link, and physical layers, so that pre-specified QoS metrics
are optimized. The QoS metrics considered are introduced in Section 3. Each layer’s
operation is described next.

2.1 Network Layer Operation

Packets generated exogenously at each node correspond to possibly different applications
(such as HTTP or file transfer), and are destined for different nodes. Packet streams are
referred to as flows, and are indexed by f. Each node serves flows that have other nodes
as destination. The destination node associated with each flow f is denoted by d(f),
and the average arrival rate of exogenous packets of flow f to node ¢ is denoted by dzf .
Correspondingly, the instantaneous arrival rate of exogenous packets of flow f to node 4

is denoted by al. The instantaneous rate of flow f that during the channel realization
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h is sent from node i to node j is denoted by rij(h).l Packets of flow f arrive to node
i from two different sources: (a) packets arriving from the neighbors of i (endogenous
network traffic); and (b) packets coming from the transport layer of node i (exogenous
network traffic). Note that rates rlf) ;(h) are in fact routing variables, because they dictate
how packets of various flows are forwarded to the outgoing links of node i. For brevity,
the set of flows that can be generated exogenously at node i, i.e., flows not having i as
destination, is denoted by F(i) := {f|i # d(f)}. Variables a and rlf’j are defined for
i=1,...,1, 7 € N(i), and f € F(3).

The nodes are equipped with queues (buffers) that can store the incoming packets.
Packets in the queue will be transmitted as soon as the conditions of the physical layer
allow. In this work, we will consider that queues are stable if the limit of the running
average of the expected queue lengths as the time goes to infinity is finite [18]. Based on
these operating conditions, the following necessary average flow conservation condition
needs to be satisfied for such queues to be stable (all expectations hereafter are with
respect to the stationary distribution of h, unless mentioned otherwise):

al+ 3 E[m] < Y E[m)], vifern) (1)
)

JEN (G JEN(3)

Clearly, equation (1) is necessary because if it is not satisfied, the size of the queues will
grow arbitrarily large. It is also assumed that the queues never became empty (this is
known as full buffer assumption). Again, it is easy to prove that if that is not the case
and (1) is satisfied with equality, the queues will grow arbitrarily large. The full buffer
assumption is reasonable because the present formulation will aim at maximizing the
average arrival rate. These issues will be discussed in more detail in Section 6.

Lastly, it is important to remark that in the subsequent formulation, variables inf will
not be fixed, but optimally found as the solution of an optimization problem. From a
practical point of view, this implies that nodes implement flow control at the transport
layer. Further details are given in Section 3.

2.2 Link Layer Operation: Orthogonal Transmissions

As in e.g., [10,29,51,62], links at the outset are allowed to access simultaneously but
orthogonally (in time or frequency) any of the channels. Consideration of orthogonal
access is well motivated from an operational perspective, since it decreases the complexity
of the system and many deployed systems implement it. Moreover, from an optimality
perspective, orthogonal access is (nearly) optimal when the interference is strong.

Since we consider orthogonal transmissions, the topology of the connectivity graph G
plays a fundamental role in defining the sets of feasible scheduling policies. Intuitively,
orthogonal access implies that most nodes in the neighborhoods of the origin and desti-
nation of an active link remain silent. More rigourously, if the link from node ¢ to node j
is active, the following links cannot be activated: (a) links whose origin or destination is
i, (b) links whose origin or destination is j, (¢) links whose destination is a neighbor of 4,
and (d) links whose origin is a neighbor of j. Those four conditions constitute the interfer-
ence constraints of the present orthogonal access network model. Note that these include

1Since resources will be adapted every time the channel h changes, instantaneous variables are written
as a function of h.
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Figure 1: Example of connectivity graph G (left) and associated contention graph W
(right). There are six maximal independent sets in W: {(1,3),(5,4)}, {(4,5),(3,1)},

{(2,3),(5,4)}, {(4,5),(3,2)}, {3, 4)}, {(4,3)}

all constraints considered in the primary interference model (also called node-exclusive
interference model)—see e.g., [10, 34, 54]—while they are included in the secondary in-
terference model (2-hop interference model) [15,54]. These interference constraints can
be used to create what is oftentimes referred to as contention graph or conflict graph of
G; see e.g., [10]. The contention graph W is an undirected graph whose vertices are the
directed links of the wireless network, and an edge connects two vertices of W if the cor-
responding directed links of G cannot be activated simultaneously. The contention graph
W can be easily built in a systematic way using the connectivity graph G and the four
orthogonality requirements (a)—(d). Fig. 1 illustrates an example of G and WW. Once W
is known, one can rely on graph-theoretic tools to find the feasible scheduling policies.
Specifically, an independent set is a set of vertices in a graph no two of which are adjacent;
i.e, it is a set of vertices such that for every two vertices, there is no edge connecting the
two. Moreover, a mazimal independent set is an independent set that is not a subset
of any other independent set; i.e., it is an independent set such that adding any other
node to the set forces the set to contain an edge. Based on these definitions, it is clear
that two physical links can be simultaneously activated only if they belong to the same
independent set of W. Therefore, finding feasible scheduling policies amounts to finding
maximal independent sets of W.

To rigorously formulate the orthogonality constraints, let s be a maximal independent
set of the contention graph W, and S be the collection of all maximal independent sets of
W. Since links are allowed to share orthogonally the access to the channel, w¥(h) in [0, 1]
will denote the nonnegative fraction of time the links in set s are scheduled per realization
h.2 Clearly, the following relationship holds:

> wh(h) <1, Vhk. (2)
seES

20rthogonal sharing can also be implemented using e.g., orthogonal codes.



This way, if w¥(h) = 1, the links in s can transmit during the entire duration of realization
h, while links that do not belong to s have to remain silent. On the other hand, if
w¥(h) = 0.7 and w¥ (h) = 0.3, links in s can transmit during the 70% of the duration of
realization h, and links in s’ can transmit during the remaining 30%. Time sharing is not
necessarily difficult to implement in practice. For example, in existing OFDMA systems,
typical bounds on the channel coherence and symbol intervals are 5-100 ms and 5-500
us, respectively. This means that during a coherence interval several hundreds of symbols
are transmitted; hence, those symbols can be assigned to different links. Even so, the
ensuing analysis will show that in most situations time sharing is not needed because the
optimal scheduling will assign the channel to a single independent set.
To account for the fact that a link can belong to different maximal independent sets,
let S(7,7) denote the collection of maximal independent sets that contain link (¢, j), i.e.,
S(i,j) :={s € S: (i,j) € s}, and let w} ;(h) in [0,1] denote the nonnegative fraction of
time the directed link (4, j) is scheduled during the current channel realization. Then it
must hold that
w;(h) < Y wh(h), Vhk,i,j€N(i). (3)

%,J
s€S (i)

Clearly, optimal allocation requires active links to satisfy (3) with equality. Note also that
(2) and (3) need to hold for each and every channel realization. Differently, (1) involves
averages over the channel distribution, and therefore it does not depend on a specific h.
In the following, constraints that need to hold for all h will be referred to as instantaneous
constraints, while constraints that do not depend on the specific realization of h will be
referred to as average constraints.

2.3 Physical Layer Operation

The resources adapted at the physical layer are power and rate per link, per channel,
and per CSI realization. Specifically, pf’j (h) denotes the instantaneous nominal power
transmitted over channel k£ from node 7 to node j during the channel realization h.
Nominal here means that pf, ;(h) is the power that would be transmitted if channel k
were allocated to link (¢, ) during the entire duration of h. For the general case, where
wfj(h) < 1, the power effectively transmitted over channel k£ from node i to node j
during channel realization h is wy ;(h)p} ;(h). Furthermore, two power constraints are
considered. On the one hand, the instantaneous power pf’ ;(h) is bounded by a maximum
pre-specified level [)ﬁ j (spectral mask). On the other hand, the average transmitted power
pi=ER D env wk ;(h)p} ;(h)] cannot exceed a maximum average power budget ;.

Under BER or capacity constraints, rate and power variables are coupled. This rate-
power coupling is represented by the function C’;fj(h, pi-f ;(h)). Similar to the power case,
C’Z—’fj (h,pf’j (h)) represents the nominal transmitted rate, while Cik’j (h,p;"’j (h))wfj (h) is the
effective rate transmitted over channel k£ from node i to node j for the duration of channel
realization h. It is assumed throughout that the rate-power function Cf,j (h,pf’j (h)) is
increasing and strictly concave in pf j (h). This holds generally for orthogonal access but,
for example, not when multiuser interference is present (see Section 7 for details). For
instance, if sufficiently strong error control coding is employed, C’f’ f (h,pi—f ;(h)) is given
by Shannon’s capacity formula log(1 + hf ;p¥ ;(h)/o¥) [20], which is certainly increasing



and strictly concave. Additional examples of concave rate-power functions can be found
in [37].

3 Problem Formulation

This section formulates the optimal resource allocation problem. Resource allocation
algorithms will be designed so that lower average power consumption and higher exogenous
average arrival rates are promoted. To this end, the rate utility functions Uif (1) are
selected to be increasing (so that higher rates are promoted) and strictly concave (so that
fairness among users and flows is enforced). Similarly, the power cost functions J;(-) are
chosen to be increasing and strictly convex. Note that different utilities may be chosen
for different flows f. For example, utility functions that are almost linear are appropriate
for best-effort traffic because user satisfaction increases as rate increases. On the other
hand, applications such as video streaming with buffering may require the average rate to
exceed a minimum prescribed value, and do not experience any significant improvement
once that value has been achieved. For this kind of services, concave utility functions can
be adopted to yield very high reward for rate increments when the minimum rate has not
been achieved, but almost zero reward for rate increments above the minimum rate. Note
however that the present formulation does not accommodate real-time traffic with hard
delay constraints. Design trade-offs between power cost and rate utility can be accounted
for by proper weighting of functions Uif (-) and J;(-).

Taking into account the previous considerations, the optimal channel-adaptive cross-
layer resource allocation is obtained as the solution of the following constrained optimiza-
tion problem:

P=  min - Z Uif (&Zf)-l-zji(ﬁi) (4a)

a,lf,pi,Tlf’j(h), i,fE]‘—(i)
wk ;(h),wk (h),p¥ ; (h)
subj. to al + Y E[r < > EM), Vi, fe F(i) (4b)
JGN (i) ]GN )
Z <Zw” (h,p};(h)), Vh,i,j€eN(i) (4c)
FeF (@)
Z Z p7,7_] h) Spia Vi (4d)
k JEN(3)
w;(h) < > wh(h),  VhkijeN() (4e)
s€S(4,7)
> wkh) <1, Vh,k (4f)
sES
rl.(h) >0, Vh,ijeN(), feF() (4g)
wf;(h) >0, wf(h)>0, VhkijeN(i)seS (4h)
al >0, Vi, f € F(i) (4i)
k <k ;s . = = : :
O S p17](h) S pi7j7 Vh7k717.7 E N(Z)7 O S pl S pi7 V’L' (4.])



The cross-layer nature of the resource allocation problem is apparent because variables
of different layers are jointly optimized. The channel-adaptive attribute is also apparent
since the optimization variables Tlf’j(h), wf ;(h), wk(h), and pf ;(h) are all functions of h.

The objective in (4a) is constrained to several conditions. Constraints (4g)—(4j) ef-
fect lower and upper bounds on different variables, and are known as box constraints,
which are easy to tackle. The remaining constraints enforce relationships among vari-
ables described in Section 2. Constraint (4b) corresponds to (1) and guarantees the flow
conservation. Constraints (4e) and (4f) encapsulate the scheduling decisions at the link
layer. Different from (4b) which needs only to hold on average, constraints (4e) and (4f)
need to hold for every channel realization h. The interaction among layers is manifested
in (4c), which ensures that the number of packets routed during channel realization h
never exceeds the instantaneous capacity of the wireless channel. Finally, (4d) represents
the average power constraint introduced in Section 2.3. In fact, it can be easily shown
that a problem with the same solution as (4) could be formulated by replacing p; with
ER k> jen wf ;(h)p};(h)] and eliminating (4d). The reason behind keeping p; as a
variable in (4d) is that it will be helpful for decoupling the optimality conditions of (4).

Problem (4) is nearly convex. In fact, the only source of non-convexity are the mono-
mials wﬁj (h)pﬁj (h) and wﬁj(h)Cﬁj(h,pﬁj(h)). This source of non-convexity can be elim-
inated by introducing the auxiliary variables uf] (h) := wf j (h)pﬁ ; (h). Tt can be shown
that if pj ;(h) in (4) is replaced by uj ;(h)/w} ;(h), the problem becomes convex, and the
reformulated problem yields the same Lagrangian as well as the same optimality condi-
tions as those of (4); see e.g., [3,37,62]. Since both problems yield the same optimality
conditions, the original formulation in (4) will be retained for brevity, without explicitly

introducing the auxiliary variables uf j(h).

4 Optimal Resource Allocation

In this section, the optimal solution of (4) is characterized as a function of the optimal
multipliers associated with the constraints in (4), and the instantaneous CSI h. This is
accomplished using duality theory in order to find necessary and sufficient conditions for
optimality (Section 4.1). The optimal resource allocation schemes at the physical, link,
and network layers are developed based on these conditions (Section 4.2). Finally, an al-
ternative solution for asymptotically optimal scheduling and routing schemes is presented
and shown to offer distinct advantages relative to the optimal ones (Section 4.3).

4.1 Lagrangian and Optimality Conditions

Using the Lagrangian dual approach, necessary and sufficient conditions that the optimal
solution of (4) needs to satisfy are identified in this section. Let p{ and 7; denote La-
grange multipliers associated with the average constraints in (4b) and (4d), respectively.
Similarly, let v; ;(h), 97 ;(h), £¥(h), nfjf(h), nz[;’k(h), and 7"**(h) denote the Lagrange
multipliers associated with instantaneous constraints (4c) and (4e)—(4h), respectively.?
Multipliers associated with (4i) and (4j) are not introduced because they are not needed
in the subsequent analysis.

3The dependence of the multipliers associated with instantaneous constraints on h is written explicitly
throughout.
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Furthermore, let y be a vector containing all the average primal variables, x(h) be
a vector containing all the instantaneous primal variables, A a vector containing all the
Lagrange multipliers (dual variables) associated with average constraints, and x(h) a
vector containing all the dual variables associated with instantaneous constraints.

The full Lagrangian of (4) is

L(y,x(h), A =S ul@h+ > ol al + > Epli () — Y Ep/,(h)]

i, fEF (1) i, fEF (i) JEN (i) JEN (i)

+ZJ1 (]51)4’271'1 Z Z pld ) — P

k jEN(4)

-+ Z I/i7j(h) Z Zw apz ](h))

1,JEN(3) feF (i)

P m (e Y ]+ Y e (zws<h>1>
k

ki EN () €8 (i) s€S

- > a el m - Y al @l m) - Y P mwlh). (5)

i, JEN (i), fEF (i) k,i,jeEN(4) k,s€S

Let y*, x*(h), A*, and x*(h) denote the optimal solution and the associated Lagrange
multipliers of (4). Due to the convexity of (4), the Karush-Kuhn-Tucker (KKT) conditions
yield the following conditions for optimality [8, Sec. 5.5] (¢ denotes the derivative of g,
and f1,(h) the probability density function of random vector h):

Ji(r) — 7 =0 (6a)

Ul @) +pl"=0  (6b)

7 (Bl (W)CE (b, pl5(0) + ks () fu(@)dh =0 (6c)

(o7 = o) a0y + vy (0) = nf" @) =0 (6a)

v} ()CE; (b, pf (R >>+7r*pf;< Jfn()dh -+ 085 (0) = m) =0 (6e)
Z ﬁk* h) + &5 (h) — nV*¥* (h) =0 (6£)

(i.9)€s

Conditions (6) must be supplemented with the complementary slackness conditions
[8, Chapter 5] and the box constraints in (4i) and (4j). The complementary slackness
conditions dictate that if at the optimal point a constraint is satisfied with strict inequality,
then the corresponding optimal Lagrange multiplier is zero.

4.2 Characterizing the Optimal Solution

Conditions in Section 4.1 are used to characterize the optimal policies in the present
section. To this end, define pj; = maXf{,to - pf *}, which will play an instrumental

role in describing the optimal policies. (The convention p{ * = 0 whenever i = d(f)
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is adopted.) Let also j;l(-), sz 71(-) and 05{1(}17 -) denote, respectively, the inverse
functions of the derivatives of J;(+), Uif (-), and Cf ;(h, ). The optimal allocation of average
power, average arrival rate, and instantaneous power is described by the following two
propositions.* (Hereafter, [.]% with a, b real denotes projection onto [a, b], and [.]5° denotes
componentwise projection onto the nonnegative reals.)

Proposition 1 The optimal average power allocation and average arrival rate allocation
are, respectively,

io= i) ™)
al* = [0f )] (®)

The result in (7) follows after solving (6a) with respect to pf and projecting such solution
onto the feasible set [0, p;] defined by the average constraints in (4j). Similarly, (8) follows
after solving (6b) with respect to El{ *, and projecting the result onto the feasible set

[0,00). Note that (8) dictates the flow control implemented at the transport layer. To

gain intuition, (8) can be rewritten as Uf (EL{ ) = p{ *. The latter reveals that the optimal
f

flow control policy consists of increasing @; * until the marginal utility reaches the cost of
injecting more exogenous traffic (measured by plf *) into the network. To ensure stability in
practice, one can conservatively select the long-term average rate of each node’s exogenous

traffic to stay slightly smaller than EL{ *.

Proposition 2 The optimal instantaneous power allocation is given by

pr
* ©J
% . _ T
pis(h) = [CF7H [~ : (9)
Pii) 1,

Interestingly, when CF;(h,z) = log(1 + A} ;z), (9) reduces to the well-known waterfilling

~k

formula pf(h) = [p};/mf* — l/hﬁj]gi’j [20]. For the waterfilling case, higher values
of 7} entail lower power and rate loadings (average power is a limiting factor), while
higher values of p; ; entail higher power and rate loadings (satisfaction of average flow
conservation constraint is critical, thus high rates are required). In fact, it is easy to see
that the previous observations hold for any C{f j (h, ) increasing and concave. The inverse
of the derivative of the rate-power function naturally arises in different power control and
resource allocation problems; see, e.g., [6,29,37].
While the optimal values pj, EL{ *, and pfj(h) can be found in closed form, obtaining
the optimal expressions for r{ 3 (h), wfj(h), and w"*(h) is more intricate. The reason
for this is that the Lagrangian in (5) is linear with respect to those variables, and dual
Lagrangian methods are known to be challenged by linear constraints.

For this reason, before characterizing the optimal wf}‘ (h) and w¥*(h), some definitions
are needed. First, for each link consider the functional

4Proofs of propositions are not presented due to space limitations. In some cases, a few lines discussing
the main idea of the proof are provided.
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which represents the instantaneous cost of scheduling channel & to link (7, j); that is, the
cost of selecting wfj(h) = 1. Secondly, for each maximal independent set consider the
aggregate functional (1;xy is the indicator function taking the value 1 if expression X is
true, and 0 otherwise)

psthk,s) =Y (owh, ki, 5) Ly (hkig<o}) (11)

(i,5)€s

which represents the cost of scheduling channel k£ to the maximal independent set s when
the CSI s h; i.e., the cost of selecting w** (h) = 1. Define also the collection of independent
sets attaining the minimum cost (A denotes the logical operator “and”)

Ss(h, k) := {s:s=argminpg(h,k,s') A ¢s(hk,s) <0} (12)

The following result holds. (For a set X', |X'| denotes cardinality.)

Proposition 3 The optimal instantaneous scheduling w**(h) and wfj (h) satisfy:

(i) If s ¢ Ss(h, k), then w**(h) = 0;

(i) If [Ss(h, k)| > 0, then 3 s 1) wr*(h) = 1; and

(i) w5 () = Ly (h ki) <0} Dosesiy) Wa (h).

In words, the optimal solution schedules only maximal independent sets with minimum
negative cost, which can be viewed as a greedy policy because for a given channel k not all
the links are scheduled. This policy is oftentimes referred to as opportunistic allocation
or winner-takes-all allocation, and it is known to be optimal for different problems; see
e.g., [29], [60], [36] for user selection in cellular systems operating over fading channels,
or, [27], [57] for max-weight scheduling in packet networks.

To find the optimal scheduling percentages among independent sets that attain the
minimum cost, two different cases must be considered. If the minimum cost in channel
k is attained by a single independent set—denote that set as s*(h, k)—then the second
part of Proposition 3 allows writing the optimal instantaneous link scheduling in closed
form as

wlsf*(h) = ]l{s:s*(h,k)} (13)
and
wfj(h) = 1@, j)es* (hk) A ow(h,k,i,j)<0}- (14)

If several independent sets attain the minimum cost, i.e., if |Ss(h, k)| > 1, then the calcu-
lation of the percentage for each of the independent sets is more complicated. Section 4.3
discusses this issue. Last but not least, although for a given channel realization h the
scheduling is opportunistic, long-term fairness is ensured in the sense that the set of links
that wins access is different per channel realization.

A similar approach is followed to find the optimal rlf’ j (h). The first step is to define
the flow cost functional

er(i,j. f) = pl" = pl* (15)
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which represents the cost of routing flow f through link (4, 7). The second step is to define
the set of optimal flows

Sr(i,j) = A{f : f = argminer(i,j, ) A er(ij f) <0} (16)

The optimal instantaneous rate of link (7, j) is C;;(h) := 3", wfj(h)C’ij (h,pf:; (h)).
Using these notational conventions, the following result holds.

Proposition 4 The optimal instantaneous routing r{ j (h) satisfies:
(i) If f ¢ Sk(i,7), then 7] % (h) = 0; and

ij

(1) T [Sp (i, §)| > 0, then Y pes, iy 715 (h) = Cf 5 (h).

As before, the optimal solution is greedy, meaning that only flows with minimum negative
cost are routed. In fact, flows only are allowed to use routes (hops) that decrease the value
of the price p{ *. Tt can also be verified that the more negative the flow cost in (15) is,
the more negative the link channel indicator in (10) becomes. This means that links that
could give rise to a significant reduction of the flow cost are more likely to be scheduled.
Furthermore, the more negative the flow cost is, the higher the value of the routing
variable becomes if the link is scheduled. This is because the power in (9) is higher, thus
the capacity is higher. Finally, it is stressed that the gain of a given link does not affect
how different flows share the link, but only C7;(h), which represents the total number of
packets actually routed through that link.

If the minimum cost is attained by a single flow, we have that

r{*(h) = LipespyCry(h). (17)

If several flows attain the minimum cost, the specific value for each of the flows can be
found using the results of Section 4.3.

4.3 Tie Resolution: Winner-Takes-Almost-All

The event of having different flows (or maximal independent sets) attaining the minimum
cost will be henceforth referred to as a tie. The main difficulty in dealing with a tie is
that Proposition 3-(ii) and Proposition 4-(ii) do not specify how resources have to be split
among winners. The underlying reason is that although any arbitrary splitting minimizes
the Lagrangian in (5), only a subset of those splittings (in many cases a single one) is the
actual solution to the original constrained problem. One way to find the optimal primal
solution when a tie occurs consists of selecting, among all possible tied schedulings (flows),
the one that satisfies the average constraints with equality [37]. Although this approach
is optimal, it does not lead to a closed-form solution. Furthermore, it requires knowing
the exact Lagrange multiplier values; hence it is very sensitive to small inaccuracies.

To bypass such problems, we advocate a smooth suboptimal scheme to resolve ties
that: (a) can be implemented for any number of elements in Sp(7,j) and Ss(h, k); (b) is
available in closed form (thus incurs reduced computational burden); and (c) is continuous
with respect to the Lagrange multipliers. Equally important, the next section establishes
analytically that the proposed scheme is asymptotically optimal (meaning that the loss
of optimality can be made arbitrarily small). To distinguish the smooth near-optimal
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schemes developed next from their optimal counterparts, the notation z* will be used
henceforth to denote the near-optimal version of the optimal z*.

The first step to derive the smooth schemes is to realize that the number of elements
in Sg(h, k) and Sp(4,J) is critical to describe the optimal allocation. Since the condition
for being a member of those sets is very restrictive (the cost has to be exactly equal to the
minimum cost), we relax the definition of sets Sg and Sg so that more elements belong
to them. Specifically, for the case of instantaneous link scheduling, define the minimum
independent set cost

¢5(h, k) :=min ot (h,k,s). (18)
S

Then, we relax the definition of a tie so that now the (suboptimal) collection of indepen-
dent sets which tie is [cf. (12)]

Ss(h,k) :={s:ps(h,k,s) —ps(h,k) <es AN ps(hk,s) <0} (19)

where €g is a small positive number. Based on Ss(h, k), the following suboptimal instan-
taneous link scheduling is proposed:®

1 @s<h’k,s>f«pg<h,k>>2

~ k* €s
w: (h) =1 % 20
P s S (1- mh,k,sf)—sog(h,k))z (20)
s'€Ss(h,k) €s
BF5(h) = Vg mrig<oy D, @i (h). (21)

s€S(i,7)

This new allocation allows maximal independent sets whose cost is not minimum but £g-
close to the minimum to be scheduled for transmission too, but in a proportional way; that
is, sets with lower cost will access the channel during more time. Next, we consider several
examples of two independent sets that tie at channel k: if pg(h, k, s1) = ¢g(h, k, s3), then
4/5; and if pg(h, k, s1) + e < @gs(h, k, s2), then @w¥* (h) = 1 and @%*(h) = 0.
Proposition 5 The smooth suboptimal instantaneous schedulings @**(h) and wf;(h)
satisfy:
(i) If s ¢ Ss(h, k), then @ (h) = 0;
(ii) If |Ss(h, k)| > 0, then 35 s 4 @8* (h) = 1; and
(iii) @**(h) and ﬁ)f’; (h) are continuous functions of A*.
Note that Proposition 5 is true due to definition (20). Properties (i)—(ii) are similar to
those in Proposition 3, while (iii) ensures continuity with respect to A*. The sharing
coefficient w**(h) is continuous with respect to ¢g(h,k,s), and the latter is continuous
with respect to A*.

Proceeding in a similar manner for the instantaneous routing, consider the minimum
flow cost

wp(i,j) = minop(i, 1) (22)

5From an optimization perspective, (20) is a smooth version of the optimal discontinuous scheduling;
see e.g., [69] and [45]. Alternative smooth schedulings, for example based on sigmoidal functions, are also
possible.
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Note that the latter is very similar to the definition of p; ; given in Section 4.2; specifically,
it holds that p} ; = —¢5(i,j). Moreover, the set of suboptlmal flows is [cf. (16)]

Sr(i,§) = {f: (pr(i,4, ) = 0(i.)) <er A ¢r(ij, f) <0} (23)

where er is a small positive number. Based on Sp(i,j), we propose the suboptimal
instantaneous routing

(1_%—@@)2

€F

*h) = O
7 =Cr ()1 ,es (i 24
gth) = Gy hyresray | erGih—ep(a))? (24)
fE€SF(i,5) er
where C . ~k * h, pF%(h)). The proposed instantaneous routing satisfies
2] W %,
the properties descrlbed in the next proposition.

Proposition 6 The smooth suboptimal instantaneous routing flf j (h) satisfies:
(i) If f ¢ Sr(i,j), then 7 “(h) =0;

(ii) If |Sp (i, 5)] > 0, then zfesl,(”) 7% (h) = C;;(h); and

(iii) f{i ;(h) is a continuous function of )\*.

As before, Proposition 6 is due to (24), and properties (i) and (ii) are similar to those in
Proposition 4.

4.4 Layered Resource Allocation

Although the formulation in (4) allows for arbitrary dependence among variables of dif-
ferent layers, it turns out that the optimal schemes presented so far exhibit a layered
structure. Indeed, the power and rate loadings at the physical layer depend only on the
channel gain and the Lagrange multipliers [cf. (9)]. Once the physical layer is fixed, the
links to be activated can be found via (20) and (21); hence, link scheduling does depend
on variables of other layers, but in a simple way. With the optimal link and the physical
allocation available, C/;(h) can be readily obtained. Then, the network layer can find
which flow(s) to route using (24), which requires only knowledge of the Lagrange multi-
pliers. In other words, the way flows share a specific link does not depend on the lower
layers; only the total (aggregate) number of packets is given by C7 j(h). Finally, the flow

control implemented at the transport layer is based on ZL{ *, which according to (8), only
depends on the Lagrange multipliers.

The intuition behind this solution is that the Lagrange multipliers act as layer in-
terfaces encapsulating all the cross-layer information which is relevant from a resource
allocation point of view. These findings are consistent with those in [12] (non-fading
case), and in [52] (fading case).

5 Ergodic Resource Allocation

5.1 Finding the Optimal Lagrange Multipliers

To implement the optimal resource allocation schemes of the previous section, the optimal
multiplier vector A* must be known. However, A* cannot be obtained analytically from
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the optimality conditions in Section 4.1, and numerical search is needed. This is possible
using dual methods. Toward this objective, consider first the partial Lagrangian of (4)
where only the contribution of the average constraints is included

Llyxm),A) == > vl (af)+ Y pl al + 3 Bl m)] - Y Bl W)

i, fEF(3) i,fEF(i JEN (i) JEN (i)
i i k ]e./\/(z)

Recall that all the instantaneous constraints (link scheduling and instantaneous routing),
as well as nonnegativity constraints were already satisfied by the solution of the previous
section. Thus, the focus here is to find the Lagrange multipliers associated with average
constraints, namely, p{ and 7; for all 7, f.

With A denoting the feasible set for the primal variables, A := {y, x(h) : (4c), (4e), (4f), (4g), (4h),

and (4j) are satisfied}, the dual function is defined as

DA):= inf  L(y,x(h),A) = L(y*(N),x*(h,A), ), (26)

(yx(h))eA
which is always concave with respect to A [4, Sec. 6.2]. Note that y*(A) and x*(h, A) in
(26) can be obtained by substituting A* = X into the expressions of the optimal primal
solutions presented in Section 4.2. Based on (26), the dual problem of (4) is
D:= max D). (27)

Since problem (4) is convex, as long as it is strictly feasible, the duality gap between the
primal and dual problems (4) and (27) is zero, i.e., P = D [8, Sec. 5.2]. As a result, the
value of A optimizing (27) can be used to find the optimal primal solution. A standard
approach to obtain A* is through a gradient iteration. However, this is impossible here
because the linear constraints in (4) render D(X) non-differentiable with respect to some
of the entries of A. In this case, one can resort to subgradient iterations. For the dual
function (26) at a given point A, it is known that the constraint violation evaluated at
the primal solution x*(h, A) and y*(A) is a subgradient [4, Sec. 8.1].

For decreasing and non-absolutely summable stepsizes, subgradient iterations are
known to converge in the dual domain [4, Sec. 8.2]. However, for a finite number of
iterations finding a (near-)feasible primal solution is not guaranteed. The problem is that
rf ;(h,)\) and wf’j(h,)\) are typically discontinuous at A*; therefore, small hovering in
the dual domain around A* can give rise to significant differences in the primal domain;
see also Section 7.2 for more details about convergence of subgradient iterations. Fortu-
nately, this is not a problem for the suboptimal scheduling and routing of Section 4.3.
The reason is that when viewed as a function of A, rf* (h,A), @**(h, ), and ﬁjfy (h,A)
are Lipschitz continuous. (Recall that while for the optlmal scheduhng the transition
from a tie to a single-winner is abrupt, for the suboptimal scheduling the transition is
smooth avoiding any discontinuity.) Lipschitz continuity guarantees that proximity in the
dual domain implies proximity in the primal domain. In the context of optimization algo-
rithms, smoothing techniques have been successfully used as a mean to effect continuity
or differentiability; see e.g., [69] and [45].
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Before presenting the results for the smooth case, define the smooth version of the
dual function as

D(A) = L(y* (A, X" (0, A), A) (28)

where y*(A) and x*(h,A) are obtained by substituting A* = X into the expressions of
the optimal (smooth when needed) primal solutions presented in Sections 4.2 and 4.3.
Similarly, the smooth version of the subgradient is defined as the vector &D(A) with
entries

oD,(N) = al* N+ > BN = > EF(h ), Vi, f e Fi) (29)
' JEN (D) JEN)
ODr(N) = E > > afihA)pih )| —pi(N), Vi (30)

k jeN(i)
Based on these definitions, the following convergence and optimality result follows.

Proposition 7 If 4 > 0 denotes a small constant stepsize, then for any A(?) there exists
1 so that:
(i) the iteration

AO = A 4 paD(A)] (31)

0

converges to some point 5\*, e, A0 — )\* and
(ii) at the convergence point: D(A*) < D()\*) < D(X*) + f(es,er), where f(-,-) is a
positive increasing function satisfying f(es,er) — 0 as (es,er) — (0,0).

Proposition 7 has various implications. As far as convergence is concerned, it provides
a systematic algorithm to compute X*. From a feasibility perspective, it guarantees that
if x*(h, ) is implemented at A*, the average flow conservation and power constraints
are satisfied with equality (recall that &D(A) = 0 only if this holds). Finally, from an
optimality perspective, it guarantees that the overall price paid for implementing the
smooth instead of the optimal policy is asymptotically small.5. The last assertion is true
because the bounds on the dual values given in Proposition 7-(ii), directly translate to
bounds on the objective in (4a). A rigorous proof of this proposition for a problem related
to the one investigated in this chapter can be found in [37].

5.2 Operational Mode: Offline and Online Phases

The proposed cross-layer channel-adaptive schemes operate in two phases: (a) an offline
phase, which takes place before communication starts during the initialization phase; and
(b) an online phase, which is executed during the communication process, every time the
instantaneous CSI h is updated. ~

The main objective of the offline phase is to find the Lagrange multipliers A*. As pre-
sented in Section 5.1, A* is found through (31), which basically describes dual subgradient

6In practice, the gap with respect to D(X*) is almost zero even for finite (small) values of eg and p.
This is true because the smooth schemes are slightly suboptimal only when ties occur, which are rare
events.
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iterations. It is known that such methods may have slow convergence in practice. Hence,
hundreds of iterations may be needed in order to find Lagrange multipliers reasonably
close to the optimal ones. Of course, the specific number of iterations depends on factors
such as the initialization point, the stepsize, and the required accuracy.

Moreover, the computational burden for each iteration can be high, especially for
large-scale networks. The reason is that the subgradients in (31) involve expectations
over the channel distribution [cf. (29) and (30)]. In practice, these expectations are
replaced by Monte Carlo estimates. The samples needed for this may be obtained (a)
by drawing independent realizations from the distribution of h, if it is known; or (b) by
using actual channel measurements, if such are available. Method (b) works even if the
measurements are correlated—which may happen in the present context when the fading
process is correlated across time. In any case, the higher the size of the network is, the
bigger the number of channel realizations needed to obtain a reliable estimate of the actual
subgradients becomes. It is also worth mentioning that for each channel realization, the
independent set of links that wins access to the channel needs to be found. Enumerating all
maximal independent sets has in general exponential complexity; see e.g., [54]. Different
from other scheduling schemes, as in e.g., [10, 34], such a computation here needs to
be executed only once, before the offline phase starts. All maximal independent sets
are identified upon the initialization, and for each channel realization generated, the
independent set achieving the highest link quality indicator can be easily found. It should
finally be stressed that although the offline phase incurs high computational burden, it
only needs to be re-run every time the channel statistics or the system set-up changes.

In contrast, the online phase needs to be executed every time the CSI changes, which
depends on the channel coherence interval. Then, based on the current value of the CSI
h, and the value of A* obtained from the offline phase, the resources at the different layers
are adapted according to (9)-(24). Note that in the online phase, there is no need for
re-computing S, since it is already available from the offline phase. Although the optimal
allocation at the physical and network layers only requires local CSI, obtaining the optimal
link activations requires knowledge of the full h vector. Specifically, to find the optimal
scheduling, the maximal independent set giving rise to the lowest cost needs to be found.
To this end, nodes need to share either the channel gains of their local links, or, the value
of their link cost indicators. Exchange of this information can be implemented using
different options. In a decentralized approach, control channels may be available, over
which nodes exchange their local information—see [3] for a protocol that implements this
task. Under a hierarchical approach, the network can contain scheduler-node(s)—regular
or dedicated—that gather the information, find the optimal link allocation, and broadcast
it to the transmitting nodes.

5.3 Numerical Example

To illustrate how the developed schemes perform, numerical tests were simulated for the
very simple case of the network in Fig. 2(a) involving I = 3 nodes, all of them connected.
Moreover, F' = 3 different flows—one for each possible destination—and K = 4 parallel
channels are considered. The channel SNRs are exponentially distributed, their average
power gain is 5 dB, and are assumed to be reciprocal (i.e., hﬁj = hfﬂ The utilities to be
maximized are U/ (z) = log(1+2), if (i, f) = (1,3) or (i, f) = (3,2); U (z) = log(1/10+=2),
if (i, f) = (2,1); and zero for all other node-flow combinations. The power cost functions
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(a) (b)

Figure 2: Network with 3 nodes, all connected with each other. For the first test case, all
channels have the same SNR (left). For the second test case, the channel between nodes
2 and 3 is very weak (right).

are J;(r) = x2/10 forall i. Moreover a maximum average transmit power of p; = 5 per
node is considered.

The performance of the network during the online phase when the optimal multipliers
are used is the following: p; = 1.5, po = 1.3, p3 = 1.5; @ = 3.0, a3 = 2.6, a3 = 3.0;
and 7% 5 = 3.0, 73, = 2.6, 73 5 = 3.0; and zero for all other variables. Note first that the
network conditions are similar for nodes 1 and 3. This is not true for node 2, because
it routes packets from flow 1, which according to the utilities considered, yield lower
utility. Taking into account these facts, we observe that the numerical results follow the
expected behavior since power and rate performance are similar for nodes 1 and 3; and
the optimal exogenous rate injected at node 2 is smaller than that at nodes 1 and 3.
To further validate the developed schemes, we slightly modify the set-up and reduce the
average channel gain between nodes 3 and 2 by 10 dB. The modified configuration yields
the following: p; = 1.8, po = 1.3, p3 = 1.2; a3 = 2.6, a} = 2.3, a3 = 1.5; and Fig = 2.6,
Ty, = 23,73, =03, 73, = 1.2, 75, = 1.2; and zero for all other variables. Since the
channel between nodes 3 and 2 is now very poor, most of the packets from 3 destined for
2 are routed through 1. Indeed, this is confirmed by the numerical results. Moreover, we
also observe that the power consumed by node 1 increases, the exogenous rate injected
at node 3 decreases, and the overall network performance decreases. Clearly, all these
changes are caused by the SNR loss between nodes 3 and 2.

6 Stochastic Resource Allocation

The resource allocation algorithms developed in the previous sections are functions of two
variables: the current CSI h, and the optimal (smooth) Lagrange multipliers. As men-
tioned earlier, finding A* offline requires knowledge of the channel distribution, and incurs
considerable computational burden. To bypass these challenges, resources can be allocated
using stochastic approximation algorithms. These algorithms learn the unavailable infor-
mation on-the-fly, exhibit tracking capabilities, and incur moderate computational com-
plexity. Roughly speaking, they could be understood as “intelligent” least mean-square
(LMS) type schemes. From an operational perspective, they operate as fully on-line solu-
tions because they do not require offline calculations and consume limited computational
resources. Different alternatives can be considered to develop such stochastic schemes.
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The approach here is to implement the cross-layer resource allocation not based on the
optimal Lagrange multipliers, but on a stochastic estimate of them that varies with time
n; i.e., A* is replaced by Aln]. It is important to clarify that n indexes blocks whose
duration is the channel coherence interval. In other words, the resource allocation and
the Lagrange multiplier estimates are updated every time the CSI h = h[n] is updated.
Recall that the fading process {h[n]}52; is assumed to be stationary and ergodic.

On top of coping with channel nonstationarities and reducing the computational bur-
den, the stochastic algorithms facilitate distributed implementation, and link Lagrange
multipliers with queue lengths analytically. This link is exploited in upcoming sections to:
(a) characterize the average queueing delay of the stochastic schemes and, consequently,
enable a way to incorporate explicitly the delay into the design; and (b) create links with
existing algorithms that allocate resources based on the state of the queues.

6.1 Estimating the Lagrange Multipliers

The first step to obtain the stochastic schemes consists of replacing the original ensemble
iterations in (29) and (30) with their instantaneous counterparts. Specifically, a Robbins-
Monro approach is used to obtain S\[n], whereby all ensemble average terms in (29)
and (30) are replaced by unbiased instantaneous (one-shot) estimates, as in e.g., [24].
Specifically, with alf * (n, ;\[n]) denoting the instantaneous arrival of flow f at node 7 dur-
ing block n [which is a random variable drawn for a distribution with mean a’, (A[n])],
the following iterations are proposed:

OD,; (n, Aln]) == ol (n,An]) + D [F; (B[], X)) = > [ ([l Aln))]  (32)
JEN(3) JEN (i)

0D, (n,Aln]) := | > > @f5(hn], An))p (hn], A[n)) | — p; (Aln]) (33)
k jeN(i)

where (32) does not apply if ¢ = d(f). Comparing (32) and (33) with (29) and (30), the
expectations over h have indeed been dropped, and the ensemble A has been replaced
with its stochastic estimate A[n]. Moreover, the optimal average arrival z‘z{ *(A) has been
replaced by its stochastic counterpart azf * (n, X[n]) Key to convergence analysis is that
sequence {8Dy, (n, A[n])} is bounded, which is true as far as both the instantaneous rates
at the physical level and the exogenous instantaneous arrival rates at the network level
are bounded. In addition, it holds by construction that E[@Dy, (n, A[n])] = dDx, (A[n]),
where the expectation is conditioned to the history of the network; i.e., {h[r]};_, and
{Alr]}o-

Based on the previous definitions, the original iterations over A in (31) are replaced
by their stochastic counterparts

~ ~ ~ ~ o0

An+1] = [,\[n] + ndD(n, Aln))| (34)
where p > 0 denotes again a constant stepsize. Equation (34) shows clearly that now
A[n] depends on the random value of h[n], thus it is stochastic.

Once the stochastic multipliers are available, they are substituted into the primal
optimal solution presented in Section 4, to yield the stochastic version of the primal
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solution. Specifically, the stochastic version of the optimal average power, average arrival
rate, and instantaneous power per time slot n are, respectively,

PR = [ m D) al Rl = (07 @) (35)
ol uln). Alnl) o= (€, (Blnl, 7ol )| (36)

Similarly, the stochastic versions of the suboptimal instantaneous scheduling and routing
are given by

ps(hln], Alnl, k, s) — o%(hln], Alnl, k>>2

= Xl o
W (hn), Aln]) = 18 mpm)Am (1 - s

 ps(b[n], Alnl, b, ') — gh(hln], Al B\
> 1 (37)
X[n],k)

s/Ggs(h[n], €5
@5 (M Al = 1, i A wigy<oy D @8 (B[], Aln)) (38)
s€S(i,7)
ot (Bn], An]) i= Y~ @Fs(h[n], A[n))CF; (a[n], i (h[n], Aln]) (39)
k

@F(S‘[n]aivj,f) _ @}(5\[71],2,]))2
€F

3 (1_ @F(S\[ﬂ],@jaf)_‘P}(:\[n]’i’j)>2_ (40)

. T EF
Fe€SF(An],i,j)

% (h[n], Aln)) == C7;(n), AnD) 1y e s, (Smli) (1 -

6.1.1 Convergence Results

This section deals with present convergence results for the dual and primal stochastic
iterates. From a practical perspective, only convergence of primal variables is required.
Nevertheless, convergence of dual variables offers design insights, and is used in the next
section to relate stochastic Lagrange multipliers and queue lengths, where packets are
stored before transmission.

First, results that guarantee that the dual stochastic estimates remain within a neigh-
borhood of the optimal solution are presented.”

Proposition 8 If the initializations of (31) and (34) are the same, it holds that:
(i) Given T > 0, there exist by > 0 and pr > 0 so that

max  |[A™ — A[n]|| < ep(u)bp, 0<p<pr with probability 1 (41)
1<n<T/n

"The locking results provided in the proposition can be shown based on the averaging approach
in [56, Chapter 9]. The main idea is that the Lipschitz continuity of &D(n, X) with respect to A can be
used to prove that the most challenging conditions required in [56, Theorem 9.1] hold. A similar approach
can be used to show the convergence in probability result in (42) when n — oo [56, Theorem 9.5].
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where cr(p) — 0 as u — 0.
(ii) Given A > 0, there exists a random variable W (u) so that

max Pr{| A" — X[n]|| > A} < Pr{W(n) > A} (42)

where W () — 0 as p — 0 with probability 1.

Proposition 8 states that the dual iterates do not strictly converge to the optimal value
but may hover around it. Since the resource allocation is a function of the stochas-
tic multipliers, the stochastic version of the instantaneous primal variables (36)—(40)
exhibit the same convergence behavior. This means that the stochastic instantaneous
primal variables may hover around their optimal (non-stochastic) counterparts; e.g.,
pi% (hfn], \*) # p}% (hn], A[n]) even when n — oco.

The convergence of the primal iterates is characterized next, in terms of their sample

averages. 8

Proposition 9 The sample average of the stochastic resource allocation: (i) is feasible
and (ii) entails a small loss of performance relative to the average non-stochastic solution
of the problem in (4). Specifically, as n — oo, it holds with probability 1 that

O S S [ A - A meL A | > S al () (43)
r=1 \JjeN(4) r=1
> S ksl A (00 Al | < 23 Al)) (44)
r=1 \k,jeN(3) r=1

(ii) With dp(p) denoting a small number proportional to the stepsize u

- > v (iza{*<i[r1>>+§j£ (;Zmi[r]))smap(m. (45)
) r=1 7 r=1

i, fEF(i

In other words, both stochastic and non-stochastic allocations are asymptotically (dp(p))
optimal when n — co. Of course, differences between the offline/online (non-stochastic)
schemes presented in Section 5 and the fully online (stochastic) schemes presented in
Section 6 arise also on issues such as speed of convergence to the optimal average values,
or, sensitivity to changes in the channel realization, to name a few.

Equally relevant, convergence results can also be obtained when the averages in (43)-
(45) are not defined as sample averages. For example, if they are defined using a finite-size
sliding window averaging, or, as an exponentially decaying average, then convergence in
distribution to a Gaussian random variable whose mean is the optimal solution of (4) can
be shown. A rigorous proof along with characterization of the variance of the Gaussian
distribution can be obtained using the results in [24, Chapter 11].

8Propositions 9 and 10 can be proved using the results in [7,24,49].
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Remark 1 Although not presented here, stochastic implementations different that those
in (32)-(34) can be proposed. These include variations with decreasing stepsizes, and
replacement of the ensemble averages with windowed averages or sample averages; see
[39,61] for examples. Needless to say, the convergence claims in each of those cases are
different (stronger) than those presented here. As it is shown in the next section, we
focus here on the simpler implementation of (32)—(34), because it allows us to establish
connections with queuing theory and existing resource allocation algorithms.

6.2 Queue Stability and Average Delay

Communication systems are typically equipped with queues that store packets from higher
layers. Packets leave the queues with a rate that depends on the state of the channel and
the resource allocation decisions. So far, such queues have been only indirectly accounted
for in the problem formulation via (1), where average flow conservation constraints have
been imposed as a necessary condition for stability. In what follows, the queue stabil-
ity and the delay performance of the stochastic resource allocation algorithms will be
characterized.

Characterizing the queuing delay in adaptive systems operating over fading channels
is typically complicated because most of the standard assumptions do not hold. Indeed,
departure times are typically correlated, and the distributions for the arrival and departure
times are difficult to describe because they depend on the resource allocation algorithm
and the underlying channel fading distribution. This is the case for the non-stochastic
online algorithm developed in Sections 4 and 5. It will be nevertherless seen soon that the
analysis for the stochastic algorithms is tractable. Moreover, the full buffer assumption
(cf. Section 2.1) was required for non-stochastic algorithms to be stable, but it is not
needed for their stochastic counterparts.

Starting with the analysis of queue dynamics, let qlf [n] denote the queue size for flow
f at node i at the time slot 7. Moreover, recall that al*(n, A[n]) stands for the random
instantaneous arrival, which is drawn for a distribution with mean a,(A[n]) given by (35).
Then, the queue obeys for all f and all i # d(f) the recursion

¢/ [+ 1= |dfln] + of* Al + Y [Fi(hln), Xn)) = D 75l Al |
JEN () JEN () %

In practice, arrivals and departures are magnitudes that vary in a time scale smaller than
n. This implies that definitions slightly different from the one in (46) are also possible (e.g.,
one could alternatively say that packets arriving in time slot n can only be transmitted
in time slot n + 1). Such differences are not relevant for the subsequent analysis and, as
it will be apparent next, (46) has been chosen for simplicity.

At this point it is useful to particularize the stochastic iteration in (34) for the spe-
cific case of p{ [n + 1] (recall that plf is the Lagrange multiplier associated with the flow
conservation constraint of flow f at node ¢). According to (32) and (34), such iteration is

plin+1) = |l + u | al"(n Aln]) + Y (73 (hln], A[n))] = > [7];(hln], Aln))
JEN() JEN() it
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for all f and ¢ # d(f). Comparing (47) with (46), it is clear that p{ [n] and qu [n] are related
in a way that the stochastic Lagrange multipliers can be interpreted as scaled values of
the queue lengths. Specifically, if p![0] = ug![0], then it follows that ¢/ [n] = pf[n]/p.
Had the definition of the queue update in (46) been different, one could always bound the
instantaneous difference between qu [n] and p{ [n] for all n, and argue that after an initial
transient period, the approximation qlf [n] =~ p{ [n]/p would be accurate.

The previous finding is meaningful from different points of view, namely, (a) analyzing
stability of the resource allocation algorithms; (b) estimating the queueing delay that
packets will experience; and (c) establishing connections with other well-known cross-
layer resource allocation algorithms. The ensuing subsections briefly elaborate on those
issues.

6.2.1 Queue Stability

To analyze stability of the stochastic resource allocation in (34)-(40), the fact that ¢ [n] =
plf [n]/p implies the following result about the convergence of the sample average of the
queue lengths.

Proposition 10 If (jzf ] :=n"1Y"_, qu [r] denotes the sample average of the queue size
qlf [n] and d, is a small number proportional to the maximum update in (34), then

1§7[n] — pt/ul < dgasn—o0  wp. 1. (48)

Therefore, it holds that when n grows large, q’lf [n] is finite provided that /3{ * is finite,
which is guaranteed if the original problem is feasible.

It is worth noting that although Proposition 10 establishes convergence of the sample
average of the queue lengths to a finite value, bounds on the instantaneous size of the
queues can also be characterized using the Lagrange multipliers bounds given in Propo-
sition 8.

6.2.2 Average Delay

The relationship between queues and Lagrange multipliers can also be used to estimate
the average queueing delay that the proposed stochastic resource allocation incurs. To this
end, one can invoke Little’s result [23] that asserts that with stable queues, the average
delay is given by the average aggregate queue length divided by the average aggregate
arrival rate. This implies that the average delay of a flow (say f) in the entire network is

Jf — Zz (Lf (49)

> al

where in (49), cjlf generically denotes the expected length of the queue that node 7 keeps

for flow f. Moreover, with 'F;: , denoting the average routing variable, the average delay
experienced by packets of flow f while waiting in the queue of node i is

i = — al —. (50)
@+ 2 ety T
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Using the results in Proposition 10, it readily follows that the average delays for the
stochastic resource algorithms presented in this chapter can be approximated as,

' =~ liﬂ;ﬁff (51)
nyalt (v

o1 ol

7—f* N ok ~f* X\ (52)
Hag ™ (M) + X vjen) Bl (b, A%)]

In other words, the average delay of the stochastic algorithm can be estimated from the
optimal solution of (4) and the stepsize of the proposed iterations.

Changing the Stepsize: Upon examining (51) and (52), it is apparent that changes
in the stepsize induce changes in the average delay. Specifically,(51) and (52) reveal that
the higher the stepsize, the smaller the average queuing delay. The intuition behind this
is that high stepsizes will accelerate convergence and thus improve the ability to react
against events that otherwise would increase the queuing delay. However, high stepsize
values will also lead to more pronounced hovering in the dual domain, and may endanger
convergence and stability if they are set beyond a certain level.

Besides quantifying the average delay, the expressions in (51) and (52) are also useful
to effect delay priorities. Key for this purpose is the fact that the iterations in (31) and
(34) converge not only if the stepsize is common to all entries of 5\, but also if the stepsize
is different for each entry. This way, flows and nodes with stricter delay constraints can
use a larger stepsize. In a nutshell, if one allows the stepsize to be dependent on i and f,
then different delay performances can be obtained.

Sensitivity Analysis: Another issue of interest is to know how delay varies when
any of the variables present in (4) is modified. This is non-trivial because in most cases
[){ * is not available in closed form, and even if it is, its dependence on other parameters
is difficult to characterize. Convex optimization tools can be used to decipher properties
of ﬁ{ *. Specifically, to rigorously study the effect of modifying variables present in (4)
on the average delay of our algorithms, sensitivity analysis has to be used. This analysis
is typically complex, although there are a few cases where it can be tractable. For the
problem at hand, this is the case for the arrival exogenous rate &f *. In fact, if a node i
accepts exogenous packets of a given flow f, the KKT conditions can be used to show that
pl* = U/ (al*). The latter implies that d/ ~ p=1U/(a/*)/a/*. Upon differentiating, it
follows that 8d! /oal* ~ Ul (@l*)/al* — U/ (@l*)/(al*)?. This implies that dd! /8al* < 0,
because utilities are concave and increasing. As a result, we deduce that problems giving
rise to higher EL{-C *, exhibit lower delay. Space limitation prevents further elaboration on
this subject.

6.3 Cross-Layer Design and Dynamic Backpressure

Section 4.4 demonstrated that the developed cross-layer schemes exhibit a layered struc-
ture, and also that interaction among layers is mainly encapsulated by the Lagrange
multipliers pzf * and 7}. For the schemes in Section 6, one can go one step further in the
interpretation of these multipliers. In fact, the results of Subsection 6.2.1 revealed that
a scaled version of the queue length provides an unbiased estimate of plf *. Changes in
the queue lengths (thus changes in plf [n]) induce changes in the allocation of resources
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at all layers. Specifically, node-flow pairs with large queues give rise to: (a) reduced
exogenous and high outgoing endogenous rates (transport and network layers), (b) high
link quality indicator (link layer), and (c) high power and rate loadings (physical layer).
Similarly, changes at the physical layer (e.g., changes in the channel gains) induce changes
of resource allocation at physical, link, and network layers.

A major implication of the relationship between the stochastic Lagrange multipliers
and queue sizes revealed in Subsection 6.2.1 is that the developed schemes are stable. This
was not guaranteed at the outset because queue stability was never explicitly imposed in
the present formulation. (Recall that the average flow conservation condition imposed via
(1) is necessary but not sufficient.) An intuitive explanation for this behavior is that the
developed schemes adapt resources at different layers to react against short-term changes
in the state of channels and queues. This way, if the instantaneous arrival rates of a
given flow happen to be high or the channel gains happen to be low during several block
indices, then the adaptive schemes react to increase the transmit-power, select that flow to
be routed, and reduce the average exogenous rate. All those decisions clearly contribute
to network stabilization.

Equally important, the relationship between the stochastic Lagrange multipliers and
queue sizes is also useful to draw connections between the schemes presented in this
chapter and the celebrated dynamic backpressure algorithm. This algorithm was proposed
in [58], and later extended to fading networks with cross-layer adaptation [18]. Instead of
using dual optimization theory, the schemes in [18] are derived using a Lyapunov stability
approach (actual and virtual queues are inputs of the Lyapunov function) under which
the resource allocation objective is to stabilize the network. Comparing the results here
with those in [18], it easy to infer that: (a) the optimal routing schemes are the same
in both cases; and (b) the optimal resource allocation schemes at the link and physical
layers are related, with the main difference being that the role which is played here by
the Lagrange multipliers, is played by the virtual queues and tuning parameters in [18].

7 Non-Orthogonal Access

In the present section, the focus shifts to multi-hop wireless networks with non-orthogonal
access. The main difference here is that all nodes are allowed to access the available tones
simultaneously, treating the interfering transmissions as noise. An advantage of using
a non-orthogonal approach is that scheduling becomes implicit in the power allocation.
Therefore, there is no need for introducing the scheduling variables w} ;(h) and wf (h)—
recall that in the orthogonal case it was necessary to find the collection of all maximal
independent sets, which has exponential complexity. A disadvantage is that the opti-
mization problem for non-orthogonal access is generally non-convex, and may again incur
exponential complexity. Non-convexity emerges because now the instantaneous capac-
ity of each link depends on the SINR of that link, which couples the power allocation
decisions. Non-convexity typically brings two undesirable effects: (a) there may not be
efficient algorithms to find the optimal solution; and (b) using a dual approach to solve
the problem is not optimal, because zero duality gap is not guaranteed.

Section 7.1 gives the optimal networking formulation with the SINR-limited physical
layer, and corresponds to material of Sections 3 and 4. Then, an ergodic resource allo-
cation algorithm is presented in Section 7.2, which is the counterpart of the one given
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in Section 5 for the orthogonal case. Stochastic resource allocation algorithms are not
presented here; the interested reader is referred to [49]. An alternative online algorithm
is presented in [48].

Many of the model parameters and network design variables, such as the exogenous
arrival rates C_l{ , coincide with those for orthogonal access. These are only cursorily men-
tioned here; see Section 2 for more elaboration. On the other hand, the differences between
the two models are stressed throughout this section.

The content of this section draws mainly from material reported in [17,52], and the
proofs for all results in the present section can be found in these works.

7.1 Problem Statement and Duality Properties

The cross-layer resource allocation problem for multi-hop networks with non-orthogonal
access is formulated in Subsection 7.1.1, while a fundamental property of the optimization
problem is stated in Subsection 7.1.2 using Lagrangian duality.

7.1.1 Problem Statement

The formulation developed here considers the long-term average rate of flow f from node
1 to node j, f{ ;» instead of the instantaneous one; see also [18]. Note that this approach is

not essential in the case of non-orthogonal access treated here; a formulation using r{ ;(h)
would also be possible. The flow conservation constraint corresponding to (1) or (4b) is

al < >l - > wl i fe ) (53)
JEN(3) JEN(3)
The total average rate carried by any link cannot exceed the average capacity of the
link, ¢; ;; this leads to the link capacity constraint

Yoorli<ay  VijeNG) (54)

fer (@

which can be viewed as a long-term average version of (4c). Note that there is no quantity
in (4) corresponding to ¢ ;. Variables ¢; ; represent the average data rates at the link
layer, and they are related to the instantaneous capacities, as described next.

Link capacities are dictated by the SINR at the physical layer, whereby different nodes
are allowed to use the same frequency to transmit and treat other nodes’ transmissions
as noise. This is the case when receiving nodes implement single-user decoding. The
instantaneous SINR of link (¢, j) over tone k is

hi o5 (h)
of + X ez, M P (h)
where Uf is the noise variance at node j over tone k, and Z; ; denotes the set of links causing
interference to (4, 7). This set consists of the links carrying: (a) incoming transmissions for
j over k from nodes other than ¢, (b) outgoing transmissions from j, and (c¢) transmissions
originating from nodes in A/(j) intended for nodes other than j. Hence, this set takes the
form

Lij = {(r,0): s e NGI\{i}, L € N(w); (i,0): L€ N@O\{i}s (5,0): 1€ NG} (56)

71 (b, p(h)) = (55)
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Based on (56), the term hfj ZleN(j)pjl in the denominator in (55) represents self-
interference to receiving node j from transmissions originating from j. In order to dis-
courage this self-interference, and thus ensure half-duplex operation of the nodes, h;j
is set to a high (deterministic) value. Furthermore, interference from “far-away” links,
corresponding to (k,1) with & € N(j), k # j and | € N(k), | # 7, is neglected. Note that
all links causing interference to link (¢,j) are explicitly accounted for in the orthogonal
transmissions constraints considered in Section 2.2. Moreover, the SINR 7 depends on
power allocation p(h) as well as on h. Whenever needed, the latter is emphablzed by
writing ’yijij(h, p(h)).

It is important to remark at this point that P-CSI is assumed throughout Section 7.
The reason is that the subsequently developed results rely on the fact that the fading is
continuous. This is of course true for P-CSI, but not when Q-CSI is available because h
is then a discrete random vector.

The transmission rate (instantaneous capacity) of link (7, 7) over tone k is described
via a generic function of the SINR over that link and tone, C’i’fj(’yﬁ j), which is increasing
and concave in the SINR. The instantaneous capacity depends on power allocation p(h)
as well as on h, because the SINR depends on those [cf. (55)]. This function is the
counterpart of C’k ;(h, p; J( )) in Section 2.3. Note though that the rate of link (i, j) here
depends on the power allocations over all neighboring links—via the SINR—and not only
on the power allocation over link (4, j), as was the case with the orthogonal access. A few
particular examples of CF J(% ;) are now in order.

Supposing Gaussian codebooks with sufficiently large blocklengths, C{f f ('yf ;) takes the
form

CF; () = log(1 +715). (57)

It is also possible to include a penalty term in (57), called SINR gap, I', in order to account
for practical codes and adaptive modulation schemes [20]: CF; (v ;) = log (1 4+ ~f;/T).
Furthermore, a high-SINR approximation of (57) can also be used for cross-layer
optimization
Clk,j (’Vlkj) ln(KkJ% ]) (58)

where K] k- is a constant. It should be stressed that (58) is meaningful only when
vk o> 1/ i 35 otherwise the logarithm is a negative number. A more general model

which includes (58) as a special case considers a strictly increasing Cﬁj (%’“ ;) satisfying
the condition

Sk ok k (K k
CE () Ak, +CE(vE) <0, Vaf >0 (59)
A linear function of the SINR (low-SINR approximation) is another model:
k(o k k
Cii (i) = Kj ﬂ’m (60)

where KF "; is a constant. The previously mentioned forms of the capacity function (57)—
(60) have been used for cross-layer optimization in [11,13,17,19,33,34,43,47,64,65].
The ergodic capacity ¢; ; of link (i, 7) is

¢ =Y CF (b ph)]. (61)
k
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As in Section 3, two kinds of power constraints are considered. The first are instan-
taneous spectral mask constraints, expressed as 0 < pﬁj(h) < ﬁﬁj, as in (4j). Second, the
average power consumed by a node in the network [cf. (4d)] is

pi=E| Y > pk;h) (62)

JEN(i) K

is constrained by a power budget p;, i.e., 0 < p; < p; for all i, as in (4]).

Average exogenous rates df in practical networks lie within application-specific bounds
expressed as a{ min < c‘zf < aj . Furthermore, the network designer may wish to impose
upper bounds on link capacmes ¢i,; and multicommodity flows rf o thatis0<¢ ; < ¢é 5
and 0 < 7“ i < T Note that such upper bounds are not used in the formulation of Section 3
[cf. (4g)], but they could have been included, leading also to appropriate modifications of
Propositions 4 and 6. As in Section 4, the notation y is used to denote the collection of
all average variables, namely, (‘1{, 7"{]., G j, and p; for all 4, j € N(i), f € F(i). Then, the
previously mentioned box constraints are summarized by the polyhedral set

B:={y,p(h): 0 < p;(h) <5} ;.0 < p; < P,

0 yin < 0] 00,0 €5 <015, 0<7] <7 (63)

Increasing and strictly concave utility functions U lf (dlf ) for the exogenous arrival rates,

and increasing and strictly convex cost functions J;(p;) for the average powers will be used.
The optimal networking problem is [cf. (4)]

_ ) .
P= max ig;@) ultal) =3 2 (64a)
subj. to al < Y - Y 7l Vi, f € F(i) (64b)
JEN(4) JEN(9)
Mool <ay Vi, j € N (i) (64c)
FEF(i)

i <E

Z ;(7F; (b, p(h )))} Vi, j € N (i) (64d)

> Zpiij(m] <p

JEN () kK

Vi. (64¢)

<7

A comparison between (4) and (64) is due now. The objective (64a) corresponds
o (4a). Constraints (64b) and (64e) parallel (4b) and (4d), respectively. Furthermore,
there are no constraints corresponding to (4e), (4f), and (4h), as there are no scheduling
variables here. The counterparts of constraints (4g)—(4j) are included in B. Moreover,
constraints (64c) and (64d) combined correspond to (4c)—note that there is also an
additional variable here, namely ¢; ;. Introduction of ¢; ; as optimization variable is not
essential, but offers the advantage of providing an interface between the network layer
average flows rf ;; and the instantaneous physical layer capacities CL J('yz ])

In practice, the traffic flowing in the network is stored in queues. The constraints in
(64) are necessary conditions for stability [18]. The queueing operations in the network
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and how the solution of (64) can be used for network control is described in detail in
Subsection 7.2.3.

Problem (64) is non-convex in general, due to the coupling of the powers induced
by interference, and the form of the instantaneous capacity function. For example, the
form (57) appears in power control problems for digital subscriber lines (DSL), and is
known to give rise to non-convex problems [22]. On the other hand, the functions (58)
and (59) give rise to a convex problem under an appropriate change of variables [11], [64].
More details on the convexity of the problem and algorithmic solutions are discussed in
Subsection 7.2.1. Next, a fundamental property of (64) is given, which is valid regardless
of the convexity of (64).

7.1.2 Characterizing of the Optimal Solution via Duality

The KKT conditions for problem (64) are not sufficient for optimality, because the problem
is non-convex in general (contrast with Section 4). Here, an alternative approach is
followed, based on the Lagrangian dual of (64). Although impossible to derive the optimal
solution of (64) as a function of the optimal Lagrange multipliers, it turns out that
structure similar to convex problems is present in (64), which in turn can be used for
efficient algorithmic solutions.

Let pzf , &i.j» Vi j, ™ be Lagrange multipliers corresponding to constraints (64b), (64c),
(64d) and (64e), respectively. Note that there are two more Lagrange multipliers here than
the ones of problem (4), namely &; ; and v; ;, due to the two additional average constraints,
(64c) and (64d). The box constraints (63) are kept implicit. Also let A collectively denote
all Lagrange multipliers. The Lagrangian function of (64) reduces after straightforward
re-arrangements to

Ly.pm), A= Y (Uf @) = plal) + 3 (mipi = 5i(5)

i, fEF ()
+ Y BlnC(vhhpM) —mpl ()] + Y0 (G —vig) ey
1,5EN (i).k 1,JEN (@)
+ Z (P{ - P; - §i,j)Fif,j + (P{ - 51,]‘)77{]‘- (65)
i, fEF(i),jEN (i) i, fEF(i),jEN (i)
J#d(f) J=d(f)

It should be noted that the last sum in (65) might not be present.

In order to facilitate further development, (64) is rewritten in a more compact and
generic form, which nevertheless captures all its essential features, as will be explained
shortly. Upon rewriting all constraints in (64) with 0 on the right-hand side of the
inequalities, (64) can be expressed as

P= . max f(y) (66a)
subj. to  gi(y) + E[g2(p(h),h)] <0 (66b)

where the association of functions f(y), g1(y) and gz(p(h),h) in (66) with the objective
and constraints in (64) is straightforward. Regarding problem (66) [and hence (64) as a
particular case], the following assumption is made.
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Assumption 1 Function f is concave, g1 is convex (entrywise), and g is continuous.
Constraint set B is convex, closed, bounded, and can be written in a decoupled form as
B = By x Bp, where By, is independent of h. Random vector h is continuous, i.e., has a
probability density function without Dirac deltas. Finally, problem (66) is strictly feasible
(Slater constraint qualification).

This assumption is satisfied by the setup of problem (64). Note that problem (66)
is not convex in general. Moreover, although problem (4) is not a special case of (66),
a comparison between Assumption 1 and the setup of problem (4) could be made. The
setup of problem (4) does not require continuity of the fading, but instead assumes that
the function playing the role of ga(p(h), h)—whether it appears inside or outside the
expectation operator [E[.]|—is convex in p(h).

Keeping the box constraints implicit, the Lagrangian function of (66) is

L(y,p(h),A) = f(y) — A" (g1(y) + E[g2(p(h), h)]). (67)

When (66) takes the particular form (64), vector A contains the multipliers pf, &ijs Vi
and 7;, and the Lagrangian function (67) clearly reduces to (65).
The dual function and the dual problem are, respectively,

D(A) = <y,§3§§eBL(>" y,p(h)) (68)
D= IngiI(?)lD(A). (69)

The main result is the following [52].

Proposition 11 Under Assumption 1, problem (66) [and hence (64)] has zero duality
gap, i.e.,
P =D. (70)

Recall that zero duality gap holds also for problem (4), which is convex. The result
holds for (64), despite the possible non-convexity of the capacity function in the power
allocation p(h). Furthermore, the traditional approach for cross-layer design and control
has been to solve the dual problem of optimal networking formulations [12]. The result of
Proposition 11 is relevant because it renders such approach optimal for wireless networks
with continuous fading channels. In the next subsection, the subgradient method is used
to solve (69).

7.2 Ergodic Resource Allocation

In this subsection, a solution of the constrained optimization task in (64) is sought via
its Lagrangian dual. A subgradient algorithm for the solution of the dual problem (69) is
presented in Subsection 7.2.1. As the subgradient algorithm returns Lagrange multipliers,
an issue of interest is how to recover near-optimal network variables d{ , F{ j» Cijs Dis pﬁ j (h)
from Lagrange multipliers; this is addressed in Subsection 7.2.2. In Subsection 7.2.3, the
resulting (near-)optimal network variables are utilized to obtain a simple strategy for
network control.
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It should be stressed at this point that there are two complications in problem (64)
that create the need for extra effort in order to obtain primal solutions: (a) the non-
convexity in p(h), and (b) the linearity of the Lagrangian in Flf’ ; and ¢; ;. The second
issue is also present in problem (4) for the variables rfj (h), wﬁj(h), and w¥(h). A
smooth subgradient approach is pursued in Section 5 in order to overcome this issue. An
alternative approach used in the context of convex optimization is followed here. This
is forming the running average of the sequence of primal iterates obtained as byproduct
of the subgradient method [26], [40]. In fact, it is argued in Subsection 7.2.2 that this
method also works for the variables Zt{ , f{i j» Cijo and p;, despite the non-convexity in

p(h).

7.2.1 Offline Phase

The dual problem (69) is solved via subgradient iterations [4, Sec. 8.2]. Different from
Section 5, where a smooth subgradient method was used for the solution of (4), standard
subgradients are employed here. Both approaches could be applied in both cases. The
former approach has the difficulty to actually find a smooth subgradient for the particular
problem, while the latter needs additional steps in order to yield the primal solutions,
presented in Subsection 7.2.2.

With ¢ denoting the iteration index, the sequence A obtained from the subgradient
method, with initial A(®) > 0, is

(v, p(h)) € argmax L(y,p(h),A?) (71a)
(y,p(h))eB
AED = IO 4 (g1 (y?) + Elga(p” (h), h)]) (71b)
0

where the inclusion symbol (€) in (71a) covers the possibility of multiple maximizers, and
e is a positive stepsize which is allowed to vary with £.
Using (65), (71a) becomes

d{(Hl) € argmax [Uif (al) - p{(z)dﬂ (72a)
a{minga‘ifga{max
f(€) 1) (0 e
H D ¢ are max (p;w) i —g Nl it g £d(f) (72b)
" o<r! <r, (i =& ,])7“ i if j =d(f)
_(H ) € arg max [(gf? Vz(?)cw] (72¢)
0<¢;,;<¢;,;
P € arg max [w( )5, — Ji(p:)] (72d)
0<p;<p;
pO(h) e argmax > [ CF (v (0, () —m"pf, ()] (72¢)
0<Pfj(h)<p1 i kyi,jEN(3)
Vk,i,jEN (1)

Equation (72e) is obtained by noting that the part of (65) which involves the IE[.] operator
is maximized if the term inside the expectation is maximized for each fading state h.
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The subgradient updates (71b) take the explicit form

41 [
T = Pf( Vi al ZT T+ P)] (73a)
JEN(3) JEN(4) 0
§(£+1 _ +ue< rf([ C(z))] (73b)
FEF(i) 0
+1 [
ui(ﬂf ) — ( SONS ”(% (1, p! )(h))ﬂ)] (73¢)
0
TFZ(HU _ 7TZ(Z)JFM E pr ﬁgé) . (73d)
L k,jEN (i) o

In order to perform iterations (73), the solution of (72) is required. Each of the
problems (72a)—(72d) involves a single variable, concave objective, and box constraints;
thus, their solution as a function of the Lagrange multipliers is straightforward. For
example, the optimal solutions of (72a) and (72d) can be obtained via (8)—with projection
onto [alf min a{ masx) instead of [0, 00)—and (7), respectively. However, the solution of (72e)
may pose major challenges, depending on the form of C{fj (’yl’C j). Next, the implications
of particular forms of the capacity function on the solution of (72e) are reviewed.

e When Cf(yF;) takes the form of Shannon capacity (57), (72e) carries similarities
to the spectrum management problem in DSL. This problem may have exponential
complexity [22]. Algorithmic solutions to (72e) can be developed by adaptation of
successive approximation methods in the DSL literature [46], [59] or the conden-
sation method [2], [1, pp. 151-152]. These algorithms are out of the scope of the
present chapter; see [17] for examples. Moreover, approximate methods to deal
with the particular non-convex capacity function have appeared in the cross-layer
optimization literature. A randomized algorithm where links transmit either at
full power or not at all is developed in [43]. Alternative randomized algorithms
are also possible [28]. A heuristic algorithm is based on a trick whereby the total
instantaneous transmission power at each node is held constant [64].

e In the case of the high-SINR approximation (58) or (59), the change of variables
vﬁ ;= pi—f ; makes (72e) convex in those variables. Then, any method for convex
programs can be used.

e The low-SINR approximation (60), when substituted in (72e), leads after straight-
forward manipulations to a signomial program, also known as generalized geometric
program; see [8, Exercise 4.35], and [1] for definitions. Such optimization problems
are in general very hard to solve, and approximate solutions can be found using the
methods in [1].

The subgradients in (73a) and (73b) are easily determined, once the solution of (72)
is found. On the other hand, (73c) and (73d) involve the expectation E[.]. This can be
evaluated efficiently through Monte Carlo methods, as described in Section 5.2.

The following remark is due on the Lagrangian maximization in (72).

Remark 2 The decomposition of the Lagrangian maximization [cf. (71a)] into (72a)—
(72e) can be understood as separation of the solution of the wireless networking problem
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into conventional layers. This was also the case for the formulation under orthogonal
access (cf. Section 4.4). More generally, it is a classical result that layered architectures
emerge from the solution of the dual problem of cross-layer formulations [12]. In the
present case, the decomposition into layers is optimal due to Proposition 11; the details
of the induced layered architecture are described in [52]. In particular, (72a) solves the
flow control problem at the transport layer; (72b) performs routing at the network layer;
(72¢) and (72d) address the link rate control and average power control at the data link
layer; and (72e) solves the power allocation at the physical layer.

Similar to the approach in Section 6, it is possible to drop the expectations in (73c)
and (73d), while using the maximizers in (72e) for only the current channel realization
hin]. An online stochastic resource allocation algorithm is obtained in this way; the
interested reader is referred to [49] for details.

7.2.2 Convergence Results

This subsection develops dual and primal convergence results for the algorithm in the
previous subsection.

First, note that the norm of the subgradient, ||g; (y©)+E[g2(p'¥ (h), h)]||, is bounded,
because functlon g1 is convex, and hence continuous; function go is continuous; and the
set B is closed and bounded. Thus, there exists a constant G such that ||g;(y¥) +
E[gz(p¥(h),h)]|]| < G for all + > 0. This constant will be used in the subsequent
analysis.

Two stepsize rules are of interest: (a) constant stepsize py = p > 0; and (b) non-
summable but square-summable stepsize: pg > 0, Y, e = 00, and Yo p? < oo with
limy_ o pte = 0. Let

0 . s (s)
Dies »= min D(A™) (74)

denote the best dual value up to iteration ¢; and let
-1

2 1
A0 . 7 Z)\(S) (75)
s=0

be the running average of the dual iterates with constant stepsize. The convergence of
the dual iterates under the considered stepsize rules is given in the next proposition.

Proposition 12 Let Assumption 1 hold. If the stepsize is constant, u, = p > 0, the
following hold:

(i) The sequence {A®)} is bounded;

(ii) hm D][()e)st <D+ uG?/2;

(iii) hm 0 SUp g(AD) < D 4 puG?/2; and

(iv) The sequence {)\(Z } has at least one limit point )\*, and every limit point of this
sequence satisfies D < D(A*) < D + uG?/2.

If the stepsme is non-summable but square-summable, that is, ue > 0, >_,2 te = 00, and
S0 12 < oo, then the sequence {A(¥)} converges to some optimal dual solution.
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The result on the diminishing stepsize and part (ii) for the case of constant stepsize are
standard [4, Propositions 8.2.6 and 8.2.3]. Part (i) follows the lines [40, Lemma 3]. Part
(iii) can be found in [52, Theorem 8]; see also [12] for dual averaging in the context of
network utility maximization. Part (iv) follows readily from parts (i) and (iii).

The sequence of primal variables {y®, p®(h)} obtained as a byproduct of the sub-
gradient method [cf. (71a)] does not converge in general under either stepsize rule. Sur-
prisingly, it is possible to recover optimal or approximately optimal primal variables from
the sequence {y®, p(¥)(h)} for the generally non-convex primal problem in (66).

Let Ky := Zﬁ;é ps, and define the sequence of weighted running averages of y®)

v fqusy“ (=1 (76)

where y(¥) lies in By due to the convexity of By, and the fact that Zﬁ;é s/ Ky =1.

The convergence properties of the sequence {y“)} and its proximity to the optimal
solution of (66) are characterized in the following proposition for the considered stepsize
rules [17].

Proposition 13 Let Assumption 1 hold. If the stepsize is constant, gy, = g > 0, then
there exists a sequence {p(*)(h)} in Bp, so that {y¥), p()(h)} satisfies

(i) lim H 21(¥9) + Elgz(p¥ (h), h)] OOH = 0; and
(ii) hmmff( ©)) > P — uG?/2, and hmsupf(y([ )< P.

If the step51ze is non-summable but square—summable that is, pe > 0, ZZ % e = oo, and
S0 12 < oo, then there exists a sequence {p*)(h)} in By, so that {y©), p(¥)(h)} satisfies

(i) Jim |1 (5) + Blga (6 (), W)]]5° | = 0; and
(i) Jim f(59) = P.

Part (i) of Proposition 13 under both stepsize rules means that the running average
y©) is asymptotically feasible, and there exists some feasible p(¥) (h) associated with it. In
more precise terms, the constraint violation caused by {§),p® (h)} converges to zero.
Moreover, ¥ with constant stepsize incurs loss of optimality that is at most puG?2 /2,
while y) with vanishing stepsize is optimal. It should be stressed at this point that
Proposition 13 establishes the optimality of the average network variables only, i.e., end-
to-end rates, network layer flows, link capacities, average powers. It does not provide a
way to obtain the instantaneous p(¥)(h) associated with those. A method to obtain an
instantaneous power allocation p(h) regardless of the convexity of the problem is described
in the next subsection.

It is further important to remark that results similar to Proposition 13 would hold
for the orthogonal access case if in Section 5 standard subgradients were used instead of
smooth subgradients. Similarly, primal averaging would not be needed in the present case
if a smooth version of the dual function (68) were considered, and then, a result similar
to Proposition 7 would be applicable here too.

Tterations (72) and (73) together with (76) solve the dual problem (69), and find near-
optimal a; , flf,j, Cij, i for problem (64). In the next subsection, a simple strategy for
network control based on the optimal solution of (64) is described, including a method to
obtain an instantaneous power allocation p(h).
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7.2.3 Online Phase

This subsection describes a network control algorithm that utilizes the solution of prob-
lem (64)—that is, the optimal ZL{*, Flf’;, ¢ ;» Pi» p*(h). The offline algorithm of Subsec-
tions 7.2.1 and 7.2.2 needs to be run before the communication starts, in order to obtain
this solution. This was also the case for the algorithm in Section 5.2. Simulation results

from the offline and online phases are presented in [17].

Recall that the network operates in time slots, indexed by n = 1,2,3,..., whose
duration is the coherence time of the channel. Hence, the vector h will change from slot
to slot, but is assumed to remain constant for the duration of a slot. If the channel value
at slot n is h[n], and the power allocation is p(h[n]), then the transmission rate at link
(i,7) over tone k is Cf;(vf; (h[n], p(h[n]))). The fading process {h[n]}32, is stationary
and ergodic. The algorithm determines how the various flows and powers are allocated
per time slot, based on the solution of (64). Next, it is clarified what is meant by the
solution d{*, F{;, ¢ b;, p*(h).

In particular, near-optimal dlf , FZf’ j» Ci,j» and p; are obtained in the offline algorithm as
the value of the running averages sequence {y(©)} at the last iteration (cf. Proposition 13).

Those near-optimal values will be used whenever al* flf ;, ¢; j» and p; are mentioned here.
237 iy

7 0

In order to obtain the power allocation at time slot n, (72e) is solved, where the final values
of the Lagrange multipliers (or of their running average under constant stepsize) obtained

with the subgradient method are used in place of Vi(?
is used for the SINR. The notation pf(h[n]) will be used for the aforementioned solution.
This procedure for obtaining p'(h[n]) is reminiscent of the one in Proposition 2, which
gives the optimal power allocation as function of the current fading state and the optimal
Lagrange multipliers. Note though that obtaining the power allocation in the present case
through maximization of the Lagrangian [cf. (72e)] with the optimal Lagrange multipliers

is not necessarily optimal.

and 7" (the same for all n), and h[n]

%

Problem (72e) is solved at a central network controller which knows the current fading
state h[n] without delay. The need for a central controller comes from the fact that
problem (72e) couples the power allocations over all links via the SINR. Works developing
online algorithms also make use of a central controller [18]. Even though distributed
solvers are also desirable, as for example in the decentralized approach in Section 5.2 for
the case of orthogonal access, they go beyond the scope of the present chapter. It is
mentioned nevertheless that the message passing protocols of [3,19,64,65] might be useful
to this end. Next, a closer look at the queues maintained at each layer is due, before the
network control algorithm is detailed.

Each node ¢ keeps a queue for each commodity f € F(i) at the network layer, and a
queue for each neighbor j € N (i) at the physical layer; see Fig. 3. Every network layer
queue accepts exogenous traffic—from the transport layer—with instantaneous rate a{ [n].
Every physical layer queue sends to the corresponding neighbor bits with instantaneous
rate ¢; j[n], which depends on the instantaneous power allocation and the fading; this
effect will be described in detail later. There is an interface connecting the network layer
and physical layer queues at node i. This interface is responsible for routing, because
it takes bits from network layer queues, and places them into physical layer queues.
The individual rate from the fth network layer queue to the jth physical layer queue
is denoted by rzf’ j [n]. Then, bits leave the fth network layer queue with instantaneous
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Figure 3: Queues at node i and connections to neighbors.

rate > e p(i) T f ,j[n], and arrive at the j physical layer queue with rate >,z 7 f ;.
Note that the data in the physical layer queues are labeled with the flow index f, Wthh
determines their destination. The bits ¢; ;[n] from node i to node j are placed into the
corresponding network layer queues of node j according to their label, except those with
d(f) = j, which have arrived at their destination, and are not placed in any queue. Now,
consider this operation for the bits ¢, ;[n] arriving to ¢ from its neighbors m € N (i); the
endogenous arrivals at the fth network layer queue are } -, ;) cﬁm-[n]7 where the cf;m- [n]
are determined by splitting ¢,, ;[n] according to the destination. Each queue operates in
a first-in-first-out (FIFO) fashion, and has unlimited storage space. The number of bits
entering or leaving the queues is conventionally assumed to take continuous values. This
means equivalently that the packet sizes are small as compared to the number of bits that
the network control algorithm specifies to be moved at each slot.

A network control algorithm must determine a{ [n], 7’{ ;[n], and ¢; j[n]. Variables c; ;[n]
also depend on the fading, Which of course cannot be controlled. Here, a{ [ Zf j
¢ j[n| will be determined by aZ , ”, and pf(h[n]).

The network operates under the premise that the random arrival process has the
optimal long-term average, i.e., limy_ % Zﬁle a{ [n] = a . This operating condition
for a{ [n] is adopted, because dlf * is the optimal operating point of the network, determined
by problem (64). As long as there are always enough packets available at the trasport
layer—which amounts to the full buffer assumption at the transport layer—this condition

n], r{ .[n], and



38

is ensured, provided that the controller admits packets with rate a; [ ] drawn from a
distribution with mean a . In practice, the long-term average arrival rates are chosen to

be slightly less than a{ to conservatively effect stability.

[

Moreover, the routing variables are set to the optimal endogenous flows 7; ;, namely,

7 ;[n] = Fff;, n=12...

(77)

Note that in the formulation of Section 3, the endogenous flows for every fading state h

were variables (i.e., r{ ; as function of h was the optimization variable). Then routing

at every time slot is straightforward; it is determined by rlf’ ;(h[n]). Here, only the long-
term average flows are variables, and the optimal ones are used for instantaneous routing
decisions, as given by (77).

Power allocation pf(h[n]) will be used per time slot n. The instantaneous physical
layer rate ¢; ;[n] at each time slot is

cijln ZCJ(%J ot (fn)), m=12,.. (78)

For the scheme described so far, the full buffer assumption is considered to hold.
Furthermore, it is important to stress the role of the physical layer queues in the interaction
between the routing decisions rf J[ n] and the instantaneous capacity supported by the
physical layer ¢; j[n]. These buffers effectively store the bits that cannot be transmitted
if the instantaneous capacity ¢; j[n] drops below the rate that the layer above wants to
pump out, that is, > FeF() 7“{ ; [n]. Note that in the formulation of Section 3 there is
no issue of the instantaneous capacity not supporting the network layer flows, because
constraint (4c) is enforced for every fading realization. In the present formulation, the
link capacity constraint is stated in a long-term average (ergodic) form [cf. (64c)], and is
satisfied via the physical layer queues. In the formulation of Section 3, it is stated in an
instantaneous form [cf. (4¢)], and there is no need for physical layer queues.

To build intuition about the algorithm, note that the long-term average flow rates
+ 27]:[:1 al[n] and L Zn L Zj[n] converge to the optimal a/* and Ffj by construction.
Moreover, the endogenous rates cfl[k:] will satisfy Zn 1 6, ¢l in] < 25:1 7‘;’ ;[n], because
all packets placed endogenously into the network layer queues of node ¢ must have been
routed to 4 from its neighbors. Hence, (64b) w111 be satlsﬁed by the long term averages

of the respectlve processes; that is, imy_.c & Zn 14 IIn] + limy— oo ~ Zn 1 gl[n] <
limy oo & anl fj[ ]. A similar conclusion is true for (64c) with ¢; ; = ¢} ;. Also, if

pf(h[n]) is a good approximation of p*(h[n]), then the long-term average link capacities
% 25:1 ¢i,j[n] and long-term average power consumptions converge, respectively, to their
expected values E[>, In(1 + vz-fj(h,p*(h)))] and E[Y", 2 ieNG) p{j*(h)}, because the
fading process is stationary and ergodic. Then, (64d) and (64e) are satisfied with ¢; ; = ¢ ;
and p; = p;.

8 Concluding Summary

This chapter outlined a framework for cross-layer resource allocation in wireless fading
multi-hop networks with orthogonal and non-orthogonal access. In the orthogonal case,
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the goal is to optimize average end-to-end rates, instantaneous network layer flows, link
schedules, average power consumptions, and instantaneous power allocation across tones.
Based on the KKT conditions, the optimal solution is derived in terms of the fading
realization and the optimal Lagrange multipliers. Although most allocation variables
can be found in closed form, there are cases where analytical expressions for optimal
link schedules and routing variables are not available. A low-complexity scheme that is
asymptotically optimal is designed to address this issue.

Different alternatives to obtain the Lagrange multipliers required for the channel-
adaptive policies are presented. First, an algorithm is proposed based on smooth subgra-
dients that is run offline during an initialization phase. The optimal Lagrange multipliers
obtained can then be used for online network control; that is, to allocate the resources
every time the instantaneous CSI is updated. Second, stochastic iterations that are run
online and do not require knowledge of the channel distribution are proposed. In this
case, a fully online algorithm is developed, whereby the resource allocation decisions are
determined by the current CSI and the current Lagrange multipliers. Optimality and
convergence of such algorithms is analyzed. Then, by drawing connections between the
Lagrange multipliers and the queue lengths, it is established that when the online algo-
rithm is used for network control, all queues in the network are guaranteed to be stable,
in the sense that the sample averages of the queue lengths converge with probability 1
(to some finite number). The expected delay is explicitly given as function of the optimal
Lagrange multipliers.

Finally, attention is turned to the non-orthogonal access case, whereby link capacities
become functions of the SINR, and thus couple the power allocation decisions. The result-
ing cross-layer problem is in general non-convex, but has zero duality gap. Capitalizing on
this, a subgradient descent algorithm along with weighted running averages of the primal
iterates is developed. This scheme yields near-optimal primal and dual variables, which
can then be used for online network control.
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