Supplementary Information: Deformation and scattering in graphene over substrate steps

T. Low, V. Perebeinos, J. Tersoff and Ph. Avouris IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, USA

I. ELASTICITY MODEL

We describe the energy of graphene membrane using a valence force model (VFM) [1]. The Van der Waals interaction with the SiC surface is described by the Lennard-Jones (LJ) 6-12 potential [2].

$$E = \beta_{r1}r_0^{-2} \sum_{i,j \in i} (\delta r_{ij})^2 + \beta_c \sum_{i,j < k \in i} (\delta c_{i,jk})^2 + \beta_v r_0^{-2} \sum_{i,j < k < l \in i} \left(\frac{3v_{ij} \cdot v_{ik} \times v_{il}}{r_{ij}r_{ik} + r_{ik}r_{il} + r_{il}r_{ij}} \right) + \beta_{r2}r_0^{-2} \sum_{i,j < k \in i} (\delta r_{ij})(\delta r_{ik}) + \beta_p \sum_{i,j \in i} |\pi_i \times \pi_j|^2 + \beta_{rc}r_0^{-1} \sum_{i,j \neq k < l \in i} (\delta r_{ij})(\delta c_{i,kl}) + \beta_{vdw} \sum_i \int_S \left(\frac{c_0}{|v_i - v'|} \right)^{12} - 2 \left(\frac{c_0}{|v_i - v'|} \right)^6 dv' \equiv E_{r1} + E_c + E_v + E_{r2} + E_p + E_{rc} + E_{vdw}$$
(1)

where v_i is the atomic position vector of carbon atom i, $v_{ij} = v_j - v_i$ is the bond vector, $r_{ij} = |v_{ij}|$ and $r_0 = 0.142 nm$. S is the surface of the SiC step. We also define the following,

$$\delta c_{i,jk} = \frac{1}{2} + \frac{v_{ij} \cdot v_{ik}}{r_{ij}r_{ik}} , \ \pi_i = 3 \frac{v_{ij} \times v_{ik} + v_{ik} \times v_{il} + v_{il} \times v_{ij}}{r_{ij}r_{ik} + r_{ik}r_{il} + r_{il}r_{ij}}$$
(2)

Parameters used for the VFM are [1], $\beta_{r1} = 18.52 \ eV$, $\beta_c = 4.087 \ eV$, $\beta_v = 1.313 \ eV$, $\beta_{r2} = 4.004 \ eV$, $\beta_p = 0.008051 \ eV$ and $\beta_{rc} = 4.581 \ eV$. We assumed $c_0 = 2.7 \ r_0$ and $\beta_{vdw} = u_0/a$ for the LJ potentials [2], where $u_0 = 2.4 \ meV$ and $a = 3\sqrt{3}r_0^2/4$. Our LJ model would yield an equilibrium interlayer bond distance of $H_{eq} = 2^{-1/6}c_0 \approx 3.4 \ A$, in good agreement with experiments. The binding energy is given by $E_B = \pi p_0 d_0^2 (2^{5/3}/5 - 2^{2/3}) \approx 40.3 \ meV$, in vicinity of reported values in experiments [2, 3]. However, we note its value is still a subject of experimental and theoretical studies [4].

II. TRANSPORT MODEL

The Hamiltonian \mathcal{H} is described by a nearest-neighbor Slater-Koster parameterized sp^3 tight-binding model [5, 6], including the energetically relevant π and σ bands.

$$\mathcal{H} = \sum_{i\alpha} V_i a^{\dagger}_{i\alpha} a_{i\alpha} + \sum_{ij} \sum_{\alpha\beta} t_{ij,\alpha\beta} a^{\dagger}_{i\alpha} a_{j\beta} \tag{3}$$

where i, j denotes atomic positions and α, β the atomic orbitals. V_i models the on-site doping and $t_{ij,\alpha\beta}$ describes the energies due to atomic orbital overlaps and are given as,

$$t_{ii,ss} = \epsilon_s , t_{ii,pp} = \epsilon_p , t_{ij,sp} = \frac{v_{ij} \cdot p_j}{r_{ij}} \epsilon_{sp} = -t_{ij,ps}$$

$$\tag{4}$$

$$t_{ij,pp'} = \frac{v_{ij} \cdot p_i}{r_{ij}} \frac{v_{ij} \cdot p'_j}{r_{ij}} \epsilon^{\sigma}_{pp} + \frac{v_{ij} \times p_i}{r_{ij}} \frac{v_{ij} \times p'_j}{r_{ij}} \frac{(v_{ij} \times p_i) \cdot (v_{ij} \times p'_j)}{|v_{ij} \times p_i||v_{ij} \times p'_j|} \epsilon^{\pi}_{pp}$$
(5)

where $p_i = \{p_{ix}, p_{iy}, p_{iz}\}$ are a set of local unit vectors defined as $p_{ix} = p_{iy} \times p_{iz}$, $p_{iy} = (0, 1, 0)$ and $p_{iz} = \pi_i / |\pi_i|$. We employ the parameter set from [6] i.e. $\epsilon_s = -7.3 \, eV$, $\epsilon_p = 0 \, eV$, $\epsilon_{ss} = -4.3 \, eV$, $\epsilon_{sp} = 4.98 \, eV$, $\epsilon_{pp}^{\sigma} = 6.38 \, eV$ and $\epsilon_{pp}^{\pi} = -2.66 \, eV$.

III. ANALYTICAL EXPRESSION FOR LJ ENERGY ACROSS AN ABRUPT STEP

We consider an abrupt step of height h_0 . The LJ energy is divided into three parts,

$$E_{LJ} = p_0 \sum_{i} \int_{S} \left(\frac{c_0}{|v_i - v'|} \right)^{12} - 2 \left(\frac{c_0}{|v_i - v'|} \right)^6 dv' = \sum_{i} E_{i,top} + E_{i,bot} + E_{i,sw}$$

where E_{sw} is due to the sidewall of the step of length h_0 . We take the top edge of the sidewall as reference (x, z) = (0, 0). A carbon atom located at $v_i = (x_i, z_i)$ will have the following energies,

$$E_{i,top} = \frac{\pi p_0 c_0^{12}}{1280(x_i^2 + z_i^2)^{9/2} z_i^{10}} \left(128(x_i^2 + z_i^2)^{9/2} + 315|x_i|z_i^8 + 840|x_i|^3 z_i^6 + 1008|x_i|^5 z_i^4 + 576|x_i|^7 z_i^2 + 128|x_i|^9 \right) - \frac{\pi p_0 c_0^6}{4(x_i^2 + z_i^2)^{3/2} z_i^4} \left(2(x_i^2 + z_i^2)^{3/2} + 3|x_i|z_i^2 + 2|x_i|^3 \right)$$
(6)
$$E_{i,bot} = \frac{\pi p_0 c_0^{12}}{1280(x_i^2 + \hat{z}_i^2)^{9/2} \hat{z}_i^{10}} \left(128(x_i^2 + \hat{z}_i^2)^{9/2} + 315|x_i|\hat{z}_i^8 + 840|x_i|^3 \hat{z}_i^6 + 1008|x_i|^5 \hat{z}_i^4 + 576|x_i|^7 \hat{z}_i^2 + 128|x_i|^9 \right) - \frac{\pi p_0 c_0^6}{4(x_i^2 + \hat{z}_i^2)^{3/2} \hat{z}_i^4} \left(2(x_i^2 + \hat{z}_i^2)^{3/2} + 3|x_i|\hat{z}_i^2 + 2|x_i|^3 \right)$$
(7)
$$E_{i,sw} = -\frac{\pi p_0 c_0^{12} (\hat{z}_i^2 + x_i^2)^{9/2}}{1280(z_i^2 + x_i^2)^{9/2} x_i^{10} (\hat{z}_i^2 + x_i^2)^{9/2}} \left(315z_i x_i^8 + 840z_i^3 x_i^6 + 1008z_i^5 x_i^4 + 576z_i^7 x_i^2 + 128z_i^9 \right) + \frac{\pi p_0 c_0^{12} (\hat{z}_i^2 + x_i^2)^{9/2}}{1280(z_i^2 + x_i^2)^{9/2} x_i^{10} (\hat{z}_i^2 + x_i^2)^{9/2}} \left(315\hat{z}_i x_i^8 + 840\hat{z}_i^3 x_i^6 + 1008\hat{z}_i^5 x_i^4 + 576\hat{z}_i^7 x_i^2 + 128\hat{z}_i^9 \right) - \frac{\pi p_0 c_0^{12} (\hat{z}_i^2 + x_i^2)^{9/2}}{1280(z_i^2 + x_i^2)^{9/2} x_i^{10} (\hat{z}_i^2 + x_i^2)^{9/2}} \left(315\hat{z}_i x_i^8 + 840\hat{z}_i^3 x_i^6 + 1008\hat{z}_i^5 x_i^4 + 576\hat{z}_i^7 x_i^2 + 128\hat{z}_i^9 \right) - \frac{\pi p_0 c_0^{12} (\hat{z}_i^2 + x_i^2)^{9/2}}{1280(z_i^2 + x_i^2)^{9/2} x_i^{10} (\hat{z}_i^2 + x_i^2)^{9/2}} \left((z_i^2 + x_i^2)^{3/2} (3\hat{z}_i x_i^2 + 2\hat{z}_i^3) - (\hat{z}_i^2 + x_i^2)^{3/2} (3z_i x_i^2 + 2z_i^3) \right)$$
(8)

where $\hat{z}_i \equiv z_i + h_0$. Note, carbon atoms where $x_i < 0$ will contributes to $E_{i,top}$ and $x_i > 0$ to $E_{i,bot}$ and $E_{i,sw}$. For $h_0 = 0$, the binding energy E_i reduces to,

$$E_i = \pi p_0 \left(\frac{c_0^{12}}{5z_i^{10}} - \frac{c_0^6}{z_i^4} \right) \tag{9}$$

which gives the expected z_i^4 scaling at large distance [4]. We compare our continuum model against the discrete version and obtains good agreement.

- V. Perebeinos and J. Tersoff, "Valence force model for phonons in graphene and carbon nanotubes," *Phys. Rev. B*, vol. 79, p. 241409(R), 2009.
- [2] L. A. Girifalco and R. A. Lad, "Energy of cohesion, compressibility, and the potential energy functions of the graphite system," J. Chem. Phys., vol. 25, p. 693, 1956.
- [3] R. Zacharia, H. Ulbricht, and T. Hertel, "Interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons," *Phys. Rev. B*, vol. 69, p. 155406, 2004.
- [4] L. Spanu, S. Sorella, and G. Galli, "Nature and strength of interlayer binding in graphite," Phys. Rev. Lett., vol. 103, p. 196401, 2009.
- [5] J. C. Slater and G. F. Koster, "Simplified lcao method for the periodic potential problem," Phys. Rev., vol. 94, p. 1498, 1954.
- [6] D. Tomanek and S. G. Louie, "First principles calculation of highly asymmetric structure in scanning tunneling microscopy images of graphite," *Phys. Rev. B*, vol. 37, p. 8327, 1988.
- [7] D. Tomanek and M. A. Schluter, "Growth regimes of carbon clusters," Phys. Rev. Lett., vol. 67, p. 2331, 1991.