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I. Landauer-Biittiker and transport coefficients

Two measurement geometries were employed, the
“channel” and “focusing” geometries. Measurements of
the three resistances R;;, szi and szc are shown in Fig.
S1 as a function of top gate voltage Vi;. Contact ¢ is
connected to a current source of I;, and c is connected to
ground or a voltmeter for the “channel” and “focusing”
geometry respectively. The following resistances were
then measured,

Ry =Vig/I; , R, =V, /I, , Rl =V, /L. (1)

From these resistances, one can relate them to trans-
port coefliciencts such as transmission function 7;; and §2
through the Landauer-Biittiker equation. The Landauer-
Biittiker equation for the “channel” geometry at contact
1 is simply given by,

RyI; = Typ; = Ry = RT;; " (2)

where R, is the quantum resistance and 7;; = Tjc+7Tig1 +
Tigo. From Eq. 2, one expects R;;(ppp) < Rs;(pnp), since
T:i(ppp) > Ti;(pnp). This is consistent with experiments
(see Fig. S1). In similar fashion, we write for “focusing”
geometry at contact ¢,

Rq-[i = Zz,uz - 7—01'/140 (3)

Combining Eq. 2 and 3 one arrives at,
R = Rii + TuT,7 'R, > Ry 4
i i T Lei it ic > L. ( )

We note that the inequality expressed by Eq. 4 is con-
sistent with experimental observation (Fig. S1). The
inequality in Eq. 4 implies that €Q.,, increases with the
difference in chemical potentials, i.e. ,u{ — l;, between the
two geometries. Conversely, it means that if the guiding
is negligible, then attaching a voltage probe at ¢ would
not impact the chemical potential at 7 i.e. ,uif ~ p;. How-
ever, one could also write the Landauer-Biittiker equa-
tion for contact ¢ instead. This would give the more
familiar form originally used for the “focusing” geometry
in Ref. [1],

Rl = T.'T..R], < R}, (5)

The inequality expressed by Eq. 5 is consistent with our
experiments (Fig. S1). The inequality in Eq. 5 implies
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FIG. S1: The three experimentally obtained resistances R;;, Rifi
and Rifc as a function of the top gate voltage Vig.

that Q,,, decreases with the difference in chemical poten-
tials, i.e. uif — pf, in the focusing geometry. Conversely,
it means that if the guiding is perfect, then terminal 4

and ¢ are electrically shorted i.e. p! ~ uf

As stated in the main text, a quantitative estimation of
the experimental guiding efficiency is obtained by taking
the average of Qeyp = 7¢i/Tii and Qegp = Tic/Tee from
Eq. 4 and Eq. 5 respectively,

(6)

Eq. 6is what we employ in the main paper when compar-
ing with numerical simulations. For qualitative purposes,
one could also similarly employ Eq. 5 instead, and sim-
ilar conclusions as discussed in the paper would also be
reached.

In graphene, it is known that placement of metal con-
tacts can dope the graphene underneath [2]. The p-n in-
terface formed would lead to a smaller 7;; than it would
have been otherwise, which is already captured in the
measurement of R;;.
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ITa. Quantum transport: numerics

Here, we give a brief description of the numerics and
transport model. A Hamiltonian for graphene within
the nearest-neighbor p,-orbital tight binding model [5]
is used,

q [
H= Zviajai + Z |ti;] exp (Zh/i A dl) ajaj, (7)
i i

where a;r /a; are the creation/destruction operator at each
atomic site 7. v; is the on-site potential energy, controlled
by Vig and Vig. |t;;] is the p,-orbital hopping energy, set
to 3eV. In the presence of a perpendicular magnetic field
B, t;; contains a Peierls phase, where A is the vector
potential. The central quantity of the quantum transport
theory, the retarded Green function G is written as (see
[6, 7] for general theory),

G=[(ef+i)I-—H-V-3" (8)

where €; is the Fermi energy and ¥ is the sum of all
contact self energies i.e. ¥;, X, ¥y and Xy, X; can
be obtained once the contacts’ surface Green function,
g, is calculated. In this work, we compute g; iteratively
using the algorithm described in Ref. [8], based on the
decimation technique (see e.g. [9]). Finally, the energy-
resolved current through contact n due to an injection
from contact m can be obtained through [6, 7],

2(]2 n n
Lu(6) = ST [S7(O AW - Tu(©g™ (@] (9)

where A=i(G — G') is the local density-of-states,
E;":fj (e)T;(e) is the filling function (analogous to the
in-scattering function for incoherent case), f;(e) is the
Fermi function of contact j, and I';=i(%; —E;) is the con-
tact broadening function. In Eq. 9, G™(e) is the electron
correlation function given by GG, To compute the
current due to injection from contact m, we set f,, =1
and fjzm = 0. The transmission function from contact
m to n is given by 7., = #In/(fm — fn)-

Usually, the size of the G matrices is too computa-
tionally prohibitive for its inverse to be sought directly.
Hence, G and G" are usually computed using techniques
commonly known as the “recursive Green function algo-
rithm” (see for example [10]) and the “renormalization
method” (see for example [11]). It exploits the special
properties of the tridiagonal nature of H through the use
of Dyson’s equation. We used a combination of these
methods to compute the device charge and current den-
sity in a memory efficient manner, described elsewhere
[4].
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FIG. S2: Simulated Q as a function of e with €; = 0.2eV. The
operating regime, i.e. OPG or OPG/PNG, is illustrated. Inset:
Plot of charge density of the device, for the case where €1 = —eg =
0.3eV. See text here for more description of the device.

ITb. Quantum transport: simulations

To model the experimental device, we assumed a
graphene sheet with dimensions W=L=100nm. The con-
tacts width for i, ¢ are assumed to be 50 nm while that
of g1,¢2 are 100nm. The channel width, which is con-
trolled by the top gate, is assumed to be 50 nm. Fig. S2
inset shows the calculated non-equlibrium charge den-
sity of the device at the Fermi energy for some typical
values of €; 2, and assumed initially that the channel in-
terfaces were perfect. In the main manuscript, we re-
laxed this assumption in order to explain the experimen-
tal trends and to achieve quantitative agreement with
the experiments. As shown in the inset of Fig. 3 in
the main manuscript, the following experimental trend
was observed: Qopc > Qopa/pne > pNG at a given
back-gate voltage V44 or e2. Fig. 852 shows the calcu-
lated Q) as a function of €5 assuming perfect interface for
the channel, for ¢;=0.2eV. The OPG and OPG/PNG
regimes are indicated. The simulation shows that Qopg
is always smaller than its Qopg/png counterpart. This
is in contrary to the experimental observations.

Adding p-n interface roughness, i.e. the root mean
square of the in-plane variations normal to the p-n in-
terface, is necessary to obtain corroboration with the ex-
perimental trend, as discussed in the manuscript. P-n in-
terface roughness is implemented according to the expo-
nential power spectrum model (a common model used to
describe 2D interface roughness) as described in Ref. [12].
These interface roughness profiles are smoothly varying
over atomic length scale. In the manuscript, we sim-
ply quote the average root-mean-square of the statistical
sample over dozen realizations. The impact of choice of
power spectrum of the roughness on guiding efficiency is
not studied in this work. Such a study is impeded by
the lack of experimental knowledge and characterization
work on p-n interface disorder and it is computationally
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FIG. S3: Simulations of electron guiding for (a) 2nm of interface
disorder and Onm of interface disorder (disorder free) for the (b)
PNG and (c¢) OPG/PNG regimes.

expensive to examine these large parameter spaces. How-
ever, we should emphasize that the general conclusions
derived from our transport modeling in disordered regime
should be fairly robust against the specific power spec-
trum model employed and the general trend observed —
that interface disorder degrades guiding efficiency should
be universal.

In the main text, we show simulations for the disorder-
free case for the OPG regime and 2 nm of interface disor-
der for the PNG and OPG/PNG regimes. In Fig. S3, we
compliment that data with the simulations for 2 nm of in-
terface disorder in the OPG regime and the disorder-free
scenario for PNG and OPG/PNG.

III. Average Value and Standard Deviation of ve.p in
the OPG Regime

Fluctuations in resistance with gate voltage (universal
conductance fluctuations) can cause R;;, R{i and R{C to
vary. These fluctuations will cause variations in the value
of Qezp and Yezp. If the fluctuations are large, the abil-
ity to distinguish the various amounts of disorder (0, 1
and 2 nm in Fig. 3 of the main text) will be diminished.
To quantify these fluctuations, we calculate, by averag-
ing over the top-gate voltage in the experimental data,
an average value of the corrected guiding efficiency (Yesp)
(using the ”equal-epsilon” value used in the text of 0.26),
and its standard deviation, oesp, as a function of back-
gate voltage in Fig. S4. It is clear that the variations are
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FIG. S4: The average value of the corrected guiding efficiency
(Vexp) and its standard deviation o7ezp calculated for the OPG
regime.

small, most likely owing to the large measurement tem-
perature (T=30K), and hence, we are able to show that
2nm, and not 0 or 1nm, is most likely the correct value
to use in numerical simulations. Further, we note that
the trend in back-gate voltage of (Veyp) is similar to Ve
in Fig. 3 of the main text, indicating that there is not
much variation and the the one-dimensional cut of Fig.
3 is representative of the back-gate voltage dependence
in the OPG regime.
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