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I. BILAYER GRAPHENE HAMILTONIAN

We consider a bilayer graphene arranged in the Bernal stacking order with basis atoms

A1, B1 and A2, B2 in the top and bottom layers respectively. The intralayer coupling is

γ0 and the interlayer coupling between A2 and B1 is γ1. The non-interacting electronic

Hamiltonian in the (A1, B1, A2, B2) basis representation in the vicinity of K valley reads[1],

H0 =
∑
k

â†kHkâk (1)

with

Hk =


∆/2 vFπ− 0 0

vFπ+ ∆/2 γ1 0

0 γ1 −∆/2 vFπ−

0 0 vFπ+ −∆/2

 (2)

2where π± = ~(kx ±i ky), vF = 3Lγ0/~, L is the carbon-carbon bondlength and ∆ is the on-

site energy difference between the two layers. The electronic bands and wavefunctions are

obtained by diagonalizing Hk. The electronic bands are denoted by ξn(k), with n = 1, 2, 3, 4

in ascending energy order given by,

ξn(k) = ±1

2

√
±2Ω + ∆2 + 2γ21 + 4v2Fπ+π− (3)

where Ω ≡
√

4∆2v2Fπ+π− + 4v2Fγ
2
1π+π− + γ41 and the signs are chosen as −+, −−, +− and

++ for n = 1, 2, 3, 4 respectively. Their 4-component wavefunctions denoted by |Φn(k)〉 are

given by,

1

N


1

1
2vF π−

(2ξn −∆)

1
2vF γ1π−

(−2∆ξn + ∆2 + γ21 ± Ω)

1
8v2F γ1π

2
−

(−4∆v2Fπ−π+ − 8ξnπ+π−v
2
F − 8ξnγ

2
1 + ∆3 + 4γ21∆ + 8ξ3n − 4ξ2n∆− 2ξn∆2)


(4)

where N is the normalization constant, and the ± sign are choosen as +, −, − and + for

n = 1, 2, 3, 4 respectively.
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II. ELECTRON PHONON HAMILTONIAN

The only intrinsic phonons with momenta and energies similar to the graphene plasmons

in our experiment are the long wavelength longitudinal/transverse optical (LO/TO) phonons

near the Γ point, with energies ~ωop ≈ 0.2 eV. The relative displacement of the two sublattice

in top layer is given by

uT (r) = u(r) =

√
~

2ρmωopA

∑
pλ

(b̂pλ + b̂†-pλ)eλ(p)eip·r (5)

where ρm is the mass density of graphene, p = (px, py) is the phonon wavevector, λ denotes

the LO/TO modes, b̂†pλ and b̂pλ are the creation and destruction operators, eλ(p) are the

polarization vectors given by eLO(p) = i(cosϕ, sinϕ) and eTO(p) = i(−sinϕ, cosϕ) where

ϕ = tan−1(py/px). Due to the two graphene layers, there are two possible vibrational modes

i.e. symmetric (uB(r) = u(r)) and antisymmetric mode (uB(r) = −u(r)).

The electron-phonon coupling at the K valley for bilayer graphene is given by[2],

He−op(r) = −
√

2
β~vF
L2

σ± × u(r) (6)

with σ+
j = Iσj and σ−j = σzσj where σj are the Pauli matrices and β = −∂lnγ0/∂L is a

dimensionless parameter related to the deformation potential. Assuming the electric field

polarized along y and ϕ = 0, we have eLO(p) = (1, 0) and eTO(p) = (0, 1). Since only lattice

vibration along y can couples to light, we consider only the TO mode. As a result, we can

write the electron-phonon interaction for the v mode in the following form,

H′v =
1√
A

∑
k

â†k+pVv(p)âke
ip·r(b̂p,v + b̂†p,v) (7)

where v = A, S denotes the symmetric and antisymmetric modes, with

VS(p→ 0) = igIσx (8)

VA(p→ 0) = igσzσx (9)

g =
β~vF
L2

√
~

2ρmωop
(10)

where g has the dimension of Jm−1 and assumed to be ≈ 0.3 eVÅ−1 in our calculation.
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III. DIELECTRIC RESPONSE

The plasmon response of bilayer graphene begins with finding the dielectric function,

obtained by adding the various contributions independently as follows,

εRPAT (q, ω) = εenv − vcΠ0
ρ,ρ(q, ω)− vc

q2

ω2
δΠj,j(q, ω) (11)

where vc = e2/2qε0, q and ω is the plasmon wave-vector and frequency. Π0
ρ,ρ(q, ω) is the

non-interacting part (i.e. the pair bubble diagram) of the charge-charge correlation function

given by,

Π0
ρ,ρ(q, ω) = − gsgv

(2π)2

∑
nn′

∫
dk

nF (ξn(k))− nF (ξn(k + q))

ξn(k)− ξn′(k + q) + ~ω + i~/τe
|Fnn′(k,q)|2 (12)

where nF is the Fermi-Dirac distribution function, Fnn′(k,q) is the band overlap,

Fnn′(k,q) = 〈Φn(k) |Φn′(k + q)〉 (13)

and τe is the electron lifetime.

Electron-phonon interaction modifies the current-current correlation function (i.e. op-

tical conductivity) whose contribution we denote by δΠj,j(q, ω). We employ a model for

δΠj,j(q, ω) which is consistent with the various electron-phonon selection rules for the sym-

metric/antisymmetric modes and Fano effect observed in optical spectroscopy experiments

for bilayer graphene and is given by[3],

δΠj,j(q, ω) =
∑
vv′

Γj,v(q, ω)Dvv′(ω)Γv′†,j(q, ω) (14)

where

Γj,v(q, ω) = − gsgv
(2π)2

∑
nn′

∫
dk

nF (ξn(k))− nF (ξn(k + q))

ξn(k)− ξn′(k + q) + ~ω + i~/τe
[J ]nn′ [Vv]n′n (15)

[J ]nn′ = 〈Φn(k)| J |Φn′(k + q)〉 (16)

[Vv]nn′ = 〈Φn(k)| Vv |Φn′(k + q)〉 (17)

with v = A, S and the current operator defined as J ≡ vF Iσy with the direction of the

electric field. D is the phonon Green’s function defined as,

[D−1(ω)]vv′ = δvv′ [D−10 (ω)]− Γv†,v′(ω) (18)

where D0 = 2ωop/~((ω+ i/τop)
2−ω2

op) is the free phonon Green’s function and τop describes

the phonon lifetime. In this calculation, we assumed τop ≈ 10 ps.
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IV. RAMAN SPECTRUM OF BILAYER GRAPHENE

Fig. S1a shows the 2D mode of bilayer graphene nanoribbons. The multiple-component 

structure of the spectrum has been widely used to identify AB-stacked bilayer graphene[4]. 

Fig. S1b is the spectrum for the G, D and D' modes. Due to defects introduced by nanoribbon 

edges, the defect related modes D and D' are quite visible in the spectrum. Similar to the 

infrared active phonon mode in Fig. 1b of the main text, the Raman active G mode phonon 

frequency is also around 1580 cm−1.

V. COUPLED OSCILLATOR MODEL FOR THE PLASMON-PHONON COU-

PLED SYSTEM

The spectrum of bilayer graphene plasmon can be phenomenologically modeled by the

power dissipation of two coupled mechanical oscillators[5]. Fig. S2a depicts the coupled

oscillators. The equations of motion read:

ẍ1 + γ1ẋ1 + ω2x1 − Ω2x2 =
F

m
exp(−iωst)

ẍ2 + γ2ẋ2 + (ω + δ)2x2 − Ω2x1 = 0 (19)

where x1 and x2 are the displacements, ω and ω+ δ are the frequencies of the two oscillators

without coupling, γ1 and γ2 are the damping rates, ωs is the driving frequency. Ω =
√
κ/m,

with κ as the coupling spring constant. The average power absorbed by oscillator 1 as a

function of the driving force frequency can be derived based on Eq. 19 as:

P (ωs) =
2πiF 2ωs[(ω + δ)2 − ω2

s − iγ2ωs]
m[(ω2 − ω2

s − iγ1ωs)((ω + δ)2 − ω2
s − iγ2ωs)− Ω4]

(20)

We fit the plasmon spectrum in the main text of Fig. S2b using the real part of Eq. 20. The

fitting parameters are as follows: the phonon frequency is 1574.6 cm−1, the phonon damping

rate is 7.9 cm−1, the plasmon frequency is 1558.7 cm−1, the damping rate is 192.1 cm−1 and

the coupling constant Ω = 312.3 cm−1.

In order to have a pronounced and well-defined PIT, the coupling constant should have an

appropriate value. Fig. S2b shows the simulated spectra with 3 different coupling constants

while other crucial parameters such as the phonon and plasmon frequencies and linewidths
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are kept the same as the fitting parameters for Fig. 2b in the main text. Its clear that with

a small coupling constant, the phonon feature is only a small perturbation to the plasmon

spectrum, while a large coupling strength splits the plasmon into two well-separated plasmon

modes with similar intensity and linewidth.

VI. PLASMONS IN TRILAYER GRAPHENE NANORIBBONS

We also measured the plasmon spectra in ABA-stacking trilayer graphene nanoribbons.

Fig. S3 presents the measured extinction spectra with both parallel and perpendicular light

polarization for a trilayer graphene nanoribbon array with ribbon width of 110 nm. The

coupling strength between the plasmon and phonon is weaker than in the case of bilayer

graphene, because the PIT is not as pronounced. The reason for the weaker coupling requires

further theoretical and experimental investigations. Presumably its due to a weaker phonon

dipole moment in trilayer graphene.

VII. FANO PARAMETER qf FOR THE PHONON FEATURE

We extracted the phonon spectra by subtracting the plasmon contribution in the spectra

shown in the main text and then fit the spectra with the Fano formula[6],

1− T

Ts
=

2p

πΓ(q2f + 1)

(qf + ε)2

(1 + ε2)
(21)

where Γ is the phonon linewidth, p is a parameter for the amplitude, qf is a parameter

accounting for the linseshpae and ε = 2(ω − ωph)/Γ with ωph as the phonon frequency.

Since the phonon Fano lineshape depends strongly on the plasmon frequency with respect

to the phonon frequency, it is informative to plot the Fano parameter qf as a function of the

plasmon frequency detuning for different ribbon widths and different Fermi levels. Fig. S4

plots the extracted qf as a function of the plasmon frequency detuning with respect to the

phonon frequency. It shows that when the plasmon frequency is below the phonon frequency,

the parameter qf is positive, and when the plasmon frequency is higher than the phonon

frequency, qf is negative. Our experiment demonstrates that qf can be continuously tuned

from positive to zero to negative values through either active method such as gating or

passive ways such as control of the ribbon width or chemical doping. To understand the
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behavior more quantitatively, we adopted a formalism introduced by Li et al.[7] to calculate

the Fano parameter qf :

qf =
1

π
P

∫
dω

ωph − ω

∣∣∣∣ Apl(ω)

Apl(ωph)

∣∣∣∣2 (22)

where P denotes the principal value of the integral, Apl(ω) is the optical transition amplitude

due to the plasmon absorption. To simulate the results in Fig. S4, we used a Lorentzian with

linewidth of 250 cm−1 to represent Apl(ω). By substituting the plasmon absorption spectrum

with variable peak frequency into Eq. 22, the parameter qf can be directly calculated as a

function of the plasmon frequency. The solid curve in Fig. S4 is the calculated result which

is in reasonable agreement with the experiment.
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FIG. S 1: Raman spectra of bilayer graphene nanoribbons. (a) 2D mode and (b) G mode, 

D mode and D' mode.
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FIG. S 2: Coupled oscillator model. (a) An illustration of the two coupled mechanical oscil-

lators. k1, k2 and κ are spring constants and m is the mass. (b) Calculated extinction spectra

based on the model with different coupling constants. Only appropriate coupling strength can have

well-defined PIT. Spectra are shifted vertically for clarity.
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FIG. S 3: Trilayer graphene nanoribbon spectra. Extinction spectra for a trilayer graphene

nanoribbon array (ribbon width W = 110 nm) with both parallel and perpendicular light polariza-

tions.
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FIG. S 4: Fano parameter qf . qf dependence on the plasmon frequency detuning with respect to

the phonon frequency for 4 different graphene nanoribbon arrays with different widths and Fermi

levels. One of the data sets is from a gated sample. The solid curve is the simulated result.
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