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1. Maximum height estimate of the standing collapsed wrinkle.  
 

To estimate the maximum height, we assume that the wrinkle has a fixed amount 

of material (i.e. no sliding of graphene along the surface), and that it adopts the 

minimum-energy morphology.  We therefore need to compare energies of the different 

structures for a fixed amount of excess graphene in the wrinkle.  First, we estimate 

energy of the folded wrinkle. As illustrated in Fig. S1, the structure of folded wrinkle 

consists of the right and left bulb-shaped curves with similar radiuses and a flat trilayer 

region. The right bulb we approximate by a pair of arcs, concave and convex. The two 

left bulbs are approximated by the arcs of the same angles, with radiuses being different 

by the van der Waals distance h separating graphene layers.  The trilayer region has 

length λ, and the bilayer has length λ+ξ. The base is approximated by arcs of angle π/2 

and radius Rb. The energy of the folded wrinkle in this model is given by:  
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where κ is graphene bending stiffness and β is van der Waals adhesion energy. The first 

term reflects the bending energy, the second term reflects adhesion energies of the bilayer 

and trilayer regions, and the last term reflects the adhesion energy cost to peel off 



graphene from the substrate. We will use βsub=β.  The excess length is defined as the 

length of the graphene fold minus the length of the flat substrate and it is given by:  
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where relationships between the angles and radiuses are determined by the geometric 

constraints, see Fig. S1: 4 4 3 3sin sinR Rξ θ θ= − , 1 2 2θ θ π− = , 

( )( )1 1 2 2sin 1 cosbR R h R hθ θ+ = + + − , 3 4θ θ π− = , ( ) ( )3 3 4 41 cos 1 cosR h Rθ θ− = + − . 

Minimization of energy in Eq. (1) with respect to the five variational parameters Rb, R1, 

θ1, R3, θ3 for a fixed excess length L from Eq. (2) gives the energy of the fold as a 

function of L.  

 

Similarly, we can estimate the energy of the standing collapsed wrinkle geometry, 

shown in Fig. S2:  
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The excess length here is given by:  

 

1 1 2 22 2 2 2b bL R R R R hπ λ θ θ= + + + − −       (4) 

 

where 1 2 2θ θ π= + , ( )1 1 2 2sin 2 1 cosR h Rθ θ= + −  are found from the geometrical 

constraints. Therefore, there are three variational parameters: Rb, R1, θ1 which minimize 

the energy in Eq. (3). 

 

Commonly used values of κ=1.4 eV1 and β corresponding to 40 meV adhesion 

energy per carbon atom2,3 suggest an intrinsic length scale 0 2 6.8R κ β= ≈ Å.  

Numerical energy minimization from Eq. (1) and (3) using parameters R0=6.8 Å and 



h=3.4 Å leads to the values of the variational radiuses of the left and right bulbs in the 

folded wrinkle: R1≈6.5 Å,  R3≈4.9 Å (see Fig. S1 caption) to be in very good agreement 

with the values found from the DFT optimized geometry of 5 6−  Å4. The minimum 

energy of the standing collapsed wrinkle from Eq. (3) as a function of L is given as 

0 0

14.78
2

scE L
R Rβ

≈ − , while minimum energy of the folded wrinkle from Eq. (1) is given 

by 
0 0

27.12fE L
R Rβ

≈ − . The equal energy condition sc fE E= is satisfied for 024.7mL R≈ , 

which defines a transition height from standing collapsed wrinkle to folded wrinkle as 

( )1 1 2 21 cos sinbR R Rλ θ θ+ + − + , where λ≈7.9R0  is found from Eq. (4). The height of the 

standing wrinkle at the transition (i.e. the maximum height) is about 12.4R0 ≈ 8.4 nm, 

very close to Lm/2.   

 

2. Electrostatic modeling of the trilayered folds regions  
 

We model the electrostatics of the graphene fold as a tri-layer graphene system, 

assuming that the graphene layers are electrically decoupled from one another. Through 

the Poisson equation, the Dirac point potential in each layer with respect to Fermi energy 

can be computed as follows,   
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where V3 is given a priori. d0 = 3.4Å is the graphene interlayer separation, ε0 is the free 

space permittivity, Cg is the back gate capacitance and Vg is the applied gate bias. In Fig. 

4a of the main manuscript, the calculated carrier densities assumed a finite electron-hole 

puddle densities n0 = 6.5×1011 cm-2 estimated from Hall measurements. The fractional 

carrier population in the graphene layer closest to the gate, i.e. n1/n where n = n1+n2+n3, 

is closer to unity at larger Vg. On the other hand, the layer densities are more equally 



distributed when Vg is biased near the Dirac point. This carrier redistribution within the 

trilayered graphene system is a consequence of nonlinear screening4 , and is crucial to 

explaining our experimental observations.  

 

3. Diffusive transport modeling along/across a graphene fold  
 

We discuss first electronic transport along a graphene fold. The effective 

electrical conductivity σeff  in the diffusive limit can be written as,  
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where σj  refers to the electrical conductivity in the jth layer and σ is the electrical 

conductivity in monolayer graphene i.e. control devices. Wf  is the width of the graphene 

fold, estimated from SEM to be  ≈ 0.14µm, and W is the device width. In addition, the 

electrical conductivity σ as a function of the carrier density n can be determined through 

Hall measurements. The carrier mean-free-path, λMFP(n), can simply be derived from 
24e

MFPh nπσ π λ=  5. If each graphene layer in the fold also follows the same λMFP(n) 

functional relationship, then the respective σj are also known. In this case, the calculated 

σeff  is shown in Fig. 4c of the main manuscript, yielding good agreement. Electronic 

transport across a graphene fold can be modeled in similar fashion, with σeff  written as, 
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where Lf  is the length of the graphene fold, estimated from SEM to be  ≈ 0.14µm, and L 

is the device length. 

 

4. Quantum transport modeling of standing collapsed wrinkle 
 



Here we elaborate on the electronic transport calculation of the standing collapsed 

graphene wrinkle in the main manuscript. We assume that the transport direction is along 

the armchair direction, as illustrated in Fig. 5a. The Hamiltonian H is described by a 

nearest neighbor zp tight-binding model6  including both in-plane and out-of-plane 

couplings, 
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where iV denote the on-site energy, ijt the in-plane coupling and ijs the out-of-plane 

coupling. Explicitly, they are expressed as, 
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where ip  refers to the local out-of-plane vector, ijv is the bond vector and ij ijr v= . 

Parameters 0.34pr nm≈  refers to the equilibrium graphene interlayer separation, 

0.119 pp
πγ ε≈  is the out-of-plane coupling energy, 00.185 3rδ ≈ × where 0 0.142r nm= is 

the carbon-carbon bond-length and 1.4α ≈ is a fitting parameter 6.   

 

Electronic transport across the structure is calculated using the non-equilibrium 

green function method5  within the Landauer formalism, assuming periodic boundary 

condition along the transverse width direction. The transmission function ( ),yk EΤ  can 

then be calculated. The finite temperature device conductance can be calculated using, 

 

( ) ( )
2

22 1 exp ,
y

y
kB B

e EG f E k E dE
h k T k T

µ∞

−∞

⎡ ⎤⎡ ⎤−
= Τ⎢ ⎥⎢ ⎥

⎢ ⎥⎣ ⎦ ⎣ ⎦
∑∫     (10) 



 

where ( )f E is the Fermi Dirac distribution. The resistance associated with the standing 

collapsed wrinkle can then be calculated after subtracting off the quantum contact 

resistance. In our calculations, we assume that the electrostatic doping of the flat region 

to be 0.2eV, and undoped in regions which are raised, namely the collapsed bilayer and 

the structure subtended from it. Temperature is taken to be 300K as per experiments.  

 

5. Temperature dependence of conductivity 

 
The conductivities of the graphene device at 4.2K and 300K are shown in Fig. S3. 

We observe that the conductivity is nearly unchanged when the temperature is decreased 

from 300K to 4.2K. 

 

6. Measurements of Hall Mobility 

 
We performed standard Hall measurement to obtain the resistivity tensor and then 

the conductivities σxx and σxy, from which the carrier mobility µ and carrier density n can 

be extracted. 
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where B is the magnetic field. These quantities are plotted in Fig. S4, obtained at 300K. 

We emphasize that the extraction method breaks down when the graphene is biased near 

the Dirac point, the range highlighted in the plot. The observed downturn in the mobility 

is unphysical, an artifact of the extraction method which ignores the two carrier nature of 

transport near the Dirac point 7. Outside this region, the measured mobility clearly shows 

a decreasing mobility with increasing doping.  

 

7. Dirac point shifts due to folds 



 
The statistical sampling of Dirac voltage for the graphene Hall-bars with and 

without fold is shown in Fig.S5: (a) across fold vs no fold; (b) along the fold vs no fold. 

The statistics of Dirac voltage value indicate that the presence of a fold does not lead to 

significant changes in the Dirac point shifts, hence of the doping level. This indicates that 

most of the trapped impurities reside in the substrate or the SiO2-graphene interface. 
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Fig. S2. Schematics of the standing collapsed graphene wrinkle. The minimum energy 
from Eq. (3) corresponds to the values of the variational parameters ( ) 02 2bR Rπ π= + , 

1 00.967R R≈ , 2 03.401R R≈ , 1 0.685θ π≈ , 2 0.185θ π≈ , where R0=6.8 Å.  
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Fig. S1. Schematics of the folded graphene wrinkle. The minimum energy from Eq. (1) 
corresponds to the values of the variational parameters 0bR R= , 1 00.950R R≈ , 

2 03.025R R≈ , 1 0.764θ π≈ , 2 0.264θ π≈ , 3 00.714R R≈ , 4 02.555R R≈ , 3 1.246θ π≈ , 

4 0.246θ π≈ , where R0=6.8 Å. 
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Fig.S4. Extracted (a) Hall mobility and (b) carrier density in graphene at 4K, via the 

standard Hall measurement procedure. 
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Fig.S3. Conductivity as a function of VBG-VDirac at 4.2K and 300K for a graphene 

device (a) with no fold, (b) measured across the fold and (c) along the fold. 
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Fig. S5. Statistics of Dirac voltage of graphene Hall-bars (a) across fold vs no fold, 
and (b) along fold vs no fold. The statistics are based on the data from 42 devices. 


