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I. Metal-induced graphene heterojunctions 

In a graphene p-n junction, the width of the generated barrier controls the transmission 

through the heterojunction. For the description of the electrostatic potential we use a model  

motivated by the asymptotic form of the carrier density decay away from the metal contact in 

the large oxide thickness limit, see Ref. [1]. Such that, the carrier density at the metal-

graphene junction is given by:      1 / /M M ch M B chn x n l V V x x n    , where nM (VM) and 

nch (Vch) are the carrier density (Fermi-level) under the metal and in the graphene channel far 

away from the metal, respectively. The transition length is given 

by  2
04 /M F Ml v n e   , where the  is the dielectric constant controlling the width of 

the barrier. The value of xB is found using the density continuity condition: n(x=0)=nM. Note, 

that xB coincides with the p-n junction barrier width, defined here as the distance at which the 

carrier density changes by half     2B M chn x x n n   . As the carrier density in the 

channel is reduced by GV , the value of the barrier width xb increases from ~0.5 nm to a 

maximum of 1.6 nm in simulations of the 50 nm device presented in the main text using 

=2.5. Note that lM is itself gate bias dependent due to the partial pinning of the Fermi level 

in graphene under the metal. 
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The choice of   and the channel length are critical in determining the period of Fabry-Perot 

oscillations observed in our two-terminal devices. Simulations with different values of   for 

fixed Lch=52 nm in Fig. S1 clearly show that as  increases, the period of the oscillations 

increases. This is mainly because the effective channel length is reduced to 2ch bL x . Since 

the channel length can be determined from the SEM images, the barrier width can be 

pinpointed by matching the period of the Fabry-Perot oscillations for the particular device.  

 

In addition to the period of the oscillations, the barrier width determines the asymmetry of the 

p and n branch resistance. The measurements in 50 nm device suggest that the asymmetry in 

resistance (at VG=25 V) is about a factor of two. This is five times larger than the simulated 

asymmetry of about 20% using an abrupt p-n-p junction. As shown in Fig. S2 to achieve a 

factor of two asymmetry, a barrier width of about 10 nm is needed. However, for such a high 

value of a barrier width the period of oscillations would be much larger than that observed in 

the experiment, as shown in Fig S3.   
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Figure S1. Oscillation period dependence on  for =2.5 (red), 5.0 (green), and 10.0 (blue). 
As  increases , the period of the oscillations increases accordingly. The black solid curve 
shows data for the 50 nm device. In the simulations we used V0 = 100 meV, d1=0 (fully 
pinned Fermi-level underneath the metal), npd=0, Vpd=0, Lcav=52 nm, Te= 4 K. 
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Figure S2. Resistance asymmetry simulated at VG=25 V using a trapezoidal potential barrier 
with the width being the distance where the potential is changed by a half. In the simulations 
(red circles), we used TMG=1, V0 = 100 meV, d1=0 (fully pinned Fermi-level underneath the 
metal), npd=0, Vpd=0, Lch=1 m, Te=300 K. The width of the junction barrier needed to 
ascribe the observed asymmetry to chiral tunneling alone is 10 nm and this conclusion is not 
sensitive to the shape of the junction barrier chosen2.    
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Figure S3. Fabry-Perot oscillations in the case of large junction barrier width of 10 nm. The 
black solid curve shows data for the 50 nm device. For the simulation (red curve), we used V0 

= 100 meV, d1=0 (fully pinned Fermi-level underneath the metal), npd=0, Vpd=0, Lcav=52 nm, 
and a trapezoidal shape of the barrier. Note, there is a factor of two asymmetry between the 
averaged resistances on the n- and p-sides and a much larger amplitude of the oscillations due 
to the smaller transmission on the n-side. 
  

II. Broadening of density of states 

It is essential to use broadening to account for the experimentally observed asymmetry and 

maximum resistance. Electrostatic potential fluctuations lead to a variation of the charge 

carrier density in graphene under the metal and in the channel.  

To account for the electron-hole puddles formed in the channel, we assume electron and hole 

rich regions with carrier densities 2 2
pdn n  and 2 2

pdn n , respectively, distributed with 

probabilities given by:  

, 2 2

1
1

2e h

pd

n
p

n n

 
  
  

         (1) 

where npd is a electron-hole puddle density and n is an averaged carrier density in the 

channel: 2 2 2 2
h pd e pdn n p n n p n n     . Note, that the second moment of 

distribution in Eq. (1):  2 2 2 2
pdn n dnP n n n





   coincides with that of a Gaussian 

distribution:  
  2 2exp 2

2

pd

G

pd

x n n
P x

n

 
 . The distribution in Eq. (1) not only matches the 

first two moments of the Gaussian distribution, but it also satisfies the “sigma”-rule, i.e. the 

probability to find minority carrier density pe=15% for n=npd, in agreement with a Gaussian 

distribution:  
0

, 16%G pddxP x n n


  . Computationally, however, it is much more 

efficient to use the distribution of Eq. (1) than a Gaussian distribution.  
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Similarly, we model electron and hole rich regions in graphene underneath the metal with 

Dirac points at 2 2
M pdMV V  and probabilities to find these regions:  
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         (2) 

where VpdM determines the variation of the electrostatic potential underneath the metal, and 

the averaged electrostatic potential VM is controlled by the  metal graphene charge transfer 

and the back gate voltage using the same model as in Ref. [2]: 

 ( ) ( )M BG G 0 M M 0 M q M Men C V V V C V V C e eV eV        

where CM=0/d1,   12 2
q FC v


  , and d1 is an effective graphene metal distance.  
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