Supplementary Information: Electron pumping in graphene mechanical resonators

T. Low¹, Y. J. Jiang^{2,3}, M. I. Katsnelson⁴, and F. Guinea⁵

¹ IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, USA
 ² Department of Physics, ZheJiang Normal University, Zhejiang 321004, People's Republic of China ³ Department of Physics, Purdue University, West Lafayette, Indiana 47909, USA

⁴ Radboud University Nijmegen, Institute for Molecules and Materials,

Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands

⁵ Instituto de Ciencia de Materiales de Madrid. CSIC. Sor Juana Inés de la Cruz 3. 28049 Madrid, Spain

We consider a suspended graphene resonator as described in [1, 2]. The dynamical equation for the out-of-plane deformation from equilibrium a(t) is given by (see the respective Appendixes on the form of the forces),

$$\rho \frac{\partial^2 a}{\partial t^2} = \mathcal{F}_S + \mathcal{F}_D + \mathcal{F}_E \tag{1}$$

where \mathcal{F}_S , \mathcal{F}_D , \mathcal{F}_E are the time dependent restoring elastic, damping and electrostatic forces (or pressures) respectively, in units of m^{-2} . ρ is the mass density. The total restoring elastic force, ignoring second order terms due to bending forces κ and $O(h^{2})$, reduces to,

$$\mathcal{F}_{S} = -\frac{64}{3} \frac{\lambda + 2\mu}{L^{4}} \left(a^{3} + 3a^{2}h_{0} + 3ah_{0}^{2} \right) + \frac{8\Delta L}{L^{3}} (\lambda + 2\mu)a \tag{2}$$

obtained by minimizing elastic energy. Damping is treated phenomenologically via,

$$\mathcal{F}_D = -\frac{\rho}{\tau_d} \frac{\partial a}{\partial t} \tag{3}$$

 τ_d can be easily obtained from quality factor Q measured in experiments. Q is defined to be $Q = \omega_0/\Delta\omega = \omega_0\tau_d/2$, where $\Delta \omega$ is the so called bandwidth of the resonance peak. Reported Q is around 100 [1, 2] at room temperature, depending on many factors. For example, temperature dependence of $Q \propto T^{-0.36}$ was found, for T < 100 K [2]. And a record $Q \approx 100,000$ at 90mK was reported [3]. Mass density of graphene assumed to be $\rho \approx 7.4 \times 10^{-6} kgm^{-2}$. Lastly, the electrostatic force is modelled as,

$$\mathcal{F}_E = \frac{C_T^2 V_{dc} V_{ac}}{\epsilon_0} \cos(\omega t) \tag{4}$$

neglecting $O(V_{ac}^2)$ and other non-linear terms. $C_T = [\epsilon_0^{-1}(d+h_0) + \epsilon_{SiO2}^{-1}t_{SiO2}]^{-1}$ is the total effective capacitance due to the back-gate oxide and air dielectric, d being the perpendicular distance of the unstrained graphene from the substrate.

We are interested in the steady state solution to the dynamical equation i.e. $a(\omega) = |a| \exp(i\phi)$. We seek an approximate solution through an iterative technique used in the Duffing model [4, 5]. For convenience, we rewrite the dynamical equation as,

$$\rho \ddot{a} = -k_0 a - k_1 a^2 - k_2 a^3 - \frac{\rho}{\tau_d} \dot{a} + f \cos(\omega t)$$
(5)

where

$$k_0 = \frac{64(\lambda + 2\mu)h_0^2}{L^4} - \frac{8\Delta L}{L^3}(\lambda + 2\mu) , \ k_1 = \frac{64(\lambda + 2\mu)h_0}{L^4} , \ k_2 = \frac{64(\lambda + 2\mu)}{3L^4} , \ f = \frac{C_T^2 V_{dc} V_{ac}}{\epsilon_0} \tag{6}$$

In the spring constant term k_0 , we consider only the case for $\Delta L \leq 0$. k_2 contributes to the Duffing force, and renders the spring more stiff (soft) if positive (negative). In the former, the effect will be a shift of resonance with increasing driving force. And at larger driving force would lead to bistability and hysteresis [2].

The frequency response $a(\omega)$ around the resonant frequency $\omega_0 \equiv \sqrt{k_0/\rho}$ has the following approximate solution,

$$\left[(\omega_0^2 - \omega^2)|a| + \frac{3k_2}{4\rho}|a|^3\right]^2 + \left(\frac{\omega|a|}{\tau_d}\right)^2 = \left(\frac{f}{\rho}\right)^2 \tag{7}$$

$$\mathbf{n}\phi = \frac{\omega|a|}{\tau_d \left[(\omega_0^2 - \omega^2)|a| + \frac{3k_2}{4\rho}|a|^3 \right]}$$
(8)

Note that a^2 terms affects the higher harmonics $2\omega_0$. These converge to the Lorentz model solutions if we set $k_2 = 0$. In the linear regime, i.e. $k_2 = 0$, the response at $\omega = \omega_0$ goes as $|a| = 2Qf/\rho\omega_0^2$. When $k_2 \neq 0$, |a| follows,

ta

$$\frac{9k_2^2}{16}|a|^6 + \frac{k_0^2}{4Q^2}|a|^2 = f^2 \tag{9}$$

From this, we can define a threshold driving force f_{th} where $|a(\omega = \omega_0)|$ starts to deviate from linearity i.e. $|a| \propto f$,

$$f_{th} \approx \sqrt{\frac{k_0^3}{36Q^3k_2}} \tag{10}$$

As evident, ρ has no effect on f_{th} , and a larger Q yields a smaller f_{th} i.e. increased sensitivity to non-linearity. However, a larger Q is desireable to achieve a larger resonance $|a(\omega = \omega_0)|$.

APPENDIX A: ELECTROSTATIC FORCES

The electrostatic force is modelled as,

$$\mathcal{F}_E^{tot} = \frac{1}{2} \frac{C_T^2}{\epsilon_0} V_{bg}^2 \approx \frac{1}{2} \frac{C_T^2}{\epsilon_0} \left(V_{dc}^2 + 2V_{dc} V_{ac} \cos(\omega t) \right) \equiv \mathcal{F}_E^{eq} + \mathcal{F}_E \tag{A1}$$

neglecting $O(V_{ac}^2)$. $C_T = [\epsilon_0^{-1}(d+h_0) + \epsilon_{SiO2}^{-1}t_{SiO2}]^{-1}$ is the total effective capacitance (per unit area) due to the back-gate oxide and air dielectric. d is the perpendicular distance of graphene from the substrate when unstrained.

APPENDIX B: ELASTIC FORCES

The position of a 2D membrane can be described by the in-plane and out-of-plane deformation field given by $\mathbf{u}(x,y) = [u_x(x,y), u_y(x,y)]$ and h(x,y). In the linear approximation, the strain tensor is given by,

$$u_{\alpha\beta} = \frac{1}{2} (\partial_{\alpha} u_{\beta} + \partial_{\beta} u_{\alpha} + \partial_{\alpha} \partial_{\beta} h)$$
(B1)

The elastic free energy is given by [6, 7],

$$\mathcal{E} = \int dx dy \left[\frac{1}{2} \kappa (\nabla^2 h)^2 + \frac{1}{2} \lambda (u_{xx} + u_{yy})^2 + \mu (u_{xx}^2 + u_{yy}^2 + 2u_{xy}^2) - \mathcal{F}_E^{eq} h \right] \\\approx \int dx \left[\frac{1}{2} \kappa (\nabla^2 h)^2 + \frac{1}{2} (\lambda + 2\mu) u_{xx}^2 - \mathcal{F}_E^{eq} h \right]$$
(B2)

where $\kappa \approx 1eV$ is the bending rigidity, $\mu \approx 9eV \mathring{A}^{-2}$ and $\lambda \approx 2eV \mathring{A}^{-2}$ are the Lame constants of graphene. Experiments [8] measures an elastic constant for graphite $c_{11} = 106 \times 10^{10} Nm^{-2} \approx 1TPa$. For graphene, we have the relation $c_{11}d_{in} = \lambda + 2\mu$. Using an interlayer separation distance of $d_{in} = 0.335nm$ [9], we $c_{11}d_{in} \approx 355Nm^{-1}$. This is in good agreement with the values of Lame constants we assumed. Recent measurement [10] of the Young's modulus of graphene yields $E_{2d} = 342Nm^{-1}$. Note that by definition, $E_{2d} = c_{11}d_{in}$.

 \mathcal{F}_E^{eq} is the pressure induced by the bottom electrostatic gate. Assuming homogenuity along transverse direction, we arrive to a one-dimensional problem. Minimizing \mathcal{E} in Eq. B2 yields us the following Euler-Lagrange equations,

$$\kappa \partial_x^4 h - (\lambda + 2\mu) \left[\frac{3}{2} (\partial_x h)^2 \partial_x^2 h + \partial_x u_x \partial_x^2 h + \partial_x h \partial_x^2 u_x \right] = \mathcal{F}_E^{eq}$$
$$\partial_x^2 u_x + \partial_x h \partial_x^2 h = 0 \tag{B3}$$

where the latter implies the longitudinal strain is constant i.e.

$$u_{xx} = \text{constant}$$
 (B4)

Finally, the differential equation governing h(x) is,

$$\kappa \partial_x^4 h - (\lambda + 2\mu) u_{xx} \partial_x^2 h = \mathcal{F}_E^{eq} \tag{B5}$$

The differential equation for h then reduces to,

$$-(\lambda+2\mu)u_{xx}\partial_x^2 h = \mathcal{F}_E^{eq} \tag{B6}$$

whose explicit solution with the boundary condition $h(\pm L/2) = 0$ is,

$$h(x) \approx \frac{\mathcal{F}_E^{eq}(L^2 - 4x^2)}{8(\lambda + 2\mu)u_{xx}} \equiv h_0 - \frac{4h_0}{L^2}x^2 \text{ where } h_0 = \frac{\mathcal{F}_E^{eq}L^2}{8(\lambda + 2\mu)u_{xx}}$$
(B7)

where h_0 is the maximum deflection i.e. at x = 0. Including the second order terms, the expression can be rather complicated [11]. With the profile h(x), simple geometry allows us to relate u_{xx} with h_0 as per Eq. C9. Then the elastic force equation reduces from Eq. B6 to,

$$\mathcal{F}_{S}^{eq} = -\frac{64}{3}(\lambda + 2\mu)\frac{h_{0}^{3}}{L^{4}} + \frac{8\Delta L}{L^{3}}(\lambda + 2\mu)h_{0} = \mathcal{F}_{E}^{eq}$$
(B8)

where we included the possibility of an initial tension, $\Delta L < 0$. Elastic forces due to deformation a away from the equilibrium can then be described by,

$$\mathcal{F}_{S} = -\frac{64}{3} \frac{\lambda + 2\mu}{L^{4}} \left(a^{3} + 3a^{2}h_{0} + 3ah_{0}^{2} \right) + \frac{8\Delta L}{L^{3}} (\lambda + 2\mu)a \tag{B9}$$

APPENDIX C: DEFORMATION AND GATING

Next we shall determine u_{xx} . Following [12], it is defined as,

$$u_{xx} = \frac{L' - (L + \Delta L)}{L + \Delta L} \approx \frac{L' - L}{L} - \frac{\Delta L}{L}$$
(C1)

where L' is the length of the strained graphene,

$$L' = 2\int_0^{L/2} dx \sqrt{1 + |\nabla h|^2} \approx L + \int_0^{L/2} dx \left(\partial_x h\right)^2 = \frac{L^3 (\mathcal{F}_E^{eq})^2}{24(\lambda + 2\mu)^2 u_{xx}^2} + L \tag{C2}$$

L is trench length and $L + \Delta L$ is length in absense of strain. Hence, solving u_{xx} then reduces to finding the root of,

$$u_{xx}^{3} + \frac{\Delta L}{L}u_{xx}^{2} - \frac{L^{2}(\mathcal{F}_{E}^{eq})^{2}}{24(\lambda + 2\mu)^{2}} = 0$$
(C3)

No initial tension or slack: If $\Delta L = 0$, we will obtain,

$$u_{xx} = \left[\frac{L^2(\mathcal{F}_E^{eq})^2}{24(\lambda+2\mu)^2}\right]^{1/3} = \frac{8h^2}{3L^2}$$
(C4)

Electrostatically, one can approximate \mathcal{F}_{E}^{eq} as,

$$\mathcal{F}_E^{eq} \approx \frac{e^2 n^2}{2\epsilon_{eff}} \tag{C5}$$

where n is the carrier density in graphene and ϵ_{eff} is the effective dielectric due to air gap and back gate oxide. We ignores the curvature of graphene. Assuming that $\Delta L = 0$, we get an expression for maximum deflection h_0 at equilibrium,

$$h_0 = \left[\frac{3L^4 e^2 n^2}{128\epsilon_{eff}(\lambda + \mu)}\right]^{\frac{1}{3}}$$
(C6)

With initial tension or slack: For general case of $\Delta L \neq 0$, To obtain h_0 rigorously requires solving the following the electrostatic and elasticity equations self-consistently.

$$F_E^{eq} = \frac{1}{2\epsilon_0} \left[\left(\underbrace{\frac{C_a}{d - h_0}}_{0} \right)^{-1} + \left(\underbrace{\frac{C_{ox}}{e_{ox}}}_{t_{ox}} \right)^{-1} \right]^{-2} V_{dc}^2$$
(C7)

$$-\frac{64}{3L^3}h_0^3 + \frac{8\Delta L}{L^2}h_0 + \frac{F_E^{eq}L}{\lambda + 2\mu} = 0$$
(C8)

When $F_E^{eq} = 0$, the latter requires $h_0 = 0$ for $\Delta L \leq 0$ (tension), which is expected. Another remark. A series capacitance C_{ox} to C_a is essential as it provides stability to the electrically actuated mechanical system. A relation between u_{xx} and h_0 can be obtained from Eq. B7 and C3, yielding,

$$u_{xx}^{3} + \left(\frac{\Delta L}{L} - \frac{8h_{0}^{2}}{3L^{2}}\right)u_{xx}^{2} = 0$$

$$\Rightarrow u_{xx} = 0 \text{ or } u_{xx} = \frac{8h_{0}^{2}}{3L^{2}} - \frac{\Delta L}{L}$$
(C9)

- J. S. Bunch, A. M. Zande, S. S. Verbridge, I. W. Frank, D. M. Tanenbaum, J. M. Parpia, H. G. Craighead, and P. L. McEuen, "Electromechanical resonator from graphene sheets," *Science*, vol. 315, p. 490, 2007.
- [2] C. Chen, S. Rosenblatt, K. I. Bolotin, W. Kalb, P. Kim, I. Kymissis, H. L. Stormer, T. F. Heinz, and J. Hone, "Performance of monolayer graphene nanomechanical resonators with electrical readout," *Nature Nano.*, vol. 4, p. 861, 2009.
- [3] A. Eichler, J. Moser, J. Chaste, M. Zdrojek, I. W. Rae, and A. Bachtold, "Nonlinear damping in mechanical resonators based on graphene and carbon nanotubes," arXiv:1103.1788, 2011.
- [4] W. T. Thomson and M. D. Dahleh, "Theory of vibrations with applications," Prentice Hall, 1997.
- [5] G. Duffing, "Erzwungene schwingungen bei vera?nderlicher eigenfrequenz und ihre technische bedeutung," Braunschweig Vieweg, 1918.
- [6] M. A. H. Vozmediano, M. I. Katsnelson, and F. Guinea, "Gauge fields in graphene," Phys. Rep., vol. 496, p. 109, 2010.
- [7] L. D. Landau and E. M. Lifshitz, "Theory of elasticity," Pergamon Press, 1986.

=

- [8] O. L. Blakslee, D. G. Proctor, E. J. Seldin, G. B. Spence, and T. Weng, "Elastic constants of compression annealed pyrolytic graphite," J. Appl. Phys., vol. 41, p. 3373, 1970.
- [9] R. Al-Jishi and G. Dresselhaus, "Lattice dynamical model for graphite," Phys. Rev. B, vol. 26, p. 4514, 1982.
- [10] C. Lee, X. Wei, J. W. Kysar, and J. Hone, "Measurement of the elasti properties and intrinsic strength of monolayer graphene," *Science*, vol. 321, p. 385, 2008.
- [11] S. P. Timoshenko and S. Woinowsky-Kreiger, "Theory of plates and shells," McGraw Hill, New York, 1959.
- [12] M. M. Fogler, F. Guinea, and M. I. Katsnelson, "Pseudomagnetic fields and ballistic transport in a suspended graphene sheet," *Phys. Rev. Lett.*, vol. 101, p. 226804, 2008.