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We consider a suspended graphene resonator as described in [1, 2]. The dynamical equation for the out-of-plane
deformation from equilibrium a(t) is given by (see the respective Appendixes on the form of the forces),
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where Fg, Fp, Fg are the time dependent restoring elastic, damping and electrostatic forces (or pressures) respectively,
in units of m~2. p is the mass density. The total restoring elastic force, ignoring second order terms due to bending
forces k and O(h?), reduces to,
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obtained by minimizing elastic energy. Damping is treated phenomenologically via,
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T4 can be easily obtained from quality factor @ measured in experiments. @ is defined to be Q = wo/Aw = woT4/2,
where Aw is the so called bandwidth of the resonance peak. Reported @ is around 100 [1, 2] at room temperature,
depending on many factors. For example, temperature dependence of Q o T~%3% was found, for T < 100K [2]. And
a record @ =~ 100,000 at 90mK was reported [3]. Mass density of graphene assumed to be p ~ 7.4 x 10~ %kgm=2.
Lastly, the electrostatic force is modelled as,
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neglecting O(V2) and other non-linear terms. Cr = [e; Yd + ho) + €§i102t5i02]_1 is the total effective capacitance
due to the back-gate oxide and air dielectric, d being the perpendicular distance of the unstrained graphene from the
substrate.

We are interested in the steady state solution to the dynamical equation i.e. a(w) = |alexp(i¢). We seek an
approximate solution through an iterative technique used in the Duffing model [4, 5]. For convenience, we rewrite the
dynamical equation as,
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In the spring constant term kg, we consider only the case for AL < 0. k5 contributes to the Duffing force, and renders
the spring more stiff (soft) if positive (negative). In the former, the effect will be a shift of resonance with increasing
driving force. And at larger driving force would lead to bistability and hysteresis [2].



The frequency response a(w) around the resonant frequency wg = /ko/p has the following approximate solution,
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Note that a? terms affects the higher harmonics 2wy. These converge to the Lorentz model solutions if we set ky = 0.
In the linear regime, i.e. ky = 0, the response at w = wy goes as |a| = 2Q f/pw3. When ks # 0, |a| follows,
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From this, we can define a threshold driving force fi, where |a(w = wyp)| starts to deviate from linearity i.e. |a| x f,
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As evident, p has no effect on f;,, and a larger @) yields a smaller f;, i.e. increased sensitivity to non-linearity.
However, a larger @ is desireable to acheive a larger resonance |a(w = wp)|.

APPENDIX A: ELECTROSTATIC FORCES

The electrostatic force is modelled as,
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neglecting O(V.2). Or = [eg ' (d + ho) + €g;0ytsioa] " is the total effective capacitance (per unit area) due to the
back-gate oxide and air dielectric. d is the perpendicular distance of graphene from the substrate when unstrained.

APPENDIX B: ELASTIC FORCES

The position of a 2D membrane can be described by the in-plane and out-of-plane deformation field given by
u(z,y) = [uz(z,y), uy(x,y)] and h(z,y). In the linear approximation, the strain tensor is given by,
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The elastic free energy is given by [6, 7],
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where k ~ 1leV is the bending rigidity, © ~ 9¢eVA"2 and A ~ 2eVA~2 are the Lame constants of graphene.
Experiments [8] measures an elastic constant for graphite c;; = 106 x 10'°Nm~=2 ~ 1T Pa. For graphene, we have
the relation ¢11d;;, = A + 2u. Using an interlayer separation distance of d;, = 0.335nm [9], we c11d;, = 355Nm~1L.
This is in good agreement with the values of Lame constants we assumed. Recent measurement [10] of the Young’s
modulus of graphene yields FEaq = 342Nm~!. Note that by definition, Fog = c11din.

Fp! is the pressure induced by the bottom electrostatic gate. Assuming homogenuity along transverse direction,
we arrive to a one-dimensional problem. Minimizing £ in Eq. B2 yields us the following Euler-Lagrange equations,
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where the latter implies the longitudinal strain is constant i.e.
Uy = constant (B4)
Finally, the differential equation governing h(z) is,
KOPh — (N + 2u) U O2h = Fit (B5)
The differential equation for h then reduces to,
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whose explicit solution with the boundary condition h(+L/2) = 0 is,
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where hg is the maximum deflection i.e. at x = 0. Including the second order terms, the expression can be rather
complicated [11]. With the profile h(z), simple geometry allows us to relate u,, with hy as per Eq. C9. Then the
elastic force equation reduces from Eq. B6 to,
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where we included the possibility of an initial tension, AL < 0. Elastic forces due to deformation a away from the
equilibrium can then be described by,
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APPENDIX C: DEFORMATION AND GATING

Next we shall determine u,,. Following [12], it is defined as,
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where L’ is the length of the strained graphene,
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L is trench length and L + AL is length in absense of strain. Hence, solving u,, then reduces to finding the root of,
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No initial tension or slack: If AL = 0, we will obtain,
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Electrostatically, one can approximate Fp as,
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where n is the carrier density in graphene and e.ry is the effective dielectric due to air gap and back gate oxide.
We ignores the curvature of graphene. Assuming that AL = 0, we get an expression for maximum deflection hg at
equilibrium,
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‘With initial tension or slack: For general case of AL # 0, To obtain hg rigorously requires solving the following
the electrostatic and elasticity equations self-consistently.
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When F7! = 0, the latter requires hg = 0 for AL < 0 (tension), which is expected. Another remark. A series
capacitance C,; to C, is essential as it provides stability to the electrically actuated mechanical system. A relation
between u;,; and hg can be obtained from Eq. B7 and C3, yielding,
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