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We consider a suspended graphene resonator as described in [1, 2]. The dynamical equation for the out-of-plane
deformation from equilibrium a(t) is given by (see the respective Appendixes on the form of the forces),

ρ
∂2a

∂t2
= FS + FD + FE (1)

where FS , FD, FE are the time dependent restoring elastic, damping and electrostatic forces (or pressures) respectively,
in units of m−2. ρ is the mass density. The total restoring elastic force, ignoring second order terms due to bending
forces κ and O(h2), reduces to,

FS = −64
3
λ+ 2µ
L4

(
a3 + 3a2h0 + 3ah2

0

)
+

8∆L
L3

(λ+ 2µ)a (2)

obtained by minimizing elastic energy. Damping is treated phenomenologically via,

FD = − ρ

τd

∂a

∂t
(3)

τd can be easily obtained from quality factor Q measured in experiments. Q is defined to be Q = ω0/∆ω = ω0τd/2,
where ∆ω is the so called bandwidth of the resonance peak. Reported Q is around 100 [1, 2] at room temperature,
depending on many factors. For example, temperature dependence of Q ∝ T−0.36 was found, for T < 100K [2]. And
a record Q ≈ 100, 000 at 90mK was reported [3]. Mass density of graphene assumed to be ρ ≈ 7.4 × 10−6kgm−2.
Lastly, the electrostatic force is modelled as,

FE =
C2
TVdcVac
ε0

cos(ωt) (4)

neglecting O(V 2
ac) and other non-linear terms. CT = [ε−1

0 (d + h0) + ε−1
SiO2tSiO2]−1 is the total effective capacitance

due to the back-gate oxide and air dielectric, d being the perpendicular distance of the unstrained graphene from the
substrate.

We are interested in the steady state solution to the dynamical equation i.e. a(ω) = |a|exp(iφ). We seek an
approximate solution through an iterative technique used in the Duffing model [4, 5]. For convenience, we rewrite the
dynamical equation as,

ρä = −k0a− k1a
2 − k2a

3 − ρ

τd
ȧ+ fcos(ωt) (5)

where

k0 =
64(λ+ 2µ)h2

0

L4
− 8∆L

L3
(λ+ 2µ) , k1 =

64(λ+ 2µ)h0

L4
, k2 =

64(λ+ 2µ)
3L4

, f =
C2
TVdcVac
ε0

(6)

In the spring constant term k0, we consider only the case for ∆L ≤ 0. k2 contributes to the Duffing force, and renders
the spring more stiff (soft) if positive (negative). In the former, the effect will be a shift of resonance with increasing
driving force. And at larger driving force would lead to bistability and hysteresis [2].
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The frequency response a(ω) around the resonant frequency ω0 ≡
√
k0/ρ has the following approximate solution,[

(ω2
0 − ω2)|a|+ 3k2

4ρ
|a|3
]2

+
(
ω|a|
τd

)2

=
(
f

ρ

)2

(7)

tanφ =
ω|a|

τd

[
(ω2

0 − ω2)|a|+ 3k2
4ρ |a|3

] (8)

Note that a2 terms affects the higher harmonics 2ω0. These converge to the Lorentz model solutions if we set k2 = 0.
In the linear regime, i.e. k2 = 0, the response at ω = ω0 goes as |a| = 2Qf/ρω2

0 . When k2 6= 0, |a| follows,

9k2
2

16
|a|6 +

k2
0

4Q2
|a|2 = f2 (9)

From this, we can define a threshold driving force fth where |a(ω = ω0)| starts to deviate from linearity i.e. |a| ∝ f ,

fth ≈

√
k3
0

36Q3k2
(10)

As evident, ρ has no effect on fth, and a larger Q yields a smaller fth i.e. increased sensitivity to non-linearity.
However, a larger Q is desireable to acheive a larger resonance |a(ω = ω0)|.

APPENDIX A: ELECTROSTATIC FORCES

The electrostatic force is modelled as,

F totE =
1
2
C2
T

ε0
V 2
bg ≈

1
2
C2
T

ε0

(
V 2
dc + 2VdcVaccos(ωt)

)
≡ FeqE + FE (A1)

neglecting O(V 2
ac). CT = [ε−1

0 (d + h0) + ε−1
SiO2tSiO2]−1 is the total effective capacitance (per unit area) due to the

back-gate oxide and air dielectric. d is the perpendicular distance of graphene from the substrate when unstrained.

APPENDIX B: ELASTIC FORCES

The position of a 2D membrane can be described by the in-plane and out-of-plane deformation field given by
u(x, y) = [ux(x, y), uy(x, y)] and h(x, y). In the linear approximation, the strain tensor is given by,

uαβ =
1
2

(∂αuβ + ∂βuα + ∂α∂βh) (B1)

The elastic free energy is given by [6, 7],

E =
∫
dxdy

[
1
2
κ(∇2h)2 +

1
2
λ(uxx + uyy)2 + µ(u2

xx + u2
yy + 2u2

xy)−FeqE h
]

≈
∫
dx

[
1
2
κ(∇2h)2 +

1
2

(λ+ 2µ)u2
xx −F

eq
E h

]
(B2)

where κ ≈ 1eV is the bending rigidity, µ ≈ 9eV Å−2 and λ ≈ 2eV Å−2 are the Lame constants of graphene.
Experiments [8] measures an elastic constant for graphite c11 = 106 × 1010Nm−2 ≈ 1TPa. For graphene, we have
the relation c11din = λ + 2µ. Using an interlayer separation distance of din = 0.335nm [9], we c11din ≈ 355Nm−1.
This is in good agreement with the values of Lame constants we assumed. Recent measurement [10] of the Young’s
modulus of graphene yields E2d = 342Nm−1. Note that by definition, E2d = c11din.

FeqE is the pressure induced by the bottom electrostatic gate. Assuming homogenuity along transverse direction,
we arrive to a one-dimensional problem. Minimizing E in Eq. B2 yields us the following Euler-Lagrange equations,

κ∂4
xh− (λ+ 2µ)

[
3
2

(∂xh)2∂2
xh+ ∂xux∂

2
xh+ ∂xh∂

2
xux

]
= FeqE

∂2
xux + ∂xh∂

2
xh = 0 (B3)
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where the latter implies the longitudinal strain is constant i.e.

uxx = constant (B4)

Finally, the differential equation governing h(x) is,

κ∂4
xh− (λ+ 2µ)uxx∂2

xh = FeqE (B5)

The differential equation for h then reduces to,

−(λ+ 2µ)uxx∂2
xh = FeqE (B6)

whose explicit solution with the boundary condition h(±L/2) = 0 is,

h(x) ≈
FeqE (L2 − 4x2)
8(λ+ 2µ)uxx

≡ h0 −
4h0

L2
x2 where h0 =

FeqE L2

8(λ+ 2µ)uxx
(B7)

where h0 is the maximum deflection i.e. at x = 0. Including the second order terms, the expression can be rather
complicated [11]. With the profile h(x), simple geometry allows us to relate uxx with h0 as per Eq. C9. Then the
elastic force equation reduces from Eq. B6 to,

FeqS = −64
3

(λ+ 2µ)
h3

0

L4
+

8∆L
L3

(λ+ 2µ)h0 = FeqE (B8)

where we included the possibility of an initial tension, ∆L < 0. Elastic forces due to deformation a away from the
equilibrium can then be described by,

FS = −64
3
λ+ 2µ
L4

(
a3 + 3a2h0 + 3ah2

0

)
+

8∆L
L3

(λ+ 2µ)a (B9)

APPENDIX C: DEFORMATION AND GATING

Next we shall determine uxx. Following [12], it is defined as,

uxx =
L′ − (L+ ∆L)

L+ ∆L
≈ L′ − L

L
− ∆L

L
(C1)

where L′ is the length of the strained graphene,

L′ = 2
∫ L/2

0

dx
√

1 + |∇h|2 ≈ L+
∫ L/2

0

dx (∂xh)2 =
L3(FeqE )2

24(λ+ 2µ)2u2
xx

+ L (C2)

L is trench length and L+ ∆L is length in absense of strain. Hence, solving uxx then reduces to finding the root of,

u3
xx +

∆L
L
u2
xx −

L2(FeqE )2

24(λ+ 2µ)2
= 0 (C3)

No initial tension or slack: If ∆L = 0, we will obtain,

uxx =
[
L2(FeqE )2

24(λ+ 2µ)2

]1/3
=

8h2

3L2
(C4)

Electrostatically, one can approximate FeqE as,

FeqE ≈
e2n2

2εeff
(C5)
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where n is the carrier density in graphene and εeff is the effective dielectric due to air gap and back gate oxide.
We ignores the curvature of graphene. Assuming that ∆L = 0, we get an expression for maximum deflection h0 at
equilibrium,

h0 =
[

3L4e2n2

128εeff (λ+ µ)

] 1
3

(C6)

With initial tension or slack: For general case of ∆L 6= 0, To obtain h0 rigorously requires solving the following
the electrostatic and elasticity equations self-consistently.

F eqE =
1

2ε0




Ca︷ ︸︸ ︷
ε0

d− h0


−1

+


Cox︷︸︸︷
εox
tox


−1

−2

V 2
dc (C7)

− 64
3L3

h3
0 +

8∆L
L2

h0 +
F eqE L

λ+ 2µ
= 0 (C8)

When F eqE = 0, the latter requires h0 = 0 for ∆L ≤ 0 (tension), which is expected. Another remark. A series
capacitance Cox to Ca is essential as it provides stability to the electrically actuated mechanical system. A relation
between uxx and h0 can be obtained from Eq. B7 and C3, yielding,

u3
xx +

(
∆L
L
− 8h2

0

3L2

)
u2
xx = 0

⇒ uxx = 0 or uxx =
8h2

0

3L2
− ∆L

L
(C9)
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