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ABSTRACT: The combination of high-frequency vibrations and metallic
transport in graphene makes it a unique material for nanoelectromechanical
devices. In this Letter, we show that graphene-based nanoelectromechanical
devices are extremely well suited for charge pumping due to the sensitivity of
its transport coefficients to perturbations in electrostatic potential and
mechanical deformations, with the potential for novel small scale devices with
useful applications.
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Device miniaturization has led to small-size mechanical
systems, nanoelectromechanical (NEMs) devices with a

wide range of uses in fundamental and applied research.1−3 In
particular, electron pumps and turnstiles have been extensively
studied,4−6 including NEM-based devices.7−11 Graphene
NEMs12−14 have an enhanced tunability with respect to devices
based on carbon nanotubes, while keeping advantageous
features, such as high vibration frequencies and metallicity.
Suspended graphene samples have a very high electron
mobility15 and a large and well-characterized electronic
coupling to the strains induced by long wavelength vibrations.16

Long wavelength strains in a ballistic graphene sheet modify the
electronic transport coefficients through the sheet.17 A flexural
deformation leads to uniaxial strains within the suspended area,
inducing a strain mismatch at the boundary between the
suspended and nonsuspended regions, modulating the trans-
port coefficients. Deformations of amplitudes of a few
nanometers in samples of micrometers in size and the tuning
of its electrostatic doping can be simultaneously achieved by
adjusting the electrostatic force between the graphene layer and
the metallic gate below it.17 The periodic modulation in time of
these internal parameters, i.e., electrostatic doping and strains,
makes it possible to achieve adiabatic charge pumping,18−20 if
the appropriate symmetries are broken. We argue below that
these requirements can be met in a realistic experimental setup,
leading to charge pumping of the order of a few electrons per
cycle.
We analyze the feasibility of a pumping device using the

geometry sketched in Figure 1a. The length of the sheet is L,
and the applied voltage is V(t) = Vdc + Vac cos (ωt). We
describe the deformation in terms of a single degree of
freedom, the maximum vertical displacement, a(t). Its dynamics
is determined by the sum of the time-dependent electrostatic

force between the sheet and the gate, E, the restoring elastic
force, S, and a dissipative term introduced phenomenologi-
cally, D:
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where ρ is the mass density, λ and μ are Lame ́ elastic constants,
CT is the total effective capacitance due to the back-gate oxide
and air dielectric, and ΔL and h0 describe the amount of slack
and vertical displacement of the sheet in the absence of the
periodic driving potential. The phenomenological parameter τd
describes damping, and the quality factor is Q = (ω0τd)/2,
where ω0 is the resonant frequency. Currently, experimentally
obtained ω0 for graphene is in the range of 100 MHz.13,14,22

Figure 1b reproduces a typical experimental ω0 as function of
Vdc with our model. In the linear response regime, ω0 ≈ h0/
L2ρ1/2, whereas h0 can be tuned through Vdc and is proportional
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to (n2L4)1/3. Continual device downscaling and improvements
in graphene fabrication processes will allow for GHz operation,
already realized in nanotube systems.23

We look for the frequency and the phase response to the
dynamical system described by eq 1. The equations define a
nonlinear resonator, which we solve approximately21 using
techniques derived ffrom the Duffing model.24,25 We show in
Figure 1c the dependence of the maximum amplitude, a(ω), for
a different driving force Vac. When the driving force exceeds a
given threshold, the oscillator shows bistability and hysteresis.14

Our results are in reasonable agreement with the experimental
data14 shown in the inset. Time varying deformation of
graphene modifies its electronic spectrum through the
modulation of electrostatic doping and in-plane strain modeled
with

= ε + δε ω

= + δ ω + ϕ − Δ

t t

t u u t
L

L

( ) {1 sin( )}

( ) {1 sin( )}

dg d d

xx xx xx

1/2

2
(2)

where dg is the Dirac point energy in graphene with Fermi
energy taken as zero, and εd = ℏυf(πCTVdc/e)

1/2, δεd = Vac/Vdc,
uxx = 8h0

2/3L2, and δuxx = a/h0. The internal parameters, d and
xx, constitute the two parameters for adiabatic quantum

pumping in graphene NEMs and are governed by the
amplitude and the phase response of the resonator system.
Figure 1d,e shows the dependence of amplitude a(ω0) and the
phase response ϕ(ω0) on Vac and the quality factor Q.
Improvements in quality factor, where values as high as Q = 105

at T = 90 mK have been reported,26 will lead to stronger
nonlinearity and sensitivity.
Cyclic variation of the two internal parameters given by eq 2

constitutes a scheme for quantum pumping. The scattering
wave ψj(x) in the various regions: left contact, graphene, and
right contact, denoted by the subscript j = ,g,r, respectively, can
be written as follows:
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Here, ηj is the pseudospin phases defined as, ηj = ℏυf((kxj +
ikyj)/( f − dj)), where dj is the Dirac energy in each region.
υ, υ, α , and αg are the wave amplitude coefficients to be

determined by imposing wave continuity at the interfaces. The
in-plane strain xx leads to an effective gauge potential,27 Ay =
± ns((β xxtc)/(eυf)), where β = −(∂ log(tc)/∂ log(b)) ≈ 2, tc ≈
3 eV is the nearest neighbor hopping term, b ≈ 1.4 Å is the
bond length, ns is a dimensionless geometrical factor which is
found numerically to be ≈0.5, and the two signs correspond to
the two inequivalent Dirac points in the Brillouin zone, i.e., K
and K′. It modifies the transverse wave vector through ℏkyg =
ℏky − eAy. Time varying transport coefficients υ(t) and υ(t)
are determined adiabatically from eq 3. The pumping current
for each valley is20,28
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where υ denotes the valleys (i.e., K,K′), f 0(ε) is the Fermi−
Dirac distribution, and the pumping coefficient is defined as, Ωυ

= (∂ υ/∂t) υ
† + (∂ υ)/∂t) υ

† evanescent contributions, albeit
small, are also included in the model.
In order for the pumping current to be nonzero, spatial

inversion symmetry needs to be broken. Typical charge

Figure 1. (a) Schematic of a typical graphene nanoelectromechanical
resonator actuated electrostatically with a back gate. Gating
capacitance is given by the total effective capacitance due to the
back-gate oxide and air dielectric, i.e., CT = [ε0

−1(d + h0) + εSiO2

−1 tSiO2
]−1,

where we assumed tSiO2
= 200 nm and d = 100 nm in this work. (b)

Resonant frequency f0 as function of bias voltage Vdc, computed using
our model, i.e., ω0 = (k0/ρ)

1/2, where k0 = ∂a S(a = 0) is the
linearized spring constant term. ρ and ΔL are used as fitting parameter
to the experimental data of two devices (in symbols) reproduced from
ref 14. (c) Amplitude response, a(ω), of device 1 for different driving
forces Vac, obtained by solving the nonlinear resonator model of eq 1
using techniques employed for the Duffing model, assuming a quality
factor Q = 125, the value corresponding to the experimental
situation.14 The oscillator shows features of bistability and hysteresis
similar to that of experiments14 (see inset and ref 14 for measurement
details). (d−e) Amplitude and phase response at resonance (of device
1) as function of driving force Vac for two different quality factors Q =
25 and 125.
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pumping scheme employs two electrostatic gates to achieve
this.29 In a NEM-based quantum pump, a number of
perturbations will achieve that. In the following, we assume
that the left and right contacts are not equivalent, which is
modeled by different densities of states. In reality, this can be
implemented by using different materials for the two contacts.30

We assume ballistic transport, which implies that the mean free
path, , is larger than the dimensions of the device, ≳ L. This
limit can be achieved in clean suspended samples.16 Diffusive
scattering will suppress the effect of the gauge field,17 so that
the modulation of the scattering matrix will be reduced, but for
sufficiently low amounts of disorder, a finite pumping current
will exist.
Using the model presented above, we consider a prototypical

device of L = 50 nm, ΔL = 0 nm, and W = 1 μm. Symmetry of
the problem requires that the Hamiltonian K(ky) = K′(−ky)
(y is aligned along the zigzag direction), which also implies K,ky

= K′,−ky. In other words, the pumping current υ = Σky υ,ky

from valley υ = K,K′ must be equal and flow in the same
direction. Hence, in a subsequent analysis, we shall consider
only one of the valleys, i.e., K. First, we illustrate some of the
basic features of electron pumping in graphene NEMs. Figure
2a,b plots the transmission K(ky) and pumping coefficient
ΩK(ky) over a pumping cycle for ϕ = 0 (top panels) and ϕ = π/
2 (bottom panels). In these calculations, we assumed an
asymmetric contact doping of dl = −0.4 eV and dr = −0.3 eV.
The contact with a lower doping will stipulate the maximum
allowable transverse momentum wave vector (kmax) that could
accommodate propagating states through the device. As the
graphene resonator undergoes strain modulation, it induces a
translation in its transverse momentum ℏkyg = ℏky − eAy. States
where kyg > kmax would be evanescent in the contacts and their
transport coefficients will be zero, i.e., white regions in Figure
2a,b. In general, larger ky states lead to stronger interference
effects, as seen in Figure 2a. Since pumping current is
proportional to the accumulated complex phase per cycle, ΩK

is most significant at larger ky. When the two parameters are in
phase, ΩK for a given ky state is exactly antisymmetric within
each time cycle, i.e., the π/2→ 3π/2 is antisymmetric with −π/
2 → π/2 portion of the cycle, hence K = 0. This symmetry is
broken when ϕ ≠ 0, and a finite pump current then ensues.
Figure 2c,d plots the time averaged conductance ⟨G⟩ and the

pumped charge per cycle Qc for varying transverse momentum,
ky, and doping, dg. Here, we observe a larger ΩK at negative ky
and vice versa for K′ valley, i.e., a valley Hall effect. Based on the
condition K,ky = IK′,−ky stated earlier, it is apparent that a valley
Hall effect will be present, since K,ky ≠ K,−ky in general. The
valley Hall effect will induce a spatially dependent valley
polarized current, whose effect is maximal near the two edges.
Calculations as shown in Figure 2d estimate the valley
polarization, i.e., ( K − K′)/IK, to be as large as 90%. Figure
2e−g shows that the pumped charge Qc is linear with respect to
the amplitudes of the pumping parameters and the device
length. The latter is a result of increasing interferences
frequency with L. Qc also increases with contacts doping
asymmetry, except that the effect maximizes when density of
states in one of the contacts becomes the bottleneck to
conduction. Reasonable driving voltages lead to measurable
currents for devices with similar features to experimentally
studied NEMs. These systems provide a robust setup where
quantum pumping can be observed.

We briefly discuss issues related to experimental realization.
In a conventional quantum pumping scheme, displacement
current induced by stray capacitances can interfere with the
quantum pumping dc current,29,31 as the two gates can work in
unison to result in a rectification of the displacement currents.32

Since our proposal utilizes only a single back gate, there will be
no rectification of the ac displacement currents at least to the
first order in frequency. The calculated values of the current in
our device are such that situations where the charge pumping
per cycle is close to one or a few electrons are feasible.

Figure 2. We consider graphene NEM-based electron pumping device
through cyclic variations of d(t) and xx(t) as described in eq 2.
Unless stated otherwise, we consider the graphene dimension of L =
50 nm, ΔL = 0 nm, and W = 1 μm, with equilibrium parameters uxx =
0.02 and εd = −0.2 eV. Contact asymmetry is introduced through dl =
−0.4 eV and dr = −0.3 eV. (a) Transmission, K(ky), as function of
time over one pumping cycle, for cases where the two parametric
variations are in-phase (i.e., ϕ = 0) and out-of-phase (i.e., ϕ = π/2). In
these calculations, we assumed δuxx = 0.8 and δ dg = 0.2. Dashed lines
indicate the minimum and maximum transverse momentum ky (black)
and ky − (e/ℏ)Ay (red). (b) Similar to (a), except for pumping
coefficient ΩK(ky). Note that pumping current for the ϕ = 0 case is
zero. (c,d) Time-averaged conductance ⟨G⟩ and charges per cycle Qc

as function of graphene’s doping dg and transverse momentum ky.
Dashed lines indicate ± ℏυf(ky − (e/ℏ)Ay). In these calculations, we
assumed δuxx = 0.2 and δ dg = 0.2. Note that calculations for (a−d)
are performed for only one of the valley, i.e., K. (e−g) studies Qc as
function of various parameters: pumping amplitude δuxx, contact
doping asymmetry, and device length L. In these calculations, we
assumed δuxx = 0.2 and δ dg = 0.2, unless stated otherwise.
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Coulomb blockade effects will favor the transference of an
integer number of electrons per cycle, so that the ratio between
current and frequency will be quantized. Such behavior will
manifest itself as steps in the dependence of this ratio on
driving voltage. The charging energy of a device of length L is
Ec ≈ e2/L, so that Ec ∼ 10 K for L ∼ 1 μm, and Coulomb
blockade effects can be expected to be relevant at lower
temperatures. The observation of quantized steps in /ω will
allow for the realization of a graphene-based current standard,33

making graphene an unique material from whom current and
resistance34 standards can be fabricated. Note also that the
carrier density in very clean suspended graphene samples can
be adjusted with great accuracy, making the physics at the Dirac
point accessible.16 At these concentrations, electronic transport
in ballistic systems is determined by evanescent waves,35,36 and
pumping through these modes can also be expected.37 In
principle, we also envision alternative schemes via optical
means,38 where the laser could induce a nonequilibrium
electronic temperature which, through coupling with the
flexural phonons, will lead to strains and vibrations.
In summary, we show that a graphene NEM near resonance

can function as an adiabatic quantum pump under realistic
experimental conditions due to the unique electronic coupling
to the strains induced by long wavelength vibrations.
Experimental realization of this effect would open up new
opportunities in fundamental and applied research with
graphene NEMs.1−3
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