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Graphene’s novel electronic and physical properties make it
an interesting material for various potential applications.1,2

For electronics, the absence of an energy gap limits its applic-
ability. Currently, there are myriad known ways to opening an
energy gap in graphene. For instance, the patterning of graphene
nanoribbons induces a band gap due to the confinement of
carriers along the transverse direction.3 Although there are recent
proposals in achieving controlled width and smooth edges,4 the
large scale fabrication of nanoribbons remains a challenge. The
graphene nanomesh, also known as a graphene antidot lattice, is a
viable alternative.5,6 Here, the confinement potential is cre-
ated by clusters of vacancies, i.e., nanoholes, arranged on a
regular superlattice. They are prepared using block copolymer
lithography. Two structural parameters, the cluster size and
neck width of the superlattice of nanoholes, govern the
electronic transport properties observed in experiments.6 A
larger energy gap is induced when both these two parameters
are reduced.

Another variant of nanomesh, formed by periodic pattern of
hydrogen clusters, has recently been observed for graphene grown
on an iridium substrate.7 The periodicity is due to the fact that the
composite structure of graphene and iridium forms a superlattice,
with the hydrogenation occurring preferentially on specific
superlattice sites. The resulting structure can be regarded as a
variant of the nanomesh since regions of hydrogenated graphene
are highly insulating.8�10 Nanomesh via patterned hydrogena-
tion is a promising approach, since its cluster size and neck width
can be much smaller than the lithographically defined case.
Indeed, the opening of a substantial energy gap has been revealed
by angle-resolved photoemission spectroscopy (ARPES).7

Theoretical investigations of the electronic properties of
nanomesh/pattern-hydrogenated graphene have been limited so
far to band-structure calculations using primitive supercells.5,7,11,12

This approach can treat disorder in the cluster shape only within
the same supercell.7 Instead, in this work, we present a modeling
study of pattern-hydrogenated graphene that also includes dis-
order across different supercells. Through calculations of the
momentum-energy-resolved density of states and its electrical
conduction, we study the scaling of the energy gap on the param-
eters defining the patterned hydrogenation, i.e., cluster size, filling
factor, and neck width.
The Model. A simple tight-binding (TB) model is employed

to describe the composite structure of graphene with adsorbed
hydrogen atoms.13,14Within this model, the basis consists of a 2pz
orbital per carbon atom and a 1s orbital per hydrogen atom: the
parameters describing the carbon�carbon hopping integral (γ =
2.6 eV), carbon�hydrogen hopping integral (γH = 5.72 eV), and
hydrogen onsite energy (εH = 0 eV) are taken from ref 14. Such a
minimal model captures the essential physics of the hydrogena-
tion effect pertinent for our study, that is, the removal of the pz
orbital of the hydrogenated carbon atom from the π and π*
bands.15 Since our purpose is to study the intrinsic properties
of the nanomesh, we neglect the interaction with the iridium
substrate in the TB model. As a consequence, particle�hole
symmetry is preserved and the neutrality point remains located at
the Dirac point.
Graphene on an iridium substrate forms a superlattice due to

the mismatch between their respective lattice constants; 10� 10
graphene unit cells are commensurate with 9 � 9 iridium unit
cells.16 The superlattice unit cell is represented in Figure 1a. The
supercell preserves the symmetry of the graphene unit cell,17

resulting in a honeycomb superlattice. Experimentally,7 it was
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ABSTRACT: Recent experiments show that a substantial energy gap in graphene can be
induced via patterned hydrogenation on an iridium substrate. Here, we show that the
energy gap is roughly proportional toNH

1/2/NC when disorder is accounted for, whereNH

andNC denote concentrations of hydrogen and carbon atoms, respectively. The dispersion
relation, obtained through calculation of the momentum-energy resolved density of states,
is shown to agree with previous angle-resolved photoemission spectroscopy results.
Simulations of electronic transport in finite size samples also reveal a similar transport
gap, up to 1 eV within experimentally achievable NH

1/2/NC values.
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shown that the hydrogen clusters tend to form in regions indi-
cated by circles in Figure 1a, where one graphene sublattice sits
directly on top of iridium atoms. A hydrogenation model is deve-
loped to reproduce this preferential adsorption (see details in the
Supporting Information). The model takes as input two param-
eters: a discrete quantity Nw which represents the cluster radius,
and the filling factor nc, i.e., ratio between the number of clusters
and the number of half-supercells. Two types of disorder are
considered: (i) irregular cluster edges and (ii) a random filling of
the superlattice (if nc < 1). See Figure 1b for illustrations. Each
cluster is generated by adding hydrogen atoms on top of the
carbon atoms belonging to a certain number of shells around the
center of the half-supercell, and the edge disorder is introduced
by partial hydrogenation of the outer shell. Both A and B sites are
hydrogenated within each cluster, contrary to what is expected in
the real structure.7 The additional hydrogen atoms play the role
of the neglected interactions with the substrate in removing the
pseudodangling bonds.7,18

Key Features in Momentum-Energy Resolved Density of
States. In order to study the electronic properties of pattern-
hydrogenated graphene as seen in ARPES experiments, calculation
of the momentum-energy resolved density of states is re-
quired. This quantity is given, apart from a normalization

factor, by the diagonal elements of the spectral function in
momentum space, A(k,k;E). While this quantity reduces to
the usual band structure for periodic systems, it is a general
concept and is valid even for disordered systems. The calcula-
tion is performed by first computing the spectral function
in real space A(r,r0;E) and then Fourier transforming to get
A(k,k;E).19 The calculation is done using Green’s function
formalism with a recursive algorithm for periodic structures.
See the Supporting Information for detailed numerical de-
scription and implementation.
In Figure 1c, we plot the averaged A(k,k;E) for two ensembles

corresponding to the two realizations shown in Figure 1b, along a
path in k-space that includes the K point.20 The convergence of
the result with respect to sample size and ensemble size has been
checked, as reported in the Supporting Information. Only the
negative energies are shown, as the conduction bands are sym-
metrical to the valence ones due to particle�hole symmetry. The
corresponding experimental ARPES image7 corresponding to
two different hydrogen doses is shown in Figure 1d. Several
distinctive features are observed in both simulations and experi-
ments. In both cases, the two valence branches intersect at a
lower energy than the Dirac point. In addition, the signal of the
states lying at the K point between E = 0 and the intersection

Figure 1. Schematic representation of the atomic structure under study and comparison of the simulated k-resolved density of states in energy with the
experimental ARPES. (a) Top view of the supercell of graphene on iridium substrate. The two graphene sublattices are indicated with different colors.
The supercell is symmetric under reflection across the dashed line, except for the interchange of the two graphene sublattices. The two circles highlight
the regions of the supercell where the clusters tend to form. (b) Top view of two hydrogenated samples with different cluster concentration. Hydrogen
atoms are represented as black dots on the honeycomb graphene lattice and the iridium substrate is not shown. S1 is obtained with themodel parameters
Nw = 4, nc = 0.75, while S2 with Nw = 4, nc = 1. (c) Calculated momentum-energy resolved density of states for two sets of hydrogenated samples that
correspond to the cases S1 and S2 shown in (b). 50 samples are considered for each set, the plotted quantity being the average. The inset shows the
direction within the graphene Brillouin zone (red line) along which the calculation is performed. (d) Experimental ARPES intensity for different times of
exposure to hydrogen (as indicated in the labels). Reprinted with permission from ref 7. Copyright 2010 Macmillan Publishers Ltd.
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energy gets suppressed with increasing hydrogen doping. These
features can be interpreted as a band gap opening. The presence
of a flat band at E = 0 in the simulation results is a well-known
effect, due to the imbalance between the two graphene sub-
lattices.21 The absence of these states in the experimental ARPES
could be related to bond relaxation and sp3 hybridization,22

which are neglected in the simulations.
Scaling of Energy Gap. The energy gap is extracted from the

momentum-energy-resolved density of states for different sets of
samples, corresponding to different values of cluster size, filling
factor, and supercell size. The supercell size is increased by
considering a fictitious substrate other than iridium: for fixed
cluster size, this corresponds to increasing the neck width.
Figure 2a illustrates the fitted band edges from A(k,k;E), with
details in the Supporting Information. An apparent universal
scaling relation for the band gap is obtained when we plot the
extracted band gap values Eg (together with a measure of the
broadening of each A(k,k;E) plot as error bar) against the
quantity NH

1/2/NC, where NH and NC are the average number
of hydrogen and carbon atoms in the half-supercell (Figure 2b).23

A similar relation also applies for the case of triangular graphene
nanomesh.5 In ref 11, it was stated that a universal relation does
not hold for honeycomb graphene nanomesh. However, Figure 2b
suggests that when disorder is included in the simulations, the
scaling law Eg = c(NH

1/2)/NC, with c a constant, can be valid at
low defect coverage for honeycomb superlattices as well. This is
similar to the case of graphene nanoribbons, where theoretically
the band gap depends on the precise atomic configuration,24

while a general law Eg� 1/W, withW the ribbon width, is always
observed in the experiments3 and commonly attributed to
disorder.25,26 Regarding the proportionality constant, we found
that the expression c = 2pvFπ/(As/2)

1/2, with vF the graphene
Fermi velocity and As the area of the graphene unit cell, fits fairly
well the numerical data (dashed line in Figure 2b). We note that
by defining Δ = (As/2)

1/2(NC/NH
1/2), the scaling relation takes

the form Eg = 2pvFπ/Δ. This equation can be thought of as
arising from the quantization of the graphene dispersion relation
E =(pvF|k| (k is here the wave vector around the K point) with
|k| =π/Δ (1D quantization in random directions):Δ can thus be
interpreted as an effective confinement length.
Transport Gap. Next, we examine the electronic transport

properties of pattern-hydrogenated graphene. Techniques for
the transfer of graphene grown on metal surfaces to an insulating
substrate have recently been developed.28 We consider a three-
terminal structure as shown in Figure 3a and aim at predicting its
low-temperature, low-bias conductance. Figure 3b illustrates the
potential energy along the device. The potential energy in the
source and drain leads, as a result of metal induced doping, is kept
fixed with respect to the Fermi level EF. The channel potential
Vch is modulated by the back gate. Graphene is aligned with its
armchair direction along the longitudinal direction of the device,
in order to avoid edge transport effects. Only the channel is
hydrogenated while the leads are pristine graphene. The con-
ductance is computed by using the standard Green’s function
technique29 combined with a modified version of the algorithm
described in ref 30, which is commonly used for the calculation of
the lead self-energies (see Supporting Information).
Figure 3c shows the simulated, ensemble averaged zero-

temperature conductance G vs Vch. The device size is kept fixed
at W = L = 30 nm, while different sets of hydrogenated samples
are considered. It can be seen that patterned hydrogenation leads
to a clear transport gap, increasing with Nw and nc. Also, the

transport simulations agree well with our band-structure results:
the transport gap matches the band gap from the A(k,k;E) fitting
(as indicated by vertical lines in Figure 3c) and the peaks in the
transport gap region correspond to the gap states in A(k,k;E).31

The G vs Vch curve appears symmetrical, unlike the case for
pristine graphene.32 This suggests that scattering is dominated
by the channel, instead of the tunneling resistance due to pn
junctions.
Scaling of Transport Coefficients. Finally, we examine how

G scales with L. Here, we consider devices with filling factor
nc = 1. The conductance is found to scale asG� exp(�L/ξ), where
ξ is a decay length. Figure 4a plots the extracted ξ as a function of
Vch bias, while Figure 4b illustrates the extraction of ξ for two

Figure 2. Band-gap extraction. (a)Momentum-energy resolved density
of states for two sets of hydrogenated samples on iridium substrate: S3 is
obtained with themodel parametersNw = 2, nc = 1, while S4 withNw = 3,
nc = 1. Different fitting curves are used (white lines), given by eqs 31 and
29 in the Supporting Information, for S3 and S4, respectively. The band
gap is extracted with respect to the fitting curve. (b) Band gap extracted
for the various sets of samples and plotted as a function of NH

1/2/NC,
where NH and NC are the average number of hydrogen and carbon
atoms in the half-supercell, respectively. The fitting functions used for
the extraction are listed, for each set, in Table 1 of the Supporting
Information. SL10 stands for graphene on iridium substrate (supercell
made of 10� 10 graphene unit cells, see Figure 1a), while SL13 refers to
graphene on a fictitious substrate (supercell made of 13 � 13 graphene
unit cells). The error bar is ameasure of the broadening of theA(k,k;E) plot.
The dashed line is the curve Eg = 2pvFπ/Δ, with vF = (3/2)aCC|γ|/p
the Fermi velocity in pristine graphene and Δ = (As/2)

1/2(NC/NH
1/2),

where aCC is the carbon�carbon distance and As = aCC
23(31/2)/2 the

area of the unit cell of pristine graphene.
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particular Vch values. Next, we extract the average value ξ̅ of the
decay length in the “off” and “on” state and plot it against (NH)

1/2/
NC as we have done previously for the band gap (Figure 4c, see
caption for the definition of the “on” and “off” states). One
observes that, for almost all the samples, the value of the decay
length in the “off” state is about an order of magnitude smaller
than the corresponding value in the “on” state. For both cases, the
average decay length seems to follow the general scaling law ξ̅ �
NC/NH

1/2 at low to moderate hydrogenation concentrations,
albeit the “off” state exhibits a smaller proportionality constant.
We note that in the “off” state the exponential decrease ofG with
L can be explained as evanescent transport through a clean band
gap;25 the scaling law ξ̅ � Δ � 1/Eg is in agreement with this
interpretation. In the “on” state instead, the exponential decrease

of G with L is an effect of quantum localization due to disorder
and ξ takes the meaning of a localization length.33 The scaling
law ξ̅ �Δ is here less clear and an exponential dependence could
also be possible, as suggested by recent experiments.34Moreover,
dephasing effects, which are ignored in our simulations, could
restore a diffusive transport regime, G� 1/L, as the temperature
is raised.
Conclusions. In conclusion, a simple model for pattern-

hydrogenated graphene was presented. Similar features are
observed in the calculated k-resolved density of states in energy
and in the experimental ARPES. The scaling of the energy gap on
the parametersNC andNHwas presented, including its electronic
transport properties at low temperature. Our results indicate that
pattern-hydrogenated graphene is a promising approach to the

Figure 3. Transport simulations. (a) Conceptual device under investigation: pattern-hydrogenated graphene is transferred to an insulating substrate
and used as channel material of a field-effect transistor. (b) Profile of the potential energy used to simulate the structure in (a): the Fermi level in the leads
EF is kept fixed, while the barrier height Vch is varied to reproduce the effect of the back gate. Pristine graphene is used for the leads. (c) Zero-temperature
conductance vs Vch for various sets of samples withW = L = 30 nm and iridium substrate (SL10). From left to right, the cluster size, i.e.,Nw, is increased;
within the same plot, the cluster concentration nc is varied. 100 samples are considered for each set, and the average is done on the logarithm of the
normalized conductance (a motivation for this type of averaging can be found in ref 27). The vertical lines indicate the band gap from Figure 2b.

Figure 4. Decay length extraction. (a) Decay length vs Vch for sets of samples with different cluster size and fixed supercell size (SL10) and cluster
concentration (nc = 1). The vertical lines indicate the band gap from Figure 2b. (b) Example of the decay length extraction at two different Vch points.
The dashed lines indicate the fitting with the formula ln[G/(2e2/h)] = ln g0� L/ξ. (c) Average value of the decay length in the “off” and “on” state for
various sets of samples with different supercell and cluster sizes, plotted as a function ofNH

1/2/NC. The dashed lines indicate the fitting curve ξ̅ �NC/
NH

1/2. The off state is defined as the bias region |Vch� EF| < EG/2� B, where B is the half-broadening from Figure 2b, while the on state is defined as
0.65 eV < |Vch � EF| < 0.75 eV.
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engineering of graphene nanomeshes with extremely scaled
cluster sizes and neck widths.
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