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ABSTRACT Particular strain geometry in graphene could lead to a uniform pseudomagnetic field of order 10T and might open up
interesting applications in graphene nanoelectronics. Through quantum transport calculations of realistic strained graphene flakes of
sizes of 100 nm, we examine possible means of exploiting this effect for practical electronics and valleytronics devices. First, we
found that elastic backscattering at rough edges leads to the formation of well-defined transport gaps of order 100 meV under moderate
maximum strain of 10%. Second, the application of a real magnetic field induced a separation, in space and energy, of the states
arising from different valleys, leading to a way of inducing bulk valley polarization which is insensitive to short-range scattering.
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The isolation of single layer graphene and the possibility of
controlling the electronic carrier density1-3 have led to a
large research effort, because of the novel fundamental

featuresexhibitedbygrapheneandalso itspossibleapplications.4,5

Graphene is a two-dimensional membrane whose electronic
properties can be controlled by applying a gate voltage. It can be
shownthat theelasticdeformationsof themembranemodify the
electronic properties, as they play the role of an effective gauge
field,4,6,7 openinganewwayof tailoring theelectronicproperties.
Strains of at least 10% can be induced in graphene without
damagingappreciably its structure.8 Suspendedgraphenesamples
show long-range deformations on scales of hundreds of nano-
meters,9-11 and strains can be induced in graphene samples by
different techniques.12-14

Strains can be expected to arise naturally in suspended
samples.15 Ithasbeenshownthatauniformlyvaryingstrain leads
to a gauge potential which generates an effective constant mag-
netic field16,17 (time reversal symmetry implies that the field has
opposite signs in the two valleys). The field due to strains can
interfere inmanywayswithrealmagneticfields.18 Otherschemes
to use strains19 to tune the electronic properties have also been
proposed. Strains can possibly be manipulated efficiently in
samples with good adhesion to the substrate, such as graphene
layersgrownepitaxiallyonSiC.Hence, theproposedeffects in this
paper could be tested experimentally.

As discussed in ref 17, an effective constant magnetic field
arises fromstrainsvaryingat a constant rate.Wediscusshere the
electronicpropertiesofgrapheneflakesunder thecombinedeffect
of strains, magnetic fields, and disorder. We use the setup pro-
posed in ref 17 as a way of inducing an almost constant effective

magneticfield.Themodelandmethodofcalculationarediscussed
in the next section. Then, we present the main results. The last
section discusses the main conclusions of our work.

The Model. A strain distribution, uij, leads to the effective
gauge field6,7,16

where � ≈ ∂ log(t)/∂ log(a)|a)a0 ≈ 2-3, a0 ≈ 1.4 Å is the lattice
constant, t ≈ 3 eV is the nearest neighbor coupling energy,
and c is a dimensionless constant of order unity. The main
axes of the graphene lattice in eq 1 have been chosen so
that the x axis coincides with a zigzag direction. We assume
that the distortions have been induced by bending a flake
in the way discussed in ref 17

where R is the bending radius of the deformation applied to
the flake; see Figure 1a. This would translate to a pseudo-
magnetic field strength of Bs ) c�/a0R ≡ ΩW/R, where Ω is
to be determined numerically.

To compute the transport properties, we adopt a nearest
neighbor hopping between π orbitals in the honeycomb
lattice20
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Ã ) c�
a0

(uxx - uyy

-2uxy
) (1)

(ux, uy) ) (xy
R

,- x2

2R) (2)

H ) ∑
ij

[t0(1 + �
δdij

a0
)] exp(ep∫i

j
A · dl)ai

†aj (3)

pubs.acs.org/NanoLett

© 2010 American Chemical Society 3551 DOI: 10.1021/nl1018063 | Nano Lett. 2010, 10, 3551–3554



where δdij is the change in bond length and A is the real
gauge field, whose effect is incorporated as a Peierls phase.
We assumed t0 ) 3 eV and � ) 2. Semi-infinite leads are
assumed for the left and right boundaries. The numerical
methods that we had employed to compute the transmission
function T is the recursive green function21-23 and the
renormalization method.24 The Landauer formula then gives
us the zero temperature conductance, i.e., 2e2/hT.25 Details
of the implementation had already been documented
elsewhere.26,27

We consider square graphene flakes with dimensions W
) L ) 100 nm where the origin for the deformation in eq 2
is the center of the flake. The maximum strain exerted would
then be along the two edges, which is given by max(uxx)
≈ W/2R.

Results. We show in parts b and c of Figure 1 the
computed conductance as a function of R/W and energy for
zigzag and armchair edge ribbons, respectively. Clean quan-
tum Hall plateaus are observed for the zigzag ribbons with
filling factors given by v ) 2, 6, 10, ... ) 4n + 2, exactly
mimicking the conventional quantum Hall case. Knowing
that the first excited Landau energy ε1 ) vF(2pBe)1/2 in the
conventional quantum Hall case, we can estimate numeri-
cally the effective magnetic field induced by a deformation
characterized by the ratio W/R as for Bs ) ΩW/R with Ω ≈
45T, in good agreement with the estimates in refs 16
and 17.

The effects on the electronic states of a uniaxial strain,
uxx(x), like the one studied here, depend strongly on the
orientation of the lattice with respect to the direction of
the strains. When the y axis coincides with an armchair
direction, a gauge field along the x direction is generated,
Ax(y), and an effective magnetic field ensues (see for
example a simpler case of a one-dimensional ripple in ref
28). On the other hand, when the y axis is along a zigzag
direction, the gauge field due to the uniaxial strain can
be written as Ay(y). This gauge field does not induce an
effective magnetic field and leaves the electronic spec-
trum unchanged. The results in Figure 1 are in agreement
with this analysis. Hereafter, we shall only consider zigzag
ribbons with strain geometry R/W ) 5, which yields Bs ≈
9T.

Unlike the case in the quantum Hall effect, the edge
states are not protected by time reversal symmetry, and
they can be affected by elastic backscattering. Parts a and
c of Figure 2 plot the nonequilibrium current density at
Fermi energy corresponding to ν ) 2 and ν ) 10. For ν )
2, strains induce two edge modes, which propagate in
opposite directions. Time reversal symmetry implies that
these two modes are localized at the same edge, in
agreement with the numerical results. In general, the
compressive strained edge would acquire two more modes
than the other edge. The zigzag boundary conditions used
here do not mix the K and K′ valleys, leading to a clear
distinction of the edge modes.

The zigzag boundary condition (where a given edge can
be characterized by a majority sublattice) is generic for
graphene edges,29 except the armchair one. The edge

FIGURE 1. (a) Sketch of an example strain geometry with a maxi-
mum strain of 50%. Note that the actual size of the flake used in
this paper is much larger, i.e., L ) W ) 100 nm, and with much
smaller maximum strain (see text). Conductance as a function of
Fermi energy and strained geometry characterized by R/W for (b)
zigzag and (c) armchair edge ribbons, in the absence of real magnetic
field and edge disorder. The dimension of the graphene flake is L )
W ) 100 nm.

FIGURE 2. The nonequilibrium current density sign(jx) × |j(x, y)|
intensity plot for a 100 × 100 nm graphene flake under a strain of
R/W ) 5 (equivalent to Bs ≈ 9T) at εF corresponding to filling factor
ν ) 2 (a) without edge disorder and (b) with edge disorder. Similar
plots in (c, d) but for filling factor ν ) 10 instead. The color scale
indicated is normalized with respect to max(|j(x,y)|). Red/blue color
indicates current flowing to the right/left of the device. (e and f) The
counterpropagating edge states at v ) 2 and v ) 10, respectively.
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modes induced by strains have a characteristic width of
order of the effective magnetic length associated to the
strain field

ls ≈ √(a0L)/(�ū)

where L is a typical length which describes the variation of
the strain and ū is the average strain. Typically ls . a0, and
the continuum zigzag boundary conditions discussed in ref
29 describe well the numerical results.

The physical origin of the edge currents is explained in
parts a and b of Figure 3, which plots the corresponding
energy dispersion along the transport direction for the case
with a real and pseudomagnetic field, respectively. For the
latter, one makes the observation that for a given current
direction, the edge states on the two edges are valley
polarized, i.e., quantum valley Hall effect. This effect is
analogous to the quantum spin Hall effect.30 In both cases,
the net pseudogauge field of the system is zero, but finite
and opposite for each spin/valley. However, in this case,
short-range scattering would couple the valleys. Since the
counterpropagating edge states residing along a particular
edge belong to different valleys, intervalley processes lead
to backscattering. In the presence of edge disorder, substan-
tial backscattering can occur and Anderson localization spots
can be observed (see Figure 2b). A more quantitative evalu-
ation of the impact of edge roughness follows.

The edge roughness is generated using a procedure
outlined in ref 27. The roughness morphologies generated
were assumed to have an autocorrelation length of 2 nm and
a root-mean-square roughness ∆, where 0.2 Å e ∆ e 5 Å is
used as the disorder parameter in this work. Figure 4a plots
the energy-resolved conductance for various values of ∆.
Disorder at the edges opens a transport gap εg, and the flake

shows insulating behavior near the neutrality point. When
the disorder increases, εg saturates to a value of the order of
2 times the energy of the first effective Landau level,
modulated by the strain via εg ∝ (W/R)1/2. In the nanoribbon
counterpart, it was found to behave as εg ∝ 1/W.31 The
pseudomagnetic length is given by ls ∝ (R/W)1/2, which
approximates the spatial extent of the ground state Landau
wave function from the edges, can be of order of 10 nm at
moderate strain of W/R ) 5. The estimates in the Supporting
Information in ref 16 suggest a localization length for the
edge modes, due to intervalley scattering of order � ≈
(ls/a0)2nv

-1, where nv is the one-dimensional density of
vacancies at the edges. For a rough edge on atomic scales,
nv ∼ 10 nm-1, so that � ∼ W, and localization can be
expected for the strains and dimensions used here.

Next, we examine the interplay between real and pseudo-
magnetic field. Their combined contribution is such that the
valleys have an effective field of Ã ( A. Figure 5a shows the
conductance for varying B field but at Bs ≈ 9T. Splitting of
the conductance plateaus steps from 4n + 2 into 2n + 2 can
be observed, with decreasing plateau width for n ) 0. An
interesting situation arises when B ) Bs, where Figure 3c
illustrates the corresponding energy dispersion. The cancel-
lation of the field for the K′ valley leads to a recovery of the
bulk band dispersion. Hence, the conductance goes as ≈cεf

+ 2, where the latter contribution comes from the K valley.
This provides a feasible avenue for producing valley polar-
ized electrons, since it does not depend on good quality at
the edges like in the previous proposal.32 We note that, in
general, these bulk states are not protected by time reversal
symmetry. Figure 5b plots the current density at the condi-
tion B ) Bs ) 9T, with/without edge disorder. Their respec-
tive conductances (in 2e2/h) are 5 and 3.3, respectively. At
larger magnetic field, say B ) 13T > Bs ) 9T, edge states
emerge and now the conductance remains at 3 with/without
edge disorder. Figure 5c shows the respective current den-
sity plots.

FIGURE 3. Plot of typical energy dispersion as a function of mo-
mentum along the transport direction for the case of (a) real
magnetic field B ) 9T, (b) pseudomagnetic field Bs ) 9T, and (c) Bs

) B ) 9T. The symbols X and O denote the sign of the field, while
red/black color denotes whether the chiral edge states are propagat-
ing along the top/bottom edge. The highlighted bulk states in (c) are
nonchiral, i.e., it has an effective zero magnetic field.

FIGURE 4. Zero temperature conductance as a function of (a) Fermi
energy εf and (b) edge disorder ∆, for different values of ∆ and εf,
respectively. A zigzag ribbon is assumed, and the strain geometry
employed corresponds to W/R ) 5. The solid line for (a) is for the
case of zero disorder.
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Conclusions. We have analyzed in detail the electronic
properties of graphene flakes under the combined effect of
strains, magnetic fields, and disorder. We analyze numeri-
cally the electronic spectrum of flakes of realistic sizes, ∼100
nm with strain distributions that generate a constant effec-
tive magnetic field. Strains induce gaps in the bulk spectrum
and propagating modes along the edges. The edge modes
are valley polarized and strongly suppressed at armchair
edges, where the boundary condition strongly mixes the
different valleys.33 The two lowest edge modes are localized
at the same edge. In general, the number of edge modes
differs by 2 between the two edges.

Possible device applications are addressed. First, disorder
leads to backscattering, which is more significant for the
lowest edge (see Figure 4b). We find a clear transport gap
near the Dirac energy, leading to new ways of developing
graphene transistors. Second, the interference between real
magnetic fields and the gauge field due to strains lead to the
separation in space and in energy of the states from the two
valleys. Because of this separation, the valley polarization
achieved in this way is not much affected by intervalley
scattering, opening a way of obtaining valley polarized bulk
currents.
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(7) Mañes, J. L. Phys. Rev. B 2007, 76, No. 045430.
(8) Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. Science 2008, 321, 385.
(9) Bunch, J. S.; van der Zande, A. M.; Verbridge, S. S.; Frank, I. W.;

Tanenbaum, D. M.; Parpia, J. M.; Craighead, H. G.; McEuen, P. L.
Science 2007, 315, 5811.

(10) Booth, T. J.; Blake, P.; Nair, R. R.; Jiang, D.; Hill, E. W.; Bangert,
U.; Bleloch, A.; Gass, M.; Novoselov, K. S.; Katsnelson, M. I.; Geim,
A. K. Nano Lett. 2008, 8, 2442.

(11) Bao, W.; Miao, F.; Chen, Z.; Zhang, H.; Jang, W.; Dames, C.; Lau,
C. N. Nat. Nanotechnol. 2009, 4, 562.

(12) Mohiuddin, T. M.; Lombardo, A.; Nair, R. R.; Bonetti, A.; Savini,
G.; Jalil, R.; Bonini, N.; Basko, D. M.; Galiotis, C.; Marzari, N.; et
al. Phys. Rev. B 2009, 79, 205433.

(13) Huang, M.; Yan, H.; Chen, C.; Song, D.; Heinz, T. F.; Hone, J. Proc.
Natl. Acad. Sci. U.S.A. 2009, 106, 7504.

(14) Proctor, J. E.; Gregoryanz, E.; Novoselov, K. S.; Lotya, M.;
Coleman, J. N.; Halsall, M. P. Phys. Rev. B 2009, 80, No. 073408.

(15) Fogler, M. M.; Guinea, F.; Katsnelson, M. I. Phys. Rev. Lett. 2008,
101, 226804.

(16) Guinea, F.; Katsnelson, M. I.; Geim, A. K. Nat. Phys. 2010, 6, 30.
(17) Guinea, F.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S. Phys.

Rev. B 2010, 81, No. 035408.
(18) Prada, E. San-Jose, P. León, G. Fogler, and M. M. Guinea F. arXiv:

0906.5267, 2009.
(19) Pereira, V. M.; Castro Neto, A. H. Phys. Rev. Lett. 2009, 103,

046801.
(20) Wallace, P. R. Phys. Rev. 1947, 71, 622.
(21) Datta, S. Electronic Transport in Mesoscopic System; Cambridge

University Press: Cambridge, 1997.
(22) Nonoyama, S.; Oguri, A. Phys. Rev. B 1998, 57, 8797.
(23) Anantram, M. P.; Lundstrom, M. S.; Nikonov, D. E. Proc. IEEE

2008, 96, 1511.
(24) Grosso, G.; Moroni, S.; Parravicini, G. P. Phys. Rev. B 1989, 40, 328.
(25) Landauer, R. Philos. Mag. 1970, 21, 863.
(26) Low, T.; Appenzeller, J. Phys. Rev. B 2009, 80, 155406.
(27) Low, T. Phys. Rev. B 2009, 80, 205423.
(28) Guinea, F.; Katsnelson, M. I.; Vozmediano, M. A. H. Phys. Rev. B

2008, 77, No. 075422.
(29) Akhmerov, A. R.; Beenakker, C. W. J. Phys. Rev. B 2008, 77, No.

085423.
(30) Kane, C. L.; Mele, E. J. Phys. Rev. Lett. 2005, 95, 226801.
(31) Mucciolo, E. R.; Neto, A. H. C.; Lewenkopf, C. H. Phys. Rev. B

2009, 79, No. 075407.
(32) Rycerz, A.; Tworzydlo, J.; Beenakker, C. W. J. Nat. Phys. 2007, 3,

172.
(33) Brey, L.; Fertig, H. A. Phys. Rev. B 2006, 73, 235411.

FIGURE 5. (a) Conductance as a function of real magnetic field and
Fermi energy, calculated for nondisordered zigzag ribbon with a
strain geometry corresponding to W/R ) 5, which is equivalent to
Bs ≈ 9T. (b) Current density at εf ) 0.1eV for the condition B ) Bs )
9T, for perfect edge (top) and disorder edges (bottom). Similar plots
for (c), except now for the condition of B ) 13T and Bs ) 9T. The
color scheme employed is the same as that used in Figure 2.
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