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Abstract—We use the nonequilibrium Green function method in
the ballistic limit to provide a quantitative description of the con-
ductance of graphene p-n junctions—an important building block
for graphene electronics devices. In this paper, recent experiments
on graphene junctions are explained by a ballistic transport model,
but only if the finite junction transition width D,, is accounted for.
In particular, the experimentally observed anomalous increase in
the resistance asymmetry between n-n and n-p junctions under
low source/drain charge density conditions is also quantitatively
captured by our model. In light of the requirement for sharp junc-
tions in applications such as electron focusing, we also examine the
p-n junction conductance in the regime where D,, is small and
find that wave-function mismatch (so-called pseudospin) plays a
major role in sharp p-n junctions.

Index Terms—Conductance asymmetry,
equilibrium green function, p-n junction.

graphene, non-

I. INTRODUCTION

RAPHENE is a 2-D sheet of carbon atoms arranged in
a honeycomb lattice with unique electronic properties
due to its linear energy dispersion, with zero bandgap, and
a spinor-like two-component wave function [1]-[3]. These
characteristics give rise to interesting transport phenomena
such as the absence of backscattering [4], anomalies in the
quantum Hall regime [2], [5], weak antilocalization [6], [7], so-
called Klein tunneling [8], and electron focusing analogous to
optical effects that occur in negative refractive index materials
[9]. As such, one expects that graphene p-n junctions should
differ from traditional semiconductor p-n junctions. The p-n
junction is a basic building block for electronic devices. Devel-
oping a quantitative understanding of graphene p-n junctions
is an important step on the way to realizing novel devices
such as graphene lenses [9], [10] and filters [8]. Our goal in
this paper is to demonstrate that the nonequilibrium Green
function (NEGF) approach [11] quantitatively explains recent
experiments on graphene p-n junctions, including the critical
role of the junction depletion width and the increased in the
odd resistance observed under low source/drain charge density
conditions [12].
Electron transmission across a graphene p-n junction occurs
by interband tunneling. A theoretical treatment for an abrupt

Manuscript received November 19, 2008; revised January 26, 2009. First
published April 28, 2009; current version published May 20, 2009. The review
of this paper was arranged by Editor C.-Y. Lu.

The authors are with the Network for Computational Nanotechnology,
Birck Nanotechnology Center, School of Electrical and Computer Engineer-
ing, Purdue University, West Lafayette, IN 47906 USA (e-mail: tonyaslow @
gmail.com).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TED.2009.2017646

graphene p-n junction predicts that for a symmetric p-n junction
(i.e., one in which the hole and electron densities on each side
of the junction are equal), the transmission probability is given
by cos? §, where 6 is the angle between the electron’s wave
vector and the normal to the junction interface [8]. Realistic
p-n junctions will have a transition region of finite width. For
a smooth junction transition region of width D,,, the Wentzel
Kramers Brillouin (WKB) approximation can be used to show
that the transmission probability for a symmetric p-n junction
is e~mks Dw sin(6)/2 [13], where k; is the Fermi wave vector.
Whether the transition region is abrupt or graded, the trans-
mission is perfect when 6§ = 0 (i.e., commonly referred to as
Klein tunneling), but the transmission decreases as 6 and D,,
increase. This angular selectivity for electron transport across
the p-n junction serves as a filter, allowing states with || < oy
(where oy is the spread of the angular distribution) to pass
through more effectively. The quantity 20 can be viewed as
the bandwidth of this filter and is what gives rise to the larger
resistance of a p-n junction as compared to a uniform graphene
sheet.

Several research groups have recently fabricated graphene
p-n-p devices by using electrostatic gates to create p and n re-
gions [12], [14]-[16]. The typical setup consists of a back gate
and top gate, which are used to control the amount of charge
density in the source/drain and channel regions, respectively.
For example, the back gates can be set to produce n-type source
and drain regions, and the top gate can be biased to change the
middle (channel) region from n to p type. The asymmetry in
the device’s source-to-drain resistance as a function of top-gate
voltage has been experimentally observed [12]. The amount of
this resistance asymmetry is a measure of the intrinsic property
of the p-n junction, provided that the mean free path of carriers
is larger than the transition length of the junction. One can theo-
retically compute the junction’s transition length accounting for
nonlinear screening effects [17]. For recent experiments [12],
typical transition lengths for p-n junction are less than 100 nm.
Recent experiments indicate that the carrier’s mean free path
is about 100 nm under low temperature and moderate carrier
density conditions of 102 cm~2 [18]. In addition, there is ex-
perimental evidence of Fabry—Perot interference effects within
the channel region in devices with channel lengths less than 100
nm [19], [20], evidently a signature of phase coherent transport.
Therefore, a ballistic transport model is sufficient for the study
of the experimental p-n junction devices reported in [12].

In this paper, we present a quantitative study of the near-
equilibrium IV characteristics of graphene p-n junctions. In
particular, we present a systematic study of the impact of the
junction transition width D,, on the transport properties of
graphene p-n junctions. We use the NEGF approach with a

0018-9383/$25.00 © 2009 IEEE

Authorized licensed use limited to: Purdue University. Downloaded on July 17, 2009 at 16:27 from |IEEE Xplore. Restrictions apply.



LOW et al.: CONDUCTANCE ASYMMETRY OF GRAPHENE p-n JUNCTION

1293

y E; (eV)
S o o 29
N e (o)} (o]

Fermi Energy E;
S & o
= N O

-0.6

-0.8
08 0.6 04 02 00 -0.2 -04 -0.6 -0.8
Built-in Potential V,,, (eV)

Fig. 1.
using (1), and (d) plot of opn as a function of Vpy at 'y = 0.3 eV using (1).

nearest neighbor tight-binding description of graphene. This
method allows us to accurately simulate the p-n junction con-
ductance for both abrupt and graded junctions under different
bias conditions. The value of D,, is not known a priori because
it depends on charge screening and the gate potential as gov-
erned by the Poisson equation. In this paper, we employ the
analytical screening model derived in [17]. Our numerical result
based on the assumption of ballistic transport is in reasonable
quantitative agreement with the experiments reported in [12].
As has been noted previously, we also found that the conduc-
tance follows an inverse square root dependence on D,, when
D, is large [13], but we find that strong deviations from this
trend occur when D,, is sufficiently small. Understanding this
regime of operation has practical importance because devices
based on the electron focusing property of graphene p-n junc-
tions, i.e., graphene lenses [9], [10] and filters [8], are expected
to operate in this regime.

II. GRAPHENE p-n JUNCTIONS AND
RESISTANCE ASYMMETRY

Before describing the simulation method used in this pa-
per, we define some terms that will be used in subsequent
discussions, present a simple picture of the conductance of a
graphene n-p-n or p-n-p junction, and identify the issues that
will be addressed in the numerical study. Fig. 1(a) and (b) shows
depictions of the energy band diagram for the experiment,
which shows the location of the intersection of the conduction
and valence bands (the so-called Dirac point) versus position.
A back gate controls the location of the Fermi level Ey in
the source/drain regions. For Iy > 0 (above the Dirac point),
there is an increase of electrons with respect to £y = 0, the
electron density is greater than zero, n; > 0, and the material
is n-type. If the back gate is biased negatively so that £y < 0,
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Energy band diagram of graphene (a) n-p-n and (b) n-n-n devices. (c) Intensity plot of the p-n junction conductance opyn as a function of E¢ and Vpn

then n; < 0 and the source/drain regions are p-type. Similarly,
the channel (middle) region can be biased by a top gate to be
either p-type (ng < 0) or n-type (ng > 0). The top gate also
controls the built-in potential V},,, of the n-p/n-n junction. Thus,
appropriate top and bottom gate voltages can produce n-p-n,
n-n-n, p-n-p, or p-p-p structures. Near-equilibrium conditions
are assumed so that the source and drain Fermi energies are the
same. In this paper, we shall assume that the channel length is
greater than the carrier’s phase coherent length, allowing us to
ignore wave interference effects within the channel. Therefore,
we can reduce the problem by only studying the transport across
a single p-n junction.

As a first step to understanding the near-equilibrium con-
ductance of a p-n junction, i.e., opy (S/wm), as a function
of V,n and E conditions, we adopt a simple density-of-states
argument in the Landauer picture. In this simple analysis, op,
can be written in the following form:

2e? Mo M

O'pn = ﬂmm( 1, 2) (1)
where M /2 is the number of modes in the source/channel,
respectively, and W is the device width. Equation (1) mimics
the matching of transverse momentum between the source and
channel in a ballistic manner, such that the current will be
limited by the region with the smaller number of modes. In this
simple exercise, we assume a zero temperature treatment, SO
that M /5 refers to the number of modes at their respective Ey.
Fig. 1(c) shows an intensity plot of o}, computed using
(1) versus Vy,, and Ey. The dark-blue lines are regions of
low current. The horizontal line occurs when the source Fermi
level is at the Dirac point. Since n; = 0, so no current flows.
The diagonal black line described by V},, = Ef occurs when
the channel region is adjusted to place the Dirac point in the
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channel at the Fermi energy of the carrier. Since no = 0 along
this diagonal line, no current flows. Very similar features are
observed experimentally [12], [19]. Looking more closely, we
can plot oy, versus Vpy, at a fixed Ey = 0.3 eV. As shown
in Fig. 1(d), the conductance versus V},, is symmetrical about
Von = Ey. In experiments, an asymmetry about V,,,, = Ey is
observed [12], [19]. This asymmetry cannot be captured by
simple density-of-states argument because its origin is quan-
tum mechanical in nature, i.e., quantum tunneling and wave-
function mismatch. Our goal in this paper is to explain the role
that quantum tunneling and wave-function mismatch played
in the observed asymmetry and then quantitatively explain the
magnitude of the asymmetry observed in experiments.

III. SIMULATION METHODS

In this section, we briefly outline the NEGF formalism
for quantum ballistic transport and describe its application
to nonequilibrium transport [11], [21] through graphene p-n
junctions.! The central quantity in the theory is the retarded
Green’s function

Gle, ky)=[(e + i0)I — H(ky) — U— (e, k)=, (e, k)]
)

where ¢ is an infinitesimal quantity in the channel region but is
adjusted to provide nonvanishing density-of-states at the Dirac
point for the contact regions [22], [23]. The Hamiltonian is
formulated by treating only the nearest neighbor interaction
between the p, orbitals [24], [25]. Assuming that the device
width is large and homogeneous along the direction transverse
to current flow, we can write the Hamiltonian as

a B
Bl a B
H = 6; o - 3)

where «a, 31, and (35 are all 2 x 2 matrices given by

0 ¢t 0 0 0 0
e [2 8] selg ] el 8]
where t. is the nearest neighbor orbital coupling energy and
ty =1tc+ t.etfvao  The lattice parameter ag = v3ae., where
aee = 1.44 A, is the c—c bond distance. The quantum number k,
is the quantized transverse momentum, to be elaborated upon
in the next paragraph. The contacts’ self-energies %; (e, ky)
are obtained by solving Y; = 7; gﬂiT , where g; is the surface
Green function associated with the contact. We should mention
that for armchair ribbon, an analytical closed-form solution for
g; is possible, since the wave function is known, both in the
tight-binding [26] and Dirac formalisms [27]. However, in our
numerical treatment, we had employed a nonnegligible § in the
contact regions, which prevents us from using the analytical
closed-form solution for g;. Therefore, g; is computed numer-

'Note that we are using the NEGF method in the ballistic limit where it is
equivalent to the Landauer approach, as explained in [11, ch. 8].
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Fig. 2. Total transmission as a function of energy calculated for (a) 55-layer
(W & 13.7 nm) metallic armchair ribbons and (b) 32-layer (W ~ 8 nm)
semiconducting armchair ribbons transporting across a p-n junction with a
built-in potential of Vpn = 0.8 €V. In both cases, we compared the method
outlined in our paper (solid line) with that of real-space tight-binding approach
(open symbols).

ically with an iterative scheme proposed in [28]. Finally, the
current through contact ¢ can then be computed using

Ii(e) = z—hq Ztrace [S"(e)A(e) = Ti()G™(e)]  (5)
ky

where A =i(G — G') is the local density-of-states, " =
fo(e)T';(¢€) is the filling function (analogous to the in-scattering
function for incoherent case), fo(e€) is the Fermi function of
the contacts, and T'; = i(3; — ZI) is the contact broadening
factor. In (5), G™(¢) is the electron correlation function given by
G(Zi" 4+ XIM)GT. G and G™ are computed using the recursive
Green function algorithm through Dyson’s equation [29] and
making use of the fact that the Hamiltonian is tridiagonal in
nature.

By assuming an armchair ribbon configuration, imposing
a box-boundary condition, and solving the Dirac equation,
Brey and Fertig showed [27] that the transverse momentum is
quantized according to

2
ky B <3a0 +
for all integer n and W is the width of the device. The last
term accounts for the momentum of the Dirac points, K and
K', where the upper/lower sign is used when n is even/odd,
respectively.

Treating the problem in terms of transverse modes greatly
reduces the computation burden while still providing accurate
results when the potential in the transverse direction is uniform
[30]—-[32]. This approach essentially translates a 2-D real-space
transport problem into m decoupled 1-D real-space transport
problem, where m is the number of relevant transverse modes.
In the limit of large device width W, we have m o« We. Fig. 2
compares this mode-space method with 2-D real-space NEGF
calculations for a 55-layer metallic graphene ribbon and a
32-layer semiconducting ribbon. “n-layer” refers to the number
of layers of carbon atoms along the width direction, where
W = nay. In both cases, the two methods give nearly identical

(6

3ag

2mn 2
2W + ag
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Simulation results from NEGF calculation of an abrupt graphene p-n junction with device width of 0.5 pm at temperature of 4 K. (a) Intensity plot of

conductance as a function of built-in potential Vpn and Fermi energy Ef (see inset of Fig. 2(b) for definitions). Blue/red denotes low/high intensity, respectively.
[(b) and (c)] Conductance curves as a function of Vpy (at Ey = 0.3 €V) and Ey (at Vpn = 0.6 V), respectively. The dashed lines indicate the estimated
conductance from a simple density-of-states argument (see text) for each case. In each case, the conductances of an unbiased graphene (onn) and a symmetric
p-n junction (opn) are indicated. (d) Constant energy contour and its pseudospin alignment at each side of the junction for an unbiased graphene and a symmetric

p-n junction.

energy-resolved transmission functions for transport across a
p-n junction. The mode-space approach has a computational
burden that scales linearly with device width, which makes it
possible to study typical experimental n-p-n-type structures.

IV. RESULTS

As discussed in Section I, the experimental setup [12], [14]—
[16] uses a back gate and top gate to control the source/drain
contact Fermi energy E; and the potential difference across
the p-n junction V},,,, respectively. The electron densities are 1q
in the source/drain regions and ns in the channel; a negative
value can be interpreted as a positive hole density. In this
paper, we assume that the applied source—drain bias is small,
in accordance with experiments [12].

We shall also assume that the channel length is greater
than the carrier’s phase coherent length, allowing us to ig-
nore any quantum interference effects within the channel, i.e.,
Fabry—Perot effects. On this premise, the transport process
across a p-n junction on one side of the channel would not
be influenced by the presence of the p-n junction on the other
side of the channel. Hence, we shall focus only on the transport
across a single p-n junction. We begin by examining the p-n
junction’s conductance (o in units of S/um) when the junction
is abrupt, i.e., D, =~ 0.

A. Conductance for an Abrupt p-n Junction

Fig. 3(a), which shows the computed conductance as a
function of Ey and Vj,, for an abrupt p-n junction, exhibits
the features typically observed in experiments [12], [19]. The

four distinctive regimes of operations (i.e., n-n, p-p, n-p, and
p-n) are partitioned by the 'y = 0 and Ey = V,,, lines, which
correspond to conditions where either/both the contacts and
channel are at zero equilibrium charge density as previously
discussed in Section II using a simple density-of-states argu-
ment. Examining more closely, Fig. 3(b) and (c) shows the
conductance as a function of V., (Ef =0.3 eV) and E;
(Von = 0.6 eV), respectively. The red solid line is NEGF cal-
culation, while the dashed black line is calculated using (1). In
Fig. 3(b), one can clearly see the conductance asymmetry with
respect to the V},;, = E¢ point. This conductance asymmetry is
an experimentally observed phenomenon [12] which cannot be
captured by a simple density-of-states argument.

Conductance asymmetry refers to the difference in conduc-
tance between an n-p junction and its n-n counterpart. By
“counterpart,” we mean that ng for n-p junction is —ng for n-n
junction, while n; is the same for both junctions. In Fig. 3(b),
onn 1s the conductance of an unbiased graphene (i.e., V,, = 0),
while oy, is the conductance of a symmetric n-p junction (i.e.,
Von = 2Ey). Clearly, oy, > opy, a feature that is observed
experimentally and captured by our NEGF calculation. The
asymmetry is due to wave-function mismatch at the junction
interface.

Electrons in graphene have a two-component wave function,
which is often referred to as pseudospin in analogy to the two-
component wave function for spins. In the vicinity of the Dirac
point, the 2-D Hamiltonian can be written in a form of Dirac
equation [3], [4], ie., H = vs7 - ]3, where & and P are the
Pauli spin matrices and momentum operator, respectively. By
convention, the definition of pseudospin is such that its direc-
tion is parallel to the group velocity, since the group velocity
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Fig. 4. Analysis of the impact of junction width on conductance modulation of a symmetric p-n junction. (a) Energy-resolved local density-of-states (i.e.,
GXinGT) for a W = 0.5 um p-n junction device with a junction length of D,, = 50 nm and a built-in potential Vpn = 0.5 eV. This is generated for the
transverse mode with a transverse energy of €y ~ 0.075 eV, which yields an apparent “bandgap” of ~0.15 eV as shown in the plot. € = 0 is set at the Dirac point
of the source. (b) Intensity plot of the transmission as a function of incident angle 6 and D,,. The device is a symmetric p-n junction with Vpn = 2E, where

E = 0.3 eV. An illustration of the setup is shown in the inset. (c) Fraction of conductance contribution due to wave-function mismatch, i.e., ol‘g’lfm / Opn, for a

symmetric p-n junction [see (7)].

operator is defined as Ug = VpH = vyd. Fig. 3(d) shows
an illustration of the constant energy contour for an unbiased
n-n graphene and symmetric p-n junction case. The arrows
simultaneously represent the group velocity and pseudospin,
which point inwards/outwards for the valence/conduction band,
respectively. For the n-n case, the velocity vectors are similarly
aligned for each side of the junction. For the p-n case, Ug
changes sign across the junction. Analogous to spin, the wave
function for the n and p regions can be expressed as |¥,,) =
(1,e)/v2 and |¥,,) = (1,€%+™)/1/2, respectively (where
0 = tan~'(k,/ky)). The transmission probability across the
junction for a particular mode can then be written simply
as |(¥,|U,)% For k, =0, the wave function is perfectly
matched, i.e., |¥,,) = |¥,), so transmission is unity (i.e., Klein
tunneling [8]). Through theoretical analysis, we derive op, =
2/30n, where the factor of 2/3 is due to Xy, (1 — kz/k?) Simi-
larly, it can also be shown that the conductance when V,,, — oo
would approach the asymptotic value of = (1/2 + 7/8)opn.
Rigorous NEGF calculations faithfully reproduce these features
as shown in Fig. 3(b).

In summary, the conductance of an abrupt p-n junction can
be understood as being controlled by the region in which the
number of conducting channels is smallest. The wave-function
mismatch reduces the current by a factor of 2/3 in a symmetric
n-p junction compared to an unbiased graphene. These features
are captured by NEGF simulation, but realistic junctions have
a finite transition width D,, which, as we emphasize in the
following section, plays an important role.

B. Effect of Junction Width on Symmetric p-n Junction
Conductance

For realistic n-p junctions, the transition length across which
the charge density changes monotonically from n-type to p-
type is finite. The width of the junction transition region has
a strong influence on the conductance of the junction. To
understand these effects, it is instructive to consider each of
the transverse modes individually. According to (6), for a wide
graphene sheet, the transverse momentum with respect to the
Dirac point is given by k, ~ nm/W, where n is an integer.
We can view each mode as a ray with an angle of incidence

on the junction 6 = tan’l[ky(k]% — k2)~95]. Fig. 4(a) shows
the energy-resolved local density-of-states (G- GT) for a p-n
junction with a transition length of D,, = 50 nm and a built-in
potential V,, = 0.5 eV. Only one transverse mode with a trans-
verse energy of hvsk, ~ 0.075 eV is considered. The dark-
blue region corresponds to a low density-of-states. Because
of the quantization of transverse wave vectors, an apparent
bandgap of 0.15 eV is observed. Therefore, electrons at Fermi
energy of Iy < Vp,, will have to quantum mechanically tunnel
through this k,-dependent bandgap when moving from one
side of the junction to the other. This problem is analogous to
the classic band-to-band tunneling problem in direct bandgap
semiconductors [33].

Based on this physical picture, Cheianov and Falko [13]
worked out the WKB tunneling probability for a given trans-
verse mode to be e~ ™ Dwsin®(0)/2 Thjg tunneling expression
is derived by assuming a symmetric p-n junction. In similar
spirit to classic band-to-band tunneling treatment, the electric
field across the p-n junction is assumed to be linear, given by
2E;/D,, in this paper. Realistically, the potential energy land-
scape at the beginning/end of the p-n junction would exhibit
a more quadratic profile. However, only the details of the po-
tential energy landscape within the tunneling region contribute
to the WKB tunneling probability. In this linear electric field
approximation, the tunneling distance is simply given by D; =
2hwyky Dy, /Von. Fig. 4(b) shows the NEGF-computed electron
transmission as a function of incident angle € and transition
length D,, for a symmetric p-n junction with E; = 0.3 eV.
As expected, increasing D,, results in a decreased angular
bandwidth (20¢) of the allowable transverse modes that can be
transmitted across the p-n junction, which subsequently leads
to a decreased p-n junction conductance. Based on the WKB
tunneling formula, it can be shown that o, o< \/kf/D,,. This
leads to the question of whether the junction rectification metric
can be improved by using a larger D,,. Unfortunately, oy /0pn,
which depends on D,, in an inverse square root manner, yields
only a factor of 10 with D,, ~ 100 nm at a typical £y of 0.3 eV.

Device concepts based on the electron focusing property
of p-n junction, i.e., graphene lenses [9], [10] and filters [8],
operate best in a symmetric p-n junction. These devices operate
in a regime where oy has to be as large as possible so as to
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reconstruct back a point source image on the other side of the
p-n junction. This implies that D,, has to be sufficiently small
to enhance tunneling at high incident angle. By accounting for
both the wave-function mismatch and tunneling factor in the
following manner, T'(0) = cos?(#)e~ ks Pwsin®()/2 e found
that we are able to reproduce the result of NEGF for arbitrary
D,, (not shown). By integrating 7'(6) over all transverse modes,
we can arrive at a more general result for the conductance of a
symmetric p-n junction [in units of 2(e?/h)]

Vk 2
o = et (\ADuky) + -
V2
_ Werf (\/’wakf) @)

where v = /2. The first term in (7) is due to the tunneling
factor. The last two terms are corrections due to wave-function
mismatch. Equation (7) can be written as op,, = opi™ + O’B’ém.
Fig. 4(c) shows an intensity plot of U;)Vrfm /opn as a function of
E¢ and D,,. The blue region represents Uf,u“ > agvrfm, while

—yDuwky

e

n
the red regions indicate ag‘rﬂ“ < a;;fm. Evidently, conductance
modulation is predominantly due to wave-function mismatch
only when vD,, k¢ < 1, which suggests that for the tunneling
component not to limit electron focusing applications, D,, <
5 nm is required.

In summary, the conductance asymmetry of a graphene
p-n junction is due to two quantum mechanical processes, i.e.,
wave-function mismatch and the need to tunnel through an
apparent bandgap induced by the quantization of transverse
momentum. Increasing D,, results in a decreased angular band-
width (20¢) of the allowable transverse modes that can be
transmitted across the p-n junction. This leads to a decreased
p-n junction conductance and would eventually result in a larger
magnitude of odd resistance Roq44.

C. 0dd Resistance and Comparison With Experiments

Finally, we shall examine the odd resistance R,qq of p-n
junction devices and compare our NEGF result with the experi-
mental data reported in [12]. Typically, the resistance asymme-
try is characterized by analyzing the resistance of the device
as a function of V, at a given Ey. A quantity known as

odd resistance R,gqq can be obtained by taking the difference
between the resistance of the n-p-n and its n-n-n counterpart
device, i.e., Rodd = 1/2[Rypn — Runn], where the channel hole
density for n-p-n is equal to the electron density for n-n-n.
Fig. 1(a) and (b) shows the energy band of a typical n-p-n device
and its n-n-n counterpart. R,qq for a long-channel device
depends only on the odd resistance contribution from individual
p-n junctions. Essentially, R,qq simply reduces to R,qq =
[1/0np — 1/0n,] obtained by a simple sum of the resistance
of the two adjacent p-n junctions. As a first step, we shall
investigate the contributions of wave-function mismatch and
quantum mechanical tunneling processes to the magnitude of
Roqa. Fig. 5(a) shows the theoretical p-n junction resistance as
a function of V,, at 'y = 0.1845 eV under different D,, con-
ditions. The odd resistance contribution due to wave-function
mismatch alone (i.e., D,, = 0) does not adequately account for
the R,qq observed in experiments as shown in Fig. 5(b). In fact,
it only accounts for 10% of R,qq. Accounting for finite D,, is
essential to match the experimental data.

In our NEGF simulation, D,, is the parameter that we need to
determine prior to our NEGF calculations. The determination of
D,, is an electrostatics problem which is sensitive to the specific
device geometry. In this paper, we used the model presented in
[17], which expresses D,, in terms of n; and no as follows:

4
(%)
ni

where o = e?/(khvy). r and T,y are the effective dielectric
constant and thickness of the oxide between the top gate and
graphene device, respectively.?

3

TOX
n2

V.
D, ~0.196 x —2% _
" wralls

®)

2We shall also briefly discuss the validity of the analytical nonlinear
screening model of (8). As discussed in [17], the accuracy of the analytical
model is dependent on the physical parameter ««. The model would yield a
possible deviation from numerical results of ~225% when o = 0.9 at the charge
neutrality point within the transition region. We emphasize that the error is
of an oscillatory nature, with the oscillation amplitude deteriorating when it
moves away from the charge neutrality point. This would serve to alleviate
the average error. On the other limit, o = 0.1 yields an excellent agreement
with the numerical result. In the set of experiments we studied in this paper,
a = 0.78 due to k =~ 4.5. Therefore, the average error is intermediate of these
two limits. However, when « is large (approaching one), one would need to also
account for electron exchange and correlation effects (see, e.g., [35]), making
the problem numerically nontractable.
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Fig. 6. Comparison of the NEGF-simulated R,qq with that of experimental
results in [12] at different Fermi energies, i.e., Ef =0.1917, 0.165, 0.1381,
and 0.1044 eV. The device width is 1.7 pm, and operating temperature is 4 K.
In the simulations, the contacts are assumed to have an energy broadening of
1 meV. The calculations assumed o = 0.78 due to a k of 4.5 [12] and an oxide
thickness of Tox = 80 nm as a fitting parameter.

Fig. 6 shows the computed R,qq at different £y conditions
as a function of ny — ny and its comparison with experimental
data. The NEGF result achieves quantitative agreement with
the experimentally observed odd resistance. In particular, the
increase in odd resistance with decreasing Ey, a puzzling
feature in the experiments [12], is captured by the simulations.
This occurs because of the increasing D,, with decreasing Ey,
i.e., smaller n; which results in an increase of p-n junction
screening length. We note the conductance oscillations at the
smallest E'y. These oscillations are likely due to interference
effects within the device channel, which are more pronounce at
Ey = 0.1 eV due to the large D,, which leads to an effectively
shorter channel length. The ‘spikes’ observed in the NEGF
simulations when R, 44 crosses zero are due to the zero density-
of-states at Dirac point. Such spikes are not observed in the ex-
periments, probably due to the presence of spatial fluctuations
(electron/hole puddles) when Ey approaches the Dirac point
[34]. By construction, our NEGF model does not account for
these electron/hole puddles.

V. CONCLUSION

In this paper, we presented a numerical study of electron
transport in graphene p-n junctions. We first presented a very
simple minimum density-of-states (or conducting channels)
model to account for the overall shape of the conductance
versus source carrier density and junction potential. Such a
simple model does not capture the resistance asymmetry ob-
served experimentally. We then use NEGF simulation to ex-
plore, in detail, the role of wave-function mismatch (also called
pseudospin) and quantum mechanical tunneling through the
junction transition region. In particular, we examined deviations
from the inverse square root dependence of o, on D,, due to
wave-function mismatch at small D,,. Finally, we compared
the simulations to a recent experiment and showed that the
numerical model is in reasonable agreement with experiments,
and explain the increase in odd resistance with decreasing
carrier density in the source. The novel features of graphene’s

IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 56, NO. 6, JUNE 2009

electronic structure lead to interesting possibilities for new
devices, and this paper shows that NEGF simulation should
provide a useful tool to explore and assess device concepts.
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