Supplementary Information:
 Novel mid-infrared plasmonic effects in bilayer graphene

Tony Low ${ }^{1}$, Francisco Guinea ${ }^{2}$, Hugen Yan ${ }^{1}$, Fengnian Xia ${ }^{1,3}$, and Phaedon Avouris ${ }^{1}$
${ }^{1}$ IBM T.J. Watson Research Center, 1101 Kitchawan Rd, Yorktown Heights, NY 10598, USA
${ }^{2}$ Instituto de Ciencia de Materiales de Madrid. CSIC. Sor Juana Inés de la Cruz 3. 28049 Madrid, Spain
${ }^{3}$ Yale University, 15 Prospect Street, New Haven, CT 06511, USA

(Dated: September 10, 2013)

I. ELECTRONIC BANDS AND WAVEFUNCTIONS IN BILAYER GRAPHENE

We present the solutions for the non-interacting ground state electronic bands and wavefunctions used in the main manuscript. We consider a bilayer graphene arranged in the Bernal stacking order with basis atoms A_{1}, B_{1} and A_{2}, B_{2} in the top and bottom layers respectively. The intralayer coupling is γ_{0} and the interlayer coupling between A_{2} and B_{1} is γ_{1}. The non-interacting electronic Hamiltonian in the $\left(A_{1}, B_{1}, A_{2}, B_{2}\right)$ basis representation in the vicinity of \mathbf{K} valley reads[1],

$$
\begin{equation*}
\mathcal{H}_{0}=\sum_{\mathbf{k}} \hat{a}_{\mathbf{k}}^{\dagger} H_{\mathbf{k}} \hat{a}_{\mathbf{k}} \tag{1}
\end{equation*}
$$

with

$$
H_{\mathbf{k}}=\left[\begin{array}{cccc}
\Delta / 2 & v_{F} \pi_{-} & 0 & 0 \tag{2}\\
v_{F} \pi_{+} & \Delta / 2 & \gamma_{1} & 0 \\
0 & \gamma_{1} & -\Delta / 2 & v_{F} \pi_{-} \\
0 & 0 & v_{F} \pi_{+} & -\Delta / 2
\end{array}\right]
$$

where $\pi_{ \pm}=\hbar\left(k_{x} \pm k_{y}\right), v_{F}=\frac{3}{2} L \gamma_{0} / \hbar, L$ is the carbon-carbon bondlength and Δ is the on-site energy difference between the two layers. The electronic bands and wavefunctions are obtained by diagonalizing $H_{\mathbf{k}}$. The electronic bands are denoted by $\xi_{n}(\mathbf{k})$, with $n=1,2,3,4$ in ascending energy order given by,

$$
\begin{equation*}
\xi_{n}(\mathbf{k})= \pm \frac{1}{2} \sqrt{ \pm 2 \Omega+\Delta^{2}+2 \gamma_{1}^{2}+4 v_{F}^{2} \pi_{+} \pi_{-}} \tag{3}
\end{equation*}
$$

where $\Omega \equiv \sqrt{4 \Delta^{2} v_{F}^{2} \pi_{+} \pi_{-}+4 v_{F}^{2} \gamma_{1}^{2} \pi_{+} \pi_{-}+\gamma_{1}^{4}}$ and the signs are chosen as,,-+--+- and ++ for $n=1,2,3,4$ respectively. Their 4-component wavefunctions denoted by $\left|\Phi_{n}(\mathbf{k})\right\rangle$ are given by,

$$
\frac{1}{N}\left[\begin{array}{c}
1 \tag{4}\\
\frac{1}{8 v_{F}^{2} \gamma_{1} \pi_{-}^{2}}\left(-4 \Delta v_{F}^{2} \pi_{-} \pi_{+}-8 \xi_{n} \pi_{+} \pi_{-} v_{F}^{2}-8 \xi_{n} \gamma_{1}^{2}+\Delta^{3}+4 \gamma_{1}^{2} \Delta+8 \xi_{n}^{3}-4 \xi_{n}^{2} \Delta-2 \xi_{n} \Delta^{2}\right)
\end{array}\right]
$$

where N is the normalization constant, and the \pm sign are choosen as,,+-- and + for $n=1,2,3,4$ respectively.
[1] E. McCann, "Asymmetry gap in the electronic band structure of bilayer graphene," Phys. Rev. B, vol. 74, p. 161403R, Sep 2006.

