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The electrical properties of graphene depend sensitively on the substrate. For example, recent
measurements of epitaxial graphene on SiC show resistance arising from steps on the substrate. Here
we calculate the deformation of graphene at substrate steps, and the resulting electrical resistance, over a
wide range of step heights. The elastic deformations contribute only a very small resistance at the step.
However, for graphene on SiC(0001) there is strong substrate-induced doping, and this is substantially
reduced on the lower side of the step where graphene pulls away from the substrate. The resulting

resistance explains the experimental measurements.
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The advance of very high speed graphene electronics
[1,2] depends on understanding and controlling the inter-
action of graphene with the supporting substrate. Electron
mobility can vary over many orders of magnitude depend-
ing on the substrate [3—5]. Among other factors, morpho-
logical deformations of the graphene may limit mobility
[6-10]. It is therefore important to determine how the
substrate morphology affects transport in supported
graphene.

Epitaxial graphene on SiC provides an ideal system in
which to study the role of substrate morphology. SiC is a
promising substrate because, in contrast to other ap-
proaches, it allows growth of epitaxial graphene directly
on an insulating substrate [11]. However, epitaxial gra-
phene on SiC substrates generally exhibits smaller carrier
mobilities than exfoliated graphene on SiO, substrates
[5,11-13]. The reason for this difference is not fully under-
stood, but SiC substrates exhibit a high density of multi-
layer steps, which are implicated in the lower mobility.
Several experiments show that resistance increases with
step density [6], step heights [9], and step bunching [7,8];
and the local electrical resistance associated with individ-
ual substrate steps has recently been measured [9], by
scanning potentiometry in a scanning tunneling
microscope.

Here we study graphene over an abrupt substrate step, as
illustrated in Fig. 1, calculating both the structural defor-
mation and the resulting electrical resistance. The results
are directly applicable to epitaxial graphene on SiC, and
also show more generally how the morphology affects
electrical transport. We find that very little resistance arises
directly from the structural deformations, despite the
strong curvature of graphene as it passes over a step. For
SiC, we nevertheless find a substantial resistance associ-
ated with the step, in good agreement with experiment [9].
This resistance arises almost entirely from the electrical
coupling between the graphene and substrate, which varies
sharply in the vicinity of the step. Thus morphology plays
a qualitatively different and far more important role in
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substrates such as SiC that dope the graphene or otherwise
couple strongly, than it does for substrates such as SiO,
that are electrically passive.

We begin by determining the graphene geometry as it
passes over a substrate step. The graphene deformation is
determined by a balance between the van der Waals (vdw)
interaction, which favors conforming to the substrate, and
elasticity, which favors keeping the graphene flat and
smooth. Since the displacement field can vary on the
atomic scale, we use an atomistic valence force model
(VFM) to describe the elastic deformations [14]. The van
der Waals interaction between graphene and substrate is
modeled with the Lennard-Jones (LJ) 6-12 potential [15].
The parameters for our LJ model are determined by setting
the equilibrium distance between graphene and substrate to
heq = 3.4A [16], and the binding energy to Ez ~ 40 meV
per atom [15,17]. The total energy is then simply the sum
of these two contributions, £ = &4 + Eyaw-

We calculate the minimum-energy geometry for gra-
phene over a wide range of step height A, allowing the
graphene to slide to relax any in-plane strain. The relaxed

FIG. 1 (color online). Illustration of graphene over a substrate
step. Here h is the step height and heq is the equilibrium
distance of graphene from the substrate surface due to van der
Waals interaction. €, is the length of graphene detachment from
the substrate.
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FIG. 2 (color online). (a) Graphene geometry h(x) for various
step heights as indicated. Symbols are the full numerical calcu-
lation. Solid lines are best fit using Eq. (1). The respective step
profile are illustrated by dashed lines. (b) Corresponding curva-
ture « for geometries shown in (a), with lines and symbols as in
(a). The minimum radius of curvature (inverse of maximum ) is
indicated.

geometries i(x) for three step heights typical of SiC are
plotted in Fig. 2(a). The presence of the atomic step
increases the graphene area compared to when the sub-
strate is flat. The extra length increases with i, and was
found to be 0.1, 0.3, and 0.6 nm, respectively. The non-
linear dependence reflects the increasing distortion
(steeper slope) with increasing step height. The maximum
slope is of order 1, confirming the need for a fully numeri-
cal treatment.

We find that the calculated geometries can be well
approximated by a simple error function,

h(x) = —%[m(x ;st) + 1] thee (1)

As shown in Fig. 2(b), even the variation in curvature
across the step is well described by this simple functional
form. The only noticeable discrepancy is that the error
function is symmetric, while in the full calculation there
is a slight asymmetry, with the maximum curvature in-
duced at the upper edge of the step. For step height i, =
1.5 nm, we find a maximum curvature equivalent to that of
a carbon nanotube of diameter 1.5 nm.

The maximum curvature kp,, as a function of step
height 4 is plotted in Fig. 3(a), for both the lower and
upper edge of the step. It is proportional to 4, in the small
hy limit. For the lower edge, the limit of large &, corre-
sponds to the well-known problem of peeling [18]. In this
limit, K, approaches {/2Egz/aB =~ 1.2 nm™!, where a is
area per carbon atom and 8 = 2.1 eV [14] is the bending
rigidity.

Figure 3(b) summarizes the dependence of the graphene
deformation /(x) on step height 4, in terms of the parame-
ters of Eq. (1). For a given step height, the characteristic
step width d; determines the maximum radius of curvature
r = 1/Kkyax. Another relevant length scale is the length €
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FIG. 3 (color online). (a) Numerically calculated maximum
curvature K., for the upper edge (solid circles) and lower edge
(open circles) of the step as function of step height /. Note that
the often used approximation for curvature, x =~ d2h, is only
reasonable for &, of few angstrom. Over the range of & of our
interests, it grossly overestimates the real curvature due to the
large gradients in our graphene geometries. (b) Dependence of
graphene deformation on step height /,. Graphene step width d,
and lateral shift x; are obtained by fitting Eq. (1) to the relaxed
geometry /(x) obtained numerically. We also show the detach-
ment length €, i.e., the length of graphene separated from the
substrate by 2h.,. Note that €; =~ 1.2k, for large h,. The step
width d, depends only weakly on step height.

over which the graphene is detached from the substrate.
For concreteness we define £, to be the length of graphene
separated by 2h., or more from the substrate surface.
Figure 3(b) shows that €; remains zero at small &, but
begins to increase rapidly for h; > h. At larger step
height we find that €; ~ 1.2h,, which proves important
in later discussions.

Geometry-induced scattering.—Curvature results in
band structure changes that can scatter electrons near the
step. To examine this effect, after performing the geometry
relaxation, we construct the Hamiltonian FH within a
nearest-neighbor Slater-Koster parameterized sp® tight-
binding model [19]. We then calculate the transmission
and the electrical resistance R using the nonequilibrium
Green’s function formalism [20,21] in the limit of small
voltage across the step and no inelastic scattering at the
step. We use the known Fermi level [16,22] of E; =
0.45 eV for graphene on SiC (0001).

Since the maximum curvature increases with step height
hg, the resistance also increases. For a step height of
1.5 nm, we obtain a resistance ~0.01 Q-pm.
Figure 4(a) includes results of a recent experiment [9],
which employed scanning potentiometry in a scanning
tunneling microscope to resolve the resistance in graphene
due to individual substrate steps. The measured resistance
Ryp has roughly linear dependence with step height A,
~10 Q-um for each nanometer step height. Evidently, the
resistance due to curvature alone cannot account for this
large R, While 77-0 hybridization can result in new
scattering states in the vicinity of Dirac point [23], this
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FIG. 4 (color online). (a) Resistance through graphene due to
substrate step, R, as function of step height /. Two electrostatic
models for the doping variations are plotted, as described by
Eq. (2) (model 1) and Eq. (3) (model 2). Experimental data [9]
are plotted as circles, with statistical error bar indicated.
(b) Potential profile V,(x) derived from Eq. (2) (model 1) for
hg = 0.5, 1.0, and 1.5 nm. Dashed horizontal line indicates the
Fermi level position. (c) Same as (b), but derived from Eq. (3)
(model 2). The small hump observed for V,(x) near the top is an
artifact of the polynomial form of A,(h).

effect is significant only when r < 5A [23]. Even for a very
high step of #; = 1.5 nm, we find that the minimum radius
of curvature only shrinks to » = 5A if we assume a much
stronger van der Waals attraction, with a binding energy
80 meV, which seems unphysical.

In our calculations thus far, we have ignored possible in-
plane strain inhomogeneities, which are known to result in
electron scattering [24,25]. Because of the different ther-
mal expansion coefficient between graphene and SiC, gra-
phene can acquires a residual biaxial strain upon cooling if
sliding is suppressed. Then due to the nonplanar geometry,
graphene at the step could experience a uniaxial stress
relative to the rest of the sheet. Graphene on SiC substrates
is reported to have strains from 0.1%-1% as measured by
Raman spectroscopy [26]. To estimate a very conservative
upper bound for R due to strain inhomogeneity, we con-
sider a local tensile strain of 1% along the detached region,
with the step along the zigzag direction where the scatter-
ing effect is largest [24]. The resultis R < 1 Q-um. Thus
some source of scattering much stronger than the geomet-
rical deformations must be present to account for the
measured resistance.

Electrostatic doping effects.—It is well known that when
contacting graphene with metals, a difference in work
function results in electrostatic doping [27-29]. In the

case of SiC(0001), a similar doping occurs from the carbon
buffer layer, which has a high density of weakly dispersive
interface states [16,30]. This can be described by a capaci-
tor model including quantum capacitance [31],

2
n(x) = 'y(WSg - Z—Oh(x)n(x) - hvf\/Wn(x)), 2

where n(x) is the electron density in graphene, W,, is the
work function difference between the carbon buffer layer
and graphene, £ is the distance between them, and vy is the
buffer-layer density of states. We denote this as “model 17.
In view of the flat bands [16,30], we take the limit of large
y and we adjust W, to reproduced the known doping at
h = heg, corresponding to heavy n doping [16,22], with a
Fermi level E; = 0.45 eV. The vertical displacement /(x)
changes the capacitive coupling, leading to doping varia-
tions. Substituting the relaxed geometry 4(x) into Eq. (2),
we calculate these variations. The associated potential
shifts V,(x) are shown in Fig. 4(b) for different step
heights. Increasing step height leads to larger detachment
and doping variations. This translates to an increased R as
shown in Fig. 4(a), still somewhat smaller than reported
experimentally, but far larger than the scattering mecha-
nisms previously discussed.

In studies of metal induced doping of graphene,
Khomyakov and co-workers [28,29] reported that Eq. (2)
could not properly describe the ab initio calculations of
graphene on metals, presumably due to quantum mechani-
cal effects such as wave function overlap and correlations.
They suggested that the accuracy of Eq. (2) can be im-
proved by the modification [28,29]

h(x) — h(x) + "
W — Wy, + Al(h)

3)

with 2" and A.(h) approximated as independent of the
metal species. Since the corresponding values for SiC are
not known, and the buffer layer has a large density of states
the Fermi level, we simply use the values reported for
metals in Refs. [28,29].

This “model 2 gives a stronger doping variation than
the classical electrostatic model, as show in Fig. 4(c). The
corresponding resistance is also increased for model 2, as
shown in Fig. 4(a), giving excellent agreement with ex-
periment. Indeed, we consider the degree of quantitative
agreement between ‘“‘model 2”’ and the experimental data
to be somewhat fortuitous. Nevertheless, it is striking that,
using the best approximations available, the modulation of
local doping by the step can account for the observed
resistance, while other mechanisms are all far too small.

In principle there could be additional electronic states
associated with the step that would change the resistance,
but it is not necessary to assume such states in order to
explain the resistance. Here we assumed the vertical sur-
face of the atomic step to be electrically inert. This is
reasonable since the SiC (0001) surface is electrically inert,
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and the extra states are associated with the buffer layer.
In addition, our results are relatively robust against the
uncertainties in the bending stiffness and the van der
Waals binding energy. For example, if we assume an un-
reasonably large Ez = 80 meV instead of Ez = 40 meV,
the detachment length for the largest step height decreases
from 1.56 to 1.41 nm, suggesting a decrease in resistance
of only = 10%. A factor of 2 change in the assumed
bending stiffness would have a similar effect.

As seen in Fig. 4(c), the graphene is almost fully de-
pleted of carriers in the detached region. This suggests a
simple model where the graphene is completely undoped
over the detachment length €,. Our situation then resem-
bles the problem of minimum conductivity, often discussed
in the literature [32]. Transport in this regime is mediated
by evanescent modes, but instead of an exponential decay
the graphene bandstructure leads to a unique linear (‘‘pseu-
dodiffusive’”) behavior [32], where R = %6 4- This rep-
resents the upper bound for resistance due to doping
variations, where the doping goes to zero in the detached
region, and overestimates the calculations of ““‘model 2”* by
about 50%. Combining this with our previous result that
€, = 1.2h, explains the linear scaling of resistance with
step height (i.e. R, * hy) observed in experiment.

Conclusions.—We examined the structural deformation
of graphene crossing over a substrate step, and the various
intrinsic mechanisms that may cause electron scattering at
the step. We found that deformation gives only a small
electron scattering. For graphene on SiC, where the sub-
strate induces considerable doping, the dominant mecha-
nism is rather the abrupt variation in potential and doping
due to detachment of the graphene from the substrate as it
passes over a step. Our results are consistent with the
various experimental observations, i.e., that R, in-
creases with step density [6], step heights [9], step bunch-
ing [7,8], all of which are characterized by increasing € ,.
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