
Ballistic-Ohmic quantum Hall plateau transition in a graphene p-n junction

Tony Low*
School of Electrical & Computer Engineering, Purdue University, West Lafayette, Indiana 47906, USA

�Received 19 August 2009; revised manuscript received 27 October 2009; published 23 November 2009�

Recent quantum Hall experiments conducted on disordered graphene p-n junction provide evidence that the
junction resistance could be described by a simple Ohmic sum of the n and p mediums’ resistances. However
in the ballistic limit, theory predicts the existence of chirality-dependent quantum Hall plateaus in a p-n
junction. We show that two distinctively separate processes are required for this ballistic-Ohmic plateau
transition, namely, �i� hole/electron Landau states mixing and �ii� valley isospin dilution of the incident Landau
edge state. These conclusions are obtained by a simple scattering theory argument, and confirmed numerically
by performing ensembles of quantum magnetotransport calculations on a 0.1 �m wide disordered graphene
p-n junction within the tight-binding model. The former process is achieved by p-n interface roughness, where
a p-n interface disorder with a root-mean-square roughness of 10 nm was found to suffice under typical
experimental conditions. The latter process is mediated by extrinsic edge roughness for an armchair edge
ribbon and by intrinsic localized intervalley scattering centers at the edge of the p-n interface for a zigzag
ribbon. In light of these results, we also examine why higher Ohmic-type plateaus are less likely to be
observable in experiments.
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I. INTRODUCTION

Graphene is a two-dimensional sheet of carbon atoms ar-
ranged in a honeycomb lattice with unique electronic prop-
erties, i.e., linear energy dispersion with zero bandgap de-
scribed by the relativistic Dirac equation.1,2 This attribute
manifests itself as anomaly in the quantum Hall regime,3,4

where the Landau filling factor, �, goes by the nonconven-
tional sequence of 4n+2 and n=0,1 ,2 , . . . labels the Landau
levels �LL�. This leads to conductance plateaus at �=�, ex-
pressed in units of the von Klitzing constant e2 /h. Room
temperature observations4 of these quantum Hall plateaus
make it a potential state variable for possible future device
applications such as quantum computation using Landau lev-
els as the basic qubit5 and pure spins current switching
devices.6

Recently, experiments by Williams et al.7 on the magne-
totransport of graphene p-n junction in the quantum Hall
regime found that the two terminal junction conductance
��pn� exhibits new plateaus. These conductance plateaus
were predicted to follow a simple Ohmic conductance rule,
first proposed by Abanin et al.,8

�̂pn��n,�p� = � 1

�n
+

1

�p
�−1

= � �p

�n + �p
�

eq

�n, �1�

where �n/p are the Landau levels filling factors in the n / p
regions. The last expression in Eq. �1� presents the physics
more lucidly, with � . . . �eq embodying the Landau modes mix-
ing process along the p-n interface for the electron current.
Experiments,7 however, did not reproduce all the predicted
plateaus, especially for the higher filling factor combination
values, i.e., such as ��n ,�p�= �2,6� and �6,6�.51 This observa-
tion leads us in formulating our first question, “what degree
of interface disorder is required to observe complete modes
mixing, especially for the cases with higher combination val-
ues?”

Interestingly, the appearance of quantum Hall plateaus in
a graphene p-n junction is not isolated to only disordered

samples. Tworzydlo and co-workers9 showed theoretically
that plateaus should be observed in perfectly clean graphene
ribbons with perfect edges. These plateaus are independent
of ��n ,�p�, and depend only on the ribbons’ chirality. We
herein denote these ballistic plateaus as �̃pn, and they are
given by,9

�̃pn = �1

2
or 2 armchair

0 or 2 zigzag
� , �2�

where the widths dictate the above possible outcomes. The
underlying physics for this width dependence is explained in
terms of the valley isospin �for armchair edge�9 and parity
�for zigzag edge�10 of the lowest lying Landau modes. The
above revelation begs the second question, “Is p-n interface
disorder alone sufficient in inducing the plateau transition
from �̃pn to �̂pn, or is edge disorder �or other intervalley
scattering processes� also necessary?”

Theoretical studies on the effect of disorder on the mag-
netotransport properties of a graphene pn junction are
few.9,11,12 In the classical integer quantum Hall problem, the
tight-binding Hamiltonian model13 and the Chalker/
Coddington’s network model14 are popular approaches for
studying magnetotransport in disordered system.15 For this
problem the former is more suitable, since the formalism
inherently captures both quantum mechanical and atomistic
effects which are believed to play an important role. Essen-
tially, one seeks the direct solution to the one-electron
Schrödinger equation, where the open boundary scattering
problem16 is usually conceptualized within the Landauer-
Büttiker quantum transmission point of view.17,18 The quan-
tum transmission function can be calculated using the
Green’s function19,20 or wave function approach,21 the former
being a more popular technique in recent years. Within this
theoretical framework, Long and co-workers11 conducted an
intensive statistical study of disordered graphene p-n junc-
tions in the quantum Hall regime. Graphene ribbons with
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zigzag edges are considered in their work. Bulk disorder was
incorporated into their Hamiltonian in the form of on-site
energy fluctuations. They found that the Ohmic-type quan-
tum Hall plateaus, �̂pn, emerges with sufficient disorder
strength. Similar conclusions had also been reached by Li
and Shen,12 where p-n interface disorder was considered for
a zigzag ribbon, also in the form of on-site energy fluctua-
tions. Both these numerical studies11,12 employed short-range
disorder potential which varies on the scale of the lattice
constant. Although the actual sources of disorder varies
across different experimental samples,22 disorder such as p-n
interface and edge roughness are not justifiably captured by
short-range disorder potential. Moreover, short range disor-
der potential serve to masked the effect of valley isospin,
which is inevitably washed out by such disorder.12 For ex-
ample, Tworzydlo et al.9 had employed a long range disorder
potential, and found that the junction magnetoconductance of
a zigzag ribbon is extremely sensitive to the disorder, while
an armchair ribbon shows the opposite behavior.

The purpose of this paper is to quantitatively model the
effect of p-n interface and edge disorders and to establish a
coherent, conceptual framework for understanding the pla-
teau evolution from �̃pn to �̂pn. We reason that one can dis-
tinguish two underlying mechanisms which are prerequisites
for this ballistic-Ohmic plateau transition, namely, �i� hole
and electron Landau states mixing and �ii� valley isospin
dilution. The former can be achieved via p-n interface rough-
ness, a long range potential type disorder. The latter process
is mediated by extrinsic edge roughness for an armchair edge
ribbon and by intrinsic localized intervalley scattering cen-
ters at the edge of the p-n interface for a zigzag ribbon. By
performing ensembles of quantum magnetotransport calcula-
tions on a 0.1 �m wide graphene p-n junction with p-n
interface �ID� and edge disorder �ED�, we illustrate how the
plateaus evolve from �̃pn to �̂pn for both armchair and zigzag
ribbons.

This paper is organized as follows. Section II begins with
an introduction of our quantum transport model based on the
Green’s function and tight-binding approaches. Computa-
tional and numerical aspects are highlighted in this section,
including the statistical modeling of the interface and edge
disorder. Section III discusses the magnetotransport across a
p-n junction in the ballistic limit. The underlying physics for
the existence of the ballistic quantum Hall plateaus �̃pn are
reviewed and discussed. Section IV studies the ballistic-
Ohmic quantum Hall plateau transition in the presence of
ID/ED for both armchair and zigzag ribbons. An accompa-
nying simple Chalker/Coddington type scattering theory is
presented to elucidate the underlying physics. Section V per-
tains to the analysis and comparison with recent experimen-
tal data in the literatures followed by a summary of this
work.

II. QUANTUM TRANSPORT MODEL

In quantum Hall experiments, a magnetic field of the or-
der of 10 T is common. This corresponds to a magnetic
length of �B�20 nm, which approximates the spatial extent
of the ground state LL wave function. The device’s width has

to be appropriately chosen so that the LL’s wave functions
along the opposite edges do not overlap, especially for the
higher LLs. However, finite computational resources set a
practical limit on the matrix size of the system Hamiltonian.
Based on the above considerations, we employed a 100-nm-
wide graphene ribbon pn junction device, which is schemati-
cally shown in Fig. 1�c�. Ribbons of both armchair and
zigzag-type edges are considered in this work,22,23 as shown
in Fig. 1�a�. We seek to compute the junction conductance
��pn� in the presence of pn interface and edge disorder. For
pedagogical purposes, we shall briefly review the quantum
transport model employed in this work.

A. Green’s function theory with a tight-binding model
Hamiltonian

In this work, the device is described by tight-binding
Hamiltonian given by

H = �
i

viai
†ai + �

ij

	tij	exp� e

�



i

j

A · dl�ai
†aj , �3�

where ai
† /ai are the creation/destruction operators at each

atomic site i and vi and tij are the on-site potential energy
and hopping energies.24,25 The simple one pz-orbital descrip-
tion as described by Eq. �3� is sufficient for the modeling of
the relevant energy bands of interest for electronic transport
properties.52 We assumed that 	tij	=3 eV. In the presence of
a perpendicular magnetic field B, tij will incorporate a Peierls
phase �ij�A�, where A is the corresponding vector potential.
The phase �ij is assigned such that the magnetic flux through
an arbitrary area S satisfies the following Stokes law,26

1

�0

 BdS = �

�

�ij , �4�

where � is the boundary of S. The parameter vi is deter-
mined by the top/bottom gate electrostatics, which is known
a priori. The effect of p-n interface and edge disorder are
also described through vi and tij, respectively �discussions
deferred to next section�.

The Landauer-Büttiker approach pictures a device in
which dissipative processes are absent but coupled to perfect
thermodynamic systems known as “reservoirs.” This ap-
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FIG. 1. �Color online� �a� Illustrations of armchair, zigzag, and
antizigzag edge ribbons. The carbon layer numbering convention
for an armchair edge ribbon used in this work is also depicted. �b�
Schematic of the two terminal p-n junction simulated in this work,
illustrating also the ID and ED.
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proach has been very successful in modeling physical effects
in a myriad of problems in the field of mesoscopic
physics.19,20,27,28 In numerical implementation, H is divided
into “device” �Hd� and “contacts” regions. Hd is constructed
so that it captures the scattering potential of interests, hence
it is of finite matrix size. The contacts represent the semi-
infinite regions of H, which characterized the open boundary
nature of the transport problem. Through simple algebras as
detailed in,19 one could write a Green’s function for the “de-
vice” as follows,

G�� f� = �� f + i0+ − Hd − 	s − 	d�−1, �5�

where � f is the Fermi energy. 	s/d are conveniently known as
the contact self-energies �subscript s/d for source/drain re-
spectively�, which could be expressed as 	s/d=
s/dgs/d
s/d

† ,
where 
s/d describes the coupling of the s/d contacts to the
device and gs/d is the surface Green’s function of the respec-
tive contacts. In this work, gs/d is obtained using an efficient
iterative scheme outlined in.29 Direct matrix inversion of Eq.
�5� proves to be computationally prohibitive. Therefore, one
commonly resorts to recursive type techniques, such as the
recursive Green’s function approach,30,31 the renormalization
method,32 or combination of both techniques.33 After solving
for G�� f�, we can compute the device conductance at � f via
�in units of e2

h �,19

�pn = 2 Tr��sG�dG†� , �6�

where �s/d are known as the contact broadening functions
which can be obtained from the respective self-energy, i.e.,
�s/d= i�	s/d−	s/d

† �. One can view Eq. �6� as just a different
form of the Fisher-Lee expression.19,34 Other physical ob-
servable quantities such as the local density of states
�LDOS�, charge density �n�x ,y�� and current density �j��x ,y��
can also be obtained.33

B. Modeling interface/edge disorders

In this work, we are interested in two types of disorder
interface and edge disorder �ID/ED�. It is generally accepted
that ID plays an important role in facilitating the mixing of
the electron/hole Landau modes along the p-n interface.8 We
define the p-n interface as the equienergy line of Dirac points

separating the n / p regions. This interface will be highly sus-
ceptible to electrostatic influences of impurities due to inef-
fective charge screening in the depletion region. The pres-
ence of electron-hole puddles due to trapped impurities in the
oxide layers35 �or ripples�36 was recently observed by Martin
and co-workers.37 Charge density fluctuations of �1
1011 cm−2 was reported in their work. This implies signifi-
cant ID. Edge roughness was also recently characterized by
Gupta et al.,38 where a root-mean-square roughness of about
3 nm was observed in micromechanically produced ribbons.

In order to model ID and ED, we devise a simple algo-
rithm for generating a one-dimensional roughness profile,
I�y�. I�y� can be expressed in its Fourier components,

I�y� = �
n

An sin�n�y

W
� , �7�

where W is the device width, and An is the amplitude for the
sine components given by,

An = R�D1�exp�−
n

D2
� , �8�

where R�D1� outputs a uniformly distributed random number
between �D1. Equation �8� represents the power spectrum of
the roughness morphology, however there is currently no
characterization of ID/ED morphologies to justify such as-
sumption. Nevertheless, it is known that an exponential
power spectrum describes the surface morphology of
Si /SiO2 interfaces,39,40 making it a natural guess for the
ID/ED morphologies in our study. For a given set of disorder
parameters D1 ,D2�, we compute the ensemble average of N
samples to obtain the conductance �pn, where N is chosen to
be from 100–200 samples. The root-mean-square �RMS� and
autocorrelation length �AL� of the interface roughness mor-
phology are also computed. We defined AL to be the length
at which the cross correlation is 50% of the autocorrelation.
It can be shown that AL depends on D2 and is relatively
insensitive to D1. A larger D2 will yield more higher fre-
quency components in I�y�, thereby decreasing the AL.

In the presence of disorder, the device Hamiltonian’s on-
site and coupling energies have to be modified accordingly.
For vi, we have,

v�x,y� =�
− �Fn, x� � − d

�Fn

�Fn + �Fp

− �Fn +
�Fn + �Fp

d
�x� + d

�Fn

�Fn + �Fp
� , − d

�Fn

�Fn + �Fp
� x� � d

�Fp

�Fn + �Fp

�Fp, x� � d
�Fp

�Fn + �Fp

� , �9�

where x�=x+ Ipn�y� and �Fn= 	�F−�0	, �0 being the Dirac
point energy. �Fp is defined similarly. We had assumed that
the p-n junction is linearly graded, where the spatial extent
of n-p transition �known as the “depletion width”� is denoted
by d. Ipn is a one dimensional roughness profile generated

using the above procedure. For tij �in eV�, we have,

	t�x,y�	 = �3, Ib�x� � y � W + It�x�
0, otherwise

� , �10�
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Ib/t is a one dimensional roughness profile describing the line
edge roughness for the bottom and top edges, respectively.

As an illustration, we modeled the magnetotransport
across an armchair graphene p-n junction with/without ID in
a magnetic field of B=10 T with energies �Fn=0.1 eV and
�Fp=0.15 eV. Figure 2 plots the longitudinal current compo-
nent jx�x ,y� of this device for different device width. The
so-called “snake states” �i.e., current density oscillating back
and forth the n / p regions� propagating along the p-n inter-
face can be observed,23,41,42 which remains prominent even
in the presence of ID. The snake states terminate when the
p-n interface meets the top edge, where a choice between the
paths leading to the n or p medium must be made. The rib-
bon’s width, which also determines the valley isospins of the
first LL along each edge, plays a pertinent role in deciding,
which path is taken, as will be elaborated upon in the fol-
lowing section.

III. VALLEY ISOSPINS ON THE BALLISTIC QUANTUM
HALL PLATEAUS

In this section, we examine the conductance across a p-n
junction when there is no disorder, i.e., the ballistic limit.
The ribbon’s chirality plays an important role in determining
the junction’s conductance. Figure 1�a� depicts the notation
on ribbon’s chirality used in this work. In this limit, it was
shown that conductance plateaus �̃pn could emerge due to the
valley isospins9 and wave function parity10 of the ground-
state Landau level. The former effect concerns the armchair
edge ribbon, while the latter for zigzag edge. An excellent
review on this subject has been written by Beenakker,23

where we will highlight and expand on some of the key
results in the remainder of this section.

A. Valley isospins along the edges

Definitions and conventions

We write the Dirac equation for graphene as,

H� = �v fp� · �� 0

0 v fp� · ��
�� , �11�

where �= ��A ,�B ,−�̃B , �̃A� and ���̃� for the K� �K� �� valley
wave function. We are interested in � along the ribbon’s
edges. It is a convenient convention to write � along the
edges in the following form,

� = �v� · 
�� � �n� · �� �� , �12�

where v� is the edge valley isospin �for � along the edges�
and 
� is just the Pauli matrices for the isospin part. n� depends
on the edge type, i.e., n� = �0,0 ,1� for zigzag and n�
= ��1,0 ,0� for bottom/top edges of armchair ribbons.23 One
can show that Eq. �12� effectively expressed the boundary
conditions of the edges. For an armchair ribbon, it can be
shown that the isospin along the top/bottom edges �v�T and
v�B� obeys the following,

v�T · v�B = cos��W + �� � cos � , �13�

where �=4� /3a and a is the lattice constant of graphene.
From Fig. 1, we have W=a�l+ 1

2 �, where l is the number of
carbon layers. See Appendix for the detail algebra.

Next, one makes the assumption that the ground state
LL’s wave function, denoted by 	0�, could be approximated
by the edge wave functions.9 This allows one to write the
wave function overlap between the ground state LL’s wave
function along the top/bottom edges,

�0T	0B� � ��T	�B� = �	a	2 + 	b	2��1 + v�T · v�B + v�T  v�B� ,

�14�

where we denote ��A ,�B�= �a ,b� and ��̃A , �̃B� is obtained
through Eq. �12�. By using the fact that 	a	2= 	b	2= 1

4 , we
finally arrive at,

	�0T	0B�	2 �
1

2
�1 + cos �� . �15�

Equation �15� is a simple result9 that we will employ in the
remaining of this section to draw some simple conclusions
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FIG. 2. �Color online� Intensity plot of the longitudinal current
component for magnetotransport across an armchair graphene p-n
junction at B=10 T. We consider ground-state Landau level in-
jected from the left. The biased condition is such that the filling
factor combinations is ��n ,�p�= �2,6�, where spin degeneracy ac-
counted for. The depletion width is assumed to be 25 nm and per-
fect edges is assumed. We plotted for the case �a� without ID and
�b� with ID for ribbon with 401 carbon layers along the width.
Similarly, for ribbon with 400 carbon layers in �c� and �d�.
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about the magnetotransport properties in a graphene p-n
junction.

B. Valley isospin in armchair ribbon

Figure 3 shows the ballistic conductance of armchair edge
type ribbons as a function of depletion width. The n/p re-
gions are biased at �Fn/Fp, respectively, and the built-in po-
tential �assumed to be linearly graded across the junction� is
given by �Fn+�Fp. Figure 3�a� plots the conductance for bi-
asing conditions corresponding to the Landau filling combi-
nations of ��n ,�p�= �2,2�. Ribbons with different number of
carbon layers along the width are considered, where the in-
terlayer separation is �3L �L being the carbon-carbon bond
length�. These ribbons exhibit conductance plateaus of 1

2 and
2 at sufficiently large depletion width of �25 nm, where
typical length scale of depletion width in experiments em-
ploying top/bottom gating scheme are usually several times
larger than 25 nm.44 These plateaus emerge as long as the
depletion width is sufficiently large, irregardless of the filling
factor combinations.

Figure 3�b� plots the case when ��n ,�p�= �6,2�, and we
had also checked that these ballistic plateaus remain intact
when ��n ,�p�= �6,6�. It is observed that increasing depletion
width filters off the higher Landau levels, such that only the
zeroth mode Landau edge states conduct through the junc-
tion. This is reminiscent of the more well-known filtering
action of off-normal transverse modes by a p-n junction in
the zero-magnetic-field case,43,44 although the physics in this
context is completely different. This might find applications
in devices that use the Landau levels as an information bit.45

However, p-n interface disorder would negate such filtering
action, to be discussed in Sec. IV.

Tworzydlo and co-workers9 attributed the origin of the
ballistic plateaus to the different valley isospins of the 0th LL
at the two edges of the ribbon. The valley isospins can be
determined from their respective boundary conditions.23

When the number of layers satisfy the condition 3M +1,
where M is an integer, it would exhibit conductance plateaus

of 2. Note that this is also the same criterion for obtaining a
metallic armchair ribbon. This device is illustrated in Figs.
2�a� and 2�c� for semiconducting and metallic type armchair
ribbon, respectively. We define the following scattering states
for the 0th LL; 	0nB� and 	0nT� for the incoming and reflected
states, where the subscript n / p and T/B denotes the electron/
hole mediums and top/bottom edges, respectively. We can
compute the reflection coefficient by following the prescrip-
tion in,23

r = �0nT	S	0nB� = � 0 3M + 1

�3

2
ei� otherwise� . �16�

The scattering matrix S describing the evolution of the in-
coming scattering state 	0nB� along the p-n interface can be
simply described by a unit matrix with a constant phase fac-
tor. The conductance plateaus �̃pn is then given by,9

�̃pn = 2�1 − 	r	2� = �2 3M + 1

1

2
otherwise� . �17�

This argument requires the assumption that the valley isospin
obeys the orthogonality identity v�nT ·v�pT=v�nB ·v�pB=0 for cur-
rent conservation to hold.53

C. Valley isospin in zigzag ribbon

For zigzag ribbons, a similar width dependent effect can
be observed, except that the conductance plateaus are 0 and
2.0 for zigzag and antizigzag ribbons respectively.9 These
ballistic plateaus cannot be explained by the similar valley
isospin argument as used for the armchair case. As first
pointed out by Akhmerov and co-workers,10 the reflected and
transmitted edge states both reside on a valley different than
the incident state i.e., v�nT ·v�pT=v�nB ·v�pB=1. Therefore, cur-
rent conservation entails an inherent intervalley scattering
process. Figure 4 shows the intensity plot for the nonequilib-
rium electron density. Local peaks in the electron density can
be observed at the positions where the p-n interface and the
ribbon edge meet. These are signatures of the intervalley
scattering processes that have taken place. Heuristically
speaking, one can view the propagating states along the p-n
interface as similar to that of an armchair edge, where the
valley isospin is an equal weight superposition of the two
valleys. The two times scattering process take the Landau
state from one valley to a superposition and then finally to
the other valley. In other words, the valley isospin infor-
mation of the incident Landau edge state is intrinsically
diluted after the first scattering process. On a related note,
the local density of states in quantum Hall regime had been
recently probed through scanning tunneling microscopy
measurement.46 It would be of fundamental importance to
experimentally verify the existence of these localized inter-
valley scattering centers.

Akhmerov and co-workers10 worked out the transmission/
reflection coefficient for the edge states in the ballistic case
�no magnetic field case� to be
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FIG. 3. �Color online� �a� Junction conductance as a function of
depletion width in the clean limit, i.e., no disorder, for armchair
ribbons of different widths for the case of filling factor �2,2�. �b�
Same as �a� excepts for filling factor of �6,2�.
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r = �0nT	S	0nB� = �1 zigzag

0 antizigzag
� , �18�

where S should embody the valley scattering processes. The
conductance �̃pn can then be computed in the same fashion
as the armchair case.

�̃pn = �0 zigzag

2 antizigzag
� . �19�

By defining ��̃pn� to be the conductance plateaus averaged
over the ribbon width, we obtained ��̃pn�ac= ��̃pn�zz=1.

IV. TRANSITION TO OHMIC TYPE QUANTUM HALL
PLATEAUS

In this section, we examine the role of ID and ED on the
quantum Hall plateau transition from ballistic-type to
Ohmic-type, i.e., �̃pn to �̂pn. Our numerical results show that
this transition can be ID/ED mediated depending on the fill-
ing factor combination ��n ,�p� and the ribbon type, as sum-
marized in Fig. 1�b�. The objective of this section is to
present the argument as to why valley isospin dilution in
general is necessary for the ballistic-Ohmic quantum Hall
plateau transition, corroborated with numerical simulation
results.

A. Armchair edge ribbons

Figure 5�a� studies the junction conductance in the pres-
ence of p-n interface disorder only, for an armchair ribbon of
401 layers. The ballistic plateau for this device is �̃pn= 1

2
since the number of carbon layers is �3M +1. From a
��n ,�p�-independent �̃pn in the nondisordered limit, the junc-
tion conductance begins to adopt different ��n ,�p�-dependent
values as the ID RMS increases. The conductance saturates
at large enough disorder strength. However, we observed that
only the junction conductance for the �6,6� case approaches
the Ohmic values of �̂pn�6,6�=3. In particular, the junction
conductance for �2,2� is extremely robust against IR disorder.
The junction conductance for �2,6� was enhanced with in-
creasing IR disorder. However, it reaches a conductance pla-
teau of only � 5

4 , lesser than the Ohmic value of �̂pn�2,6�
= 3

2 . In computing the conductance for a given RMS, we
performed an ensemble averaging over 100 devices with dif-
ferent roughness configurations. Figure 5�b� plots the junc-
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FIG. 4. �Color online� Intensity plot of the nonequilibrium elec-
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carbon layers along the width, �b� zigzag ribbon �no disorder�, and
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tion conductance as a function of edge disorder RMS, but
with a fixed ID. Evidently, edge disorder with only a RMS of
one carbon layer would suffices in inducing the plateau tran-
sition from �̃pn to �̂pn. These observations suggest the fol-
lowing proposition, “In an armchair edge ribbon with filling
factor combination of �2,�p�, the plateau transition from �̃pn
to �̂pn is both ID/ED-mediated. ”

We consider a Chalker-Coddington14 type argument in
support of the above proposition. This model considers the
following facts: �a� in the absence of time reversal symmetry,
the electronic states exhibit only unidirectional transmission
�b� the scattering wave function follows approximately the
equipotential lines of the random potential, which is shown
in Fig. 2. Consider ��n ,�p�= �2,6�, the scattering state for a
particular spin along the p-n interface can be expressed as,

	�i� = c0	0nB� + c1	0p� + c2	1p� + c3	1p�� , �20�

where 	0p�, 	1p� and 	1p�� are the ground- and first-excited
states of the LL in the p medium, respectively. We have c�i
= �1,0 ,0 ,0� at the beginning of the p-n interface. We can
define a “saddle point” to be where two Landau modes i and
j undergo mode mixing, characterized by a scattering matrix
which evolves the scattering state 	�� in a unitary manner.
The effective unitary matrix for four modes scattering can be
parameterized as,

S = �
c2 sc s2 − sc

− sc c2 sc s2

s2 − sc c2 sc

sc s2 − sc c2
� , �21�

where s�sin��� and c�cos���. As usual, the accompanied
phase factors are implicit.14 The parameter � characterized
the degree of mode mixing, i.e., �=0, �

4 denotes minimum/
maximum mixing. Undergoing a sufficient amount of mode
mixing processes S, the wave function at the end of the p-n
interface could be expressed as,

	� f� = S��1�S��2�S��3� . . . 	�i� �
1

2
e�0	0nB� +

1

2
e�1	0p�

+
1

2
e�2	1p� +

1

2
e�3	1p�� . �22�

The final state is then said to have “completely equilibrated.”
The reflection probability can then be computed,

	r	2 = 	�0nT	� f�	2 =
1

4
	�0nT	0nB�	2	e�0 + e�1	2. �23�

In arriving at the above result, we had make use of the or-
thogonality relation �0nT 	1p�=0. We also assumed that 	0p�
retains the isospin information of the incident scattering state
and therefore yielding us �0nT 	0p�= �0nT 	0nB�. By making use
of the fact that the phase term averaging over a sufficiently
large ensemble yields,

�	e�0 + e�1 + . . . + e�n	2�ensemble � n + 1, �24�

the junction conductance �including spin� at filling factor
�2,6� could then be expressed as,

�pn�2,6� � 2�1 −
1

2
	�0nT	0nB�	2� . �25�

For the case where the number of carbon layers of the arm-
chair ribbon �3M +1, Eq. �25� yields �pn�2,6�= 5

4 . Repeat-
ing the above analysis for filling factor �2,2�, we can show
that �pn�2,2�= �̃pn�2,2�. The results from a simple Chalker-
Coddington analysis are in excellent corroboration with what
we obtained numerically from numerical calculations as
shown in Fig. 5�a�.

Remarkably, the above analysis predicts that the junction
conductance for an armchair ribbon with 3M +1 carbon lay-
ers will always be perfectly conducting, i.e., �pn�2,6�
=�pn�2,2�=2. Figures 2�c� and 2�d� depicts the spatial cur-
rent density for this device at �2,6� filling factor. Indeed, the
transmission remains perfect in the presence of ID, despite
the fact that mode mixing via ID has taken place. This fact
unequivocally demonstrates that electron and hole Landau
modes mixing via ID alone is not sufficient in achieving the
ballistic-Ohmic plateau transition, at least for armchair rib-
bons. It is evident from Eq. �25� that the Ohmic result can be
obtained if and only if 	�0nT 	0nB�	2= 1

2 . This is only possible
if the isospin information on the T/B edges is completely
diluted, e.g., via edge disorder.

B. Zigzag edge ribbons

Figure 5�c� study the junction conductance in the presence
of pn interface disorder only, for a zigzag ribbon. The ballis-
tic plateau for this device is �̃pn=0. In this case, the �̃pn
→ �̂pn transition in the presence of ID is succinctly illus-
trated. Defining D0 to be the disorder-related length scale
where the junction conductance begins to plateau off, we
obtained D0�3,6 ,8 nm for the �2,2�, �2,6�, and �6,6� case
respectively. Similar D0 are observed for the armchair coun-
terpart devices in Fig. 5�a�. This leads us to the following
conclusion, “In a zigzag edge ribbon, ID alone is sufficient
for the plateau transition �̃pn to �̂pn. In addition, it requires
about the same disorder strength as its armchair counterpart
to obtain the Ohmic plateaus, albeit ED is required for the
latter.”

Repeating the Chalker-Coddington type argument, the re-
flection probability for the �2,6� filling factor case can be
written as,

	r	2 =
1

4
	0e�0 + 1e�1	2, �26�

by making use of Eq. �18� and that �0nT 	0p�=1− �0nT 	0nB�.
This then gives us a junction conductance of �pn�2,6�= 3

2
= �̂pn�2,6�. Similarly, we can arrive at �pn�2,2�=1
= �̂pn�2,2�. Coincidentally, the signatures of the parity effect
coming from the ground-state LL is completely neutralized
by the simple fact that �0nT 	0p�=1− �0nT 	0nB�. A similar
physical picture applies for the antizigzag ribbon case.

V. BENCHMARKING WITH EXPERIMENTS

In this section, we benchmark our numerical results
against the two terminal quantum Hall measurement per-
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formed by Williams et al.7 We should emphasize that bulk
disorder was not included in present numerical simulation,
therefore additional longitudinal resistance contributions
which might exist in actual experiments are not captured.47

In the experiment, a top/bottom gate is employed to bias the
two junctions, allowing control over the sign/magnitude of
the charge density �n1 /n2� residing in each junction. Figure
6�a� depicts the theoretical Ohmic plateaus �̂pn��n ,�p� �Ref.
8� as a function of the electron density n1 /n2 �the different
colors represent the filling factors�. In the numerical calcula-
tions, the electron density is obtained by taking the trace of
the electron correlation function Gn��F�, an energy resolved
quantity. This is defined to be Gn=G	inG† where 	in=
−2 Im�	s+	d� for T=0 K. Electron density in either the
n / p medium can then be computed via the integral n
=��Gn�d�, where the averaging � . . . � is performed over the
spatial dimension.

Figures 6�b�–6�d� plots the linescan for the following
cases �i� �n=�p �ii� �n=2 and �iii� �n=6, respectively. In
general, the numerical results show satisfactory agreement
with the experiments. As previously addressed,7 the junction
conductance with lower filling factors such as �pn�2,2� and
�pn�2,6� plateau off at the expected Ohmic values of 1 and
3
2 , respectively. However, higher plateaus such as �6,6� and
�6,10� could not be observed experimentally. This suggests
that the interface disorder in the experiment is smaller than
that necessary for complete Landau mode mixing of the
higher plateaus. Figure 5�a� indicates that ID with RMS and
AL of �10 nm should be sufficient. A more recent experi-
ment by Lohmann et al.48 which employed chemical doping
methods to create p-n junctions should exhibits a larger ID.
Although higher plateau measurements were not done in
their experiments, their lowest plateau �pn�2,2� exhibits a
more precise plateau than that reported in.7 However, the
improved precision in measurement is also a direct result of
four terminal measurement.48

The general characteristics of the conductance during pla-
teau transition also agree qualitatively with that of experi-
ments i.e., the decreasing slope ��pn /�n for the higher pla-
teaus transitions. This is attributed to the smaller peak in the
density of states �of the so-called extended states� of the
higher LL.49 Another general remark can be made about the
conductance plateau. Theoretically, the inter-LL energy spac-

ing decreases with higher LL in a manner that is proportional
to �n−�n−1, n being the LL’s index. However, the inter-LL
spacing as function of charge density n1/2 �inter-LL spacing
herein denoted as �n� is approximately equidistant as shown
in Fig. 6�a�. The conductance plateau width for the filling
factor �n=�p could then be expressed as �n−� / ���pn /�n�,
where �=2e2 /h. Since ��pn /�n decreases with increasing �,
the plateau width has to also decrease accordingly. This ren-
ders the observation of conductance plateau at higher LL
more challenging in experiments. Nevertheless, our study
suggests that the observations of junction plateaus up to fill-
ing factor of 6 might be possible.

VI. SUMMARY

In summary, we conducted a systematic study of graphene
p-n junction conductance in the quantum Hall regime. Often,
the disorder in magnetotransport calculations are modeled in
an implicit manner through a random on-site energy fluctua-
tion. In this work, we had undertaken the effort to explicitly
modeled the various disorder in order to uncover the under-
lying physical mechanisms played by p-n interface and edge
disorders on the ballistic-Ohmic quantum Hall plateau tran-
sition. We found that the former mechanism equilibrates the
electron/hole Landau modes along the interface while the
latter dilute the isospin information of the ground-state LL in
an armchair edge ribbon. For a given Landau filling factor
combination, ��n ,�p�, we found that both zigzag and arm-
chair ribbons require about the same p-n interface disorder
strength to recover the Ohmic plateaus, albeit edge disorder
is required for the latter. From our numerical calculations, we
found that p-n interface disorder with a root-mean-square
roughness of 10 nm is sufficient in achieving complete mix-
ing of the electron/hole Landau modes. However, the sloppi-
ness in the quantum Hall plateau transition induced by the
p-n interface disorder and the accompanied decreasing pla-
teau widths with increasing filling factor makes it challeng-
ing to observe these higher plateaus experimentally.

From a theoretical standpoint, we argued that the mixing
of electron/hole Landau modes along the interface alone
does not guarantee the recovery of the Ohmic plateaus. We
extended the valley isospin argument proposed by Tworzydlo
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FIG. 6. �Color online� �a� depicts the theoretical Ohmic plateaus �̂pn��n ,�p� �Ref. 8� as a function of n1 /n2 where the different colors
represent the filling factors. �b�–�d� plots the linescan for the following cases �i� �n=�p �ii� �n=2, and �iii� �n=6 respectively, and compare
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TONY LOW PHYSICAL REVIEW B 80, 205423 �2009�

205423-8



and co-workers9 with a Chalker-Coddington14 type argument
to highlight this point, and corroborated the calculations with
numerical simulations. It is demonstrated numerically that
both interface and edge roughness �or intervalley scattering�
are in general necessary for the crossover between the two
theoretical limits, i.e., ballistic and Ohmic. Last, but not
least, this work underscores the importance of including both
interface and edge disorder in the modeling of quantum Hall
transport phenomena, especially when interpreting experi-
mental data.

ACKNOWLEDGMENT

We gratefully acknowledge support of the Nanoelectronic
Research Initiative through the Institute for Discovery and
Exploration �INDEX� and the generous computational sup-
port from Network for Computational Nanotechnology. T.L
would like to thank M. Lundstrom and K. Wakabayashi for
useful suggestions and discussions.

APPENDIX: BOUNDARY CONDITIONS AND EDGE
ISOSPINS FOR ARMCHAIR RIBBONS

We consider an armchair ribbon where the two edges are
at y=yT �top� and y=yB �bottom�. Along y=yT, the wave

function �= ��A ,�B ,−�̃B , �̃A� must satisfy the boundary
conditions,54

�A + �̃Ae−i�yT = 0, �A1�

�B + �̃Be−i�yT = 0, �A2�

where �=4� /3a and a is the lattice constant of graphene.
We can rewrite Eq. �A2� in the form �=M�, where,

M = � 0 − e−i�yT

− ei�yT 0
� � �0 1

1 0
� . �A3�

With some matrix algebra we can show that,

M = �v�T · 
�� � �n�T · �� � , �A4�

by defining v�T= �cos��yT� , sin��yT� ,0� and n�T= �−1,0 ,0�.
Repeating this procedure for yB, we require v�B
= �−cos��yB� ,−sin��yB� ,0� and n�B= �1,0 ,0�. It is straight-
forward to see that,

v�T · v�B = cos��W + �� � cos��� �A5�

where W=yT−yB.
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