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Mobility anisotropy in monolayer black phosphorus due to scattering by charged impurities
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We explore the charged-impurity-scattering-limited mobility of electrons and holes in monolayer black
phosphorus (BP), a highly anisotropic material. Taking full account of the anisotropic electronic structure in
effective mass approximation, the zero-temperature momentum relaxation time and the charge carrier mobility
are calculated based on the Boltzmann transport equation. For carrier densities accessible in experiments, we
obtain anisotropy ratios of 3–4. These results are somewhat larger than mobility anisotropy ratios determined
experimentally for multilayer BP samples, but due to the complex dependence of the scattering rates on the
anisotropy, they are strikingly smaller than the effective mass ratios.
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I. INTRODUCTION

Black phosphorus (BP), its puckered layered form, is one
of the thermodynamically more stable phases of phosphorus at
ambient temperature and pressure [1–4]. The recent successful
exfoliation of BP [5–6] multilayers and monolayers has
triggered much interest in this material. Multilayer BP has
a direct bandgap that spans the range of 0.3–1.5 eV, depending
on the number of layers [7–10], thus making it an excellent
candidate material for infrared optoelectronics [11–13]. Its
good electrical transport properties, with the highest carrier
mobility after graphene, and a finite electronic gap larger
than kBT at room temperature, also make it a promising
candidate for nanoelectronics [15,16]. Since each BP layer
has a puckered structure due to sp3 hybridization, the material
has highly anisotropic electrical and optical properties. This
includes anisotropic charge carrier mobility [4,5,14,17] and
linear dichroism in optical absorption [2,8–10,14,18]. Indeed,
the BP crystal structure gives rise to highly anisotropic energy
bands with the in-plane effective masses along the two crystal
axes, armchair and zigzag, differing by an order of magnitude.
For example, the effective masses in bulk BP were measured
with cyclotron resonance techniques to be me

xx = mh
xx =

0.08m0 and me
yy = 0.7m0, mh

yy = 1.0m0 [19]. For monolayer
BP, these masses were predicted to be me

xx = mh
xx = 0.15m0,

with me
yy and mh

yy being the same as in bulk BP [8,20]. A very
naı̈ve expectation, therefore, based on a constant momentum
relaxation time, is that the charge carrier mobility anisotropy
ratios might be roughly between 4.5 and 12. However, low
temperature transport measurements on multilayer BP thus far
have yielded anisotropy ratios of between 1.5 to 2 [6,14,17].
Reconciling the large anisotropy in its electronic bands with
the moderate mobility anisotropy observed is important for the
fundamental understanding of transport properties in BP.

There have been several theoretical studies on the
anisotropic transport properties of BP [9,21,22]; however,
the anisotropy of scattering was not treated explicitly. This
is because the momentum relaxation time evaluated with the
Boltzmann transport equation does not have a closed form
solution for an anisotropic material [23–26].The problem has
been avoided so far with approximations that are not entirely
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suitable. In this paper, we describe our methodology of solving
for the charged-impurity-scattering-limited anisotropic mobil-
ity of BP with the Boltzmann transport equation in relaxation
time approximation, accounting for the full anisotropy of
the problem. The momentum relaxation time depends not
only on the wave vector of the incoming state, but also on
the direction of electric field. We found that the mobility
anisotropy ratio is highly sensitive to the distribution of the
charged impurities and can range from 1.5 to 7. For uniformly
distributed impurities in the substrate, we estimated mobility
anisotropy ratios of about ∼3.5−4 for monolayer BP, i.e.
significantly less that the effective mass anisotropy ratio. We
discuss how mobility and its anisotropy depend on impurity
distance and charge carrier density.

II. MODEL DESCRIPTION

We consider monolayer BP on an insulating substrate with
charged impurities located in the substrate at a distance that is
generally large compared to the thickness of the BP layer, as
illustrated in Fig. 1(a). The anisotropic energy dispersion of
BP in the vicinity of the conduction band minimum at the �

point is described in effective mass approximation as [1,2]

E(�k) = �
2

2

(
1

mxx

kx
2 + 1

myy

ky
2

)
, (1)

where mxx and myy are the effective masses along x (armchair)
and y (zigzag) directions. Charge carriers in this conduction
band interact with the charged impurities in the substrate via
the Coulomb interaction. Coulomb scattering is an elastic
process, and Fig. 1(b) illustrates the scattering phase space
from the incoming state |�ki〉 to the outgoing state |�kj 〉. The
transition rate P�ki ,�kj

can be expressed by Fermi’s golden rule

P�ki ,�kj
= 2π

�
|〈�kj |H |�ki〉|2nimpδ[E(�ki) − E(�kj )]. (2)

Here, H is the Hamiltonian describing the screened Coulomb
interaction between the charge carriers and charged impurities
of sheet density nimp. (In this paper, we assume a typical
impurity concentration of nimp = 1012 cm−2 unless stated
otherwise.) The constant density of states (DOS) g2D = md

π�2 ,
where the DOS effective mass md = √

mxxmyy leads to a
simple expression for the linear, static polarization function
�(�q). Taking the image charge into account, the matrix
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(a)

(b)

FIG. 1. Model structure schematic. (a) BP/SiO2 as semiconduc-
tor/insulator layer structure, with a charged impurity represented by
a yellow dot at distance d . (b) Charged impurity scattering occurs on
an ellipsoidal phase space contour, with x and y being the armchair
and zigzag directions of BP, respectively.

element in Eq. (2) is written as [27]

|〈�kj |H |�ki〉| = 2πe2e−q·d

qκ + 2πe2�(�q)
. (3)

Since our focus is on elastic scattering, we use a static
effective dielectric constant of κ = κair+κSiO2

2 ≈ 2.5 for the
air/SiO2 (substrate) half spaces. Here, d is the out-of-plane
vertical distance between the impurity and BP layer. The
scattering wave vector is denoted by �q = �kj − �ki , and �(�q)
is the anisotropic two-dimensional (2D) polarizability of BP.
In general, �(�q) depends on �q and, in the limit of zero
temperature, reduces to [28–30]

�(�q) = g2DRe

[
1 −

√
1 − 4EF

E(�q)

]
, (4)

where EF = �
2πn
md

is Fermi energy, and n is the electron
(or hole) density. Furthermore, it can be shown that �(�q)
is isotropic for q ≡ |�q| constrained by q � 2|�kF · q̂|, which
corresponds to the phase space illustrated in Fig. 1(b). Thus,
�(�q) simply reduces to g2D in the zero-temperature limit [30].

For finite temperature, scattering is still elastic but no longer
limited to the Fermi surface. Therefore, an anisotropic �(�q)
in Eq. (4) is needed.

We are now ready to write down the anisotropic momentum
relaxation time τm, derived from the Boltzmann transport
equation (see Supplemental Material [31])

1

τm(ξ̂ ,�ki)
= 1

(2π )2

∫
all �kj

d2�kj P�ki ,�kj

{
1 − [ξ̂ · �v(�kj )]τm(ξ̂ ,�kj )

[ξ̂ · �v(�ki)]τm(ξ̂ ,�ki)

}
.

(5)

Here, ξ̂ is the direction of the applied electric field and �v(�k) =
1
�
∇�kE(�k) is the group velocity. For T = 0 K, scattering only

occurs at the Fermi level, that is E(�ki) = EF in Eq. (2). It is
worth pointing out that the relaxation time of an anisotropic
material depends both on the direction of the electric field ξ̂

and on the wave vector of incoming state |�ki〉. The magnitude
of the electric field |�ξ | is of course irrelevant in linear response.

For an isotropic 2D electron gas, mxx = myy , and the
relaxation time is the same for all |�ki〉 and does not depend
on ξ̂ , i.e. τm(ξ̂ ,�ki) = τiso. Then Eq. (5) can be reduced to an
explicit integral

1

τiso
= 1

(2π )2

∫
all �kj

d2�kj P�ki ,�kj
(1 − cosθij ), (6)

where θij is the scattering angle between |�ki〉 and |�kj 〉.
The strongly anisotropic electronic structure of BP

( myy

mxx
≈ 7) requires solving for the momentum relaxation time

τm(ξ̂ ,�ki) from the implicit integral in Eq. (5). We discuss briefly
our numerical procedure. First, we recast Eq. (5) in cylindrical
coordinates, arriving at

1

τm(ξ̂ ,�ki)
= 1

(2π )2

∫ 2π

0
dθj

{
βMi,j

1

2β

×
[

1 − α[�kj = (β,θj )]τm[ξ̂ ,�kj = (β,θj )]

α(�ki)τm(ξ̂ ,�ki)

]}
,

(7)

where

Mi,j = 2π

�
|〈�kj |H |�ki〉|2nimp

(
�

2cos2θj

2mxx

+ �
2sin2θj

2myy

)−1

, (8)

and we introduce β = kj

√
E(�ki )
E(�kj )

, α(�k) = ξ̂ · �v(�k) to simplify

the notation. We further identify W (θj )=( �
2cos2θj

2mxx
+�

2sin2θj

2myy
)−1,

which can be viewed as a DOS along the energy contour.
In arriving at Eq. (7), we made use of the δ function property,
δ(β2 − kj

2) = 1
2βj

[δ(kj + β) + δ(kj − β)]. We rewrite Eq. (7)

as a system of linear equations for τi ≡ τm(ξ̂ ,�ki), where
i = 1, . . . ,N stands for the ith discrete incoming state |�ki〉
along the elliptical k contour. Writing b = 1

(2π )2
�θj

2 , with
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�θj = 2π
N−1 , and αi ≡ α(�ki), Eq. (7) can be recast as

− αi + b
∑

j

Mi,jαiτi

= b(Mi,1α1Mi,2α2 · · · Mi,NαN )

⎛
⎜⎜⎝

τ1

τ2
...

τN

⎞
⎟⎟⎠, (9)

for all i. Equation (9) can be written in matrix form as
[T ]|τm〉 = |α〉, and the array of τm is found by inverting [T ]
iteratively. In our computation, we employ a total of N = 1000
points to achieve convergence of norm(||τm〉′−|τm〉|)

norm(|τm〉) < 0.01, with

norm(|τm〉) =
√

τ 2
1 + τ 2

2 + · · · τ 2
N . Here, |τm〉′ represents the

(l + 1)th iteration. To the best of our knowledge, no similar
method for solving for the relaxation time in anisotropic media
has been presented. However, it is noteworthy to mention that
nonclosed-form solutions of the Boltzmann transport equation
are also encountered when dealing with isotropic materials
and inelastic processes [23,24].

III. ANISOTROPIC MOMENTUM RELAXATION TIME

Following the model described in the last section, we
compute the anisotropic momentum relaxation times τm(x̂,�ki)
and τm(ŷ,�ki), assuming T = 0 K, and hole effective masses of
mxx = 0.15m0 and myy = 1.0m0, unless otherwise stated [8].
The results are plotted in Fig. 2(a). The average momentum
relaxation times 〈τm〉 = 1

N

∑
i τm(ξ̂ ,�ki) are plotted in Fig. 2(b).

The calculated momentum relaxation time is on the order
of picoseconds for the assumed impurity concentration, with
τm(ŷ,�ki) > τm(x̂,�ki), and a relaxation time anisotropy ratio of
≈ 5 is obtained. Momentum relaxation favors backscattering
against the direction of the electric field. This is apparent from

the 1 − [ξ̂ ·�v(�kj )]τm(ξ̂ ,�kj )

[ξ̂ ·�v(�ki )]τm(ξ̂ ,�ki )
term in Eq. (5), which in the isotropic

case will reduce to 1 − cosθij in Eq. (6). Due to the band
anisotropy, backscattering requires a larger q when ξ̂ is along
y. Since Mi,j decreases with increasing q, this leads to a larger
momentum relaxation time, i.e. τm(ŷ,�ki) > τm(x̂,�ki).

In addition to its dependence on the direction of electric
field, τm also depends on the incoming state wave vector �ki .
Considering for simplicity the case of d = 0, the scattering
matrix element Mi,j is independent of the initial state �ki , if
q � 2πe2

κ
g2D . Since q increases with the Fermi energy, one

can identify a carrier density at which τm changes from being
independent of �ki to being �ki dependent. Figure 2(a) reflects
this behavior. When the carrier density is small enough, such
that q is negligible compared to the screening term 2πe2

κ
g2D,

τm is independent of �ki [red curves in Fig. 2(a)], whereas for
large n, we observe that τm has minima when θi = π

2 and
3π
2 . The scattering matrix element Mi,j in Eq. (8) depends

on an effective angular DOS W (θj ). In the limit of extreme
anisotropy, i.e. myy � mxx , the maxima of W (θj ) occur near
θj = π

2 and 3π
2 . It can be seen from Fig. 1(b) that q is zero in

that limit when θi = π
2 , and Mi,j reaches a maximum. As a

result, τm has a minimum at θi = π
2 for high carrier densities.

Increasing carrier density n increases the effective q involved

FIG. 2. Calculated momentum relaxation time τm and its de-
pendence on impurity distance d , carrier density n, and electric
field direction ξ̂ . Solid and dashed lines are for ξ̂ along x and y

directions, respectively. (a) τm varies with the initial wave vector �ki

for d = 1 nm, τm(x̂,�ki) < τm(ŷ,�ki). (b) Average 〈τm〉 dependence on
n, for different d .

in scattering. Therefore, increasing d and/or n lead to smaller
Mi,j and larger 〈τm〉, as shown in Fig. 2(b).

IV. ANISOTROPIC MOBILITY

With τm(ξ̂ ,�ki) computed, the effective mobility μ or
conductivity σ at T = 0 K can be investigated. For ξ̂ along
the x direction, we define the relevant mobility as

μxx = gse

(2π )2n

∫
d2�kvx

2(�k)τm(x̂,�k)
∂f

∂E
. (10)

An analogous mobility can be defined for ξ̂ along the y

direction. Here, μxx and μyy are nonzero elements of the
mobility tensor vx(�k) = �kx

mxx
, gs = 2 is the spin degeneracy,

∂f

∂E
= 1

kBT
f (E)[1 − f (E)] is a δ function at zero temperature
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V
s-
1 )

FIG. 3. Calculated mobility and anisotropy ratio, related to
impurity distance d , and carrier density n. Impurity density nimp =
1012 cm−2 (a) mobility μxx > μyy . Solid and dashed lines represent
μxx and μyy , respectively. (b) Anisotropy ratio μxx

μyy
changing as a

function of n. Solid and dashed lines represent uniform model and
constant distance model, respectively.

[f (E) is the Fermi-Dirac distribution]. As d or n increases, τm

increases as previously discussed, leading to increasing mobil-
ity, as shown in Fig. 3(a). Although τm(x̂,�ki) < τm(ŷ,�ki), we
find μxx > μyy . The mobility depends on (ξ̂ · �v)2; hence, the

mobility anisotropy ratio is μxx

μyy
∼ ( myy

mxx
)2 〈τm(x̂,�ki )〉

〈τm(ŷ,�ki )〉 . In this case,

( myy

mxx
)2 is approximately equal to 44. The smaller anisotropy

ratio observed is due to the opposing trend of the momentum
relaxation time. As illustrated by dashed lines in Fig. 3(b), only
when d = 0 does the anisotropy ratio decrease monotonically
as a function of n in the range investigated. When d = 0, for
each dashed μxx

μyy
curve, there is a minimum located around

ncut = (2πd2)−1 that originates from the scattering matrix
element Mi,j , depending exponentially on q · d. Therefore,
d defines an effective cutoff for q, and correspondingly a

finite ncut. Besides, all curves approximately share a similar
minimum of ≈ 1.5. For larger d, the minimum at ∼(2πd2)−1

is found at smaller n. It is interesting to note that our calculated
anisotropic ratio varies from 1.5 to 7 depending on the values
of n and d.

To eliminate the effect of the impurity distance d, we em-
ploy a uniform impurity distribution model. Using n0 = nimp

t
to

replace nimp in Eq. (2), where t = 300 nm is the total thickness
of the SiO2 layer, we replace the matrix element in Eq. (3) with
|〈�kj |H |�ki〉| = 2πe2e−q·z

qκ+2πe2�(�q) . The mobility and anisotropy ratios
calculated using the uniform impurity distribution model are
shown as black curves in Figs. 3(a) and 3(b). As we stated
above, increasing distance leads to increasing mobility. The
curve varies similarly to the d = 0 case and is now also
monotonic as a function of n, which can be understood as the
impurities nearest to BP have the largest influence. Uniform
distribution of the impurities also reduces the sensitivity
to n.

V. COMPARISON WITH EXPERIMENTS

In our calculation for monolayer BP, we find hole mobil-
ities on the order of 103–104 cm2 Vs−1 for carrier densities
1012–1013 cm−2 and transport along the low effective mass
direction. On the experimental side, hole Hall mobility of
order 103 cm2 Vs−1 at carrier density of about 6.7 × 1012 cm−2

has been observed at low temperature [14,17]. This would
suggest that our assumed impurity concentration of nimp =
1012 cm−2 probably underestimates the experimental situation,
or there could be other sources of scattering, e.g. neutral
impurities, short-range trap states, and surface roughness. A
better quantity for comparison with experiment may be the
anisotropy ratio μxx

μyy
, which does not depend on nimp.

The mobility anisotropy ratios for holes are evaluated to be
∼3.5–4, across the range of hole densities shown in Fig. 3(b).
Using me

xx = 0.15m0 and me
yy = 0.7m0, we calculate the

electron mobility anisotropy ratio as ∼2.4–3.2 across the same
range of carrier densities. These anisotropy ratios are larger
than μxx

μyy
≈1.8 obtained from Hall hole mobility measurements

at 120 K [14], and results obtained from nonlocal resistance
measurements, which yielded μxx

μyy
≈ 1.66 ± 1.1 at 5–50 K On

the other hand, angle-resolved field effect mobility measure-
ments yield a ratio of ∼2–4 [17]. If we base our calculation on
the effective masses of bulk BP [19], the resulting anisotropy
ratio is larger and deviates further from experiment.

One may identify several possible reasons for the discrep-
ancy. First, few-layer BP samples with a thickness around
10 nm were used in the experiments. Their multisubband
electronic structures can lead to scattering between subbands.
Furthermore, the effective masses in few-layer samples are
at present uncertain. Indeed, first-principle calculations yield
a wide range of effective masses depending on the method
used [9,32–34]. However, our transport calculation would
suggest that the mass anisotropy ratio in these experimental
samples should be less than 10, based on the measured mobility
anisotropy. Additionally, experimental measurements were
performed at 10–120 K, where electron-phonon scattering is
not completely quenched, and might reduce the anisotropy.
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The mobility anisotropy observed in experiments so far
is relatively insensitive to carrier concentration and more
consistent with our case of uniform impurity distribution. This
might suggest that charged impurities in experimental samples
are probably due to bulk dopants, perhaps introduced as grown.
With advances in BP growth techniques, one may eventually
approach situations where the mobility is limited by interfacial
impurities like in the case of state-of-the-art semiconductor
devices. We defer the study of these issues to future work.
We also executed a calculation of the mobility assuming an
extremely short-range potential, i.e. by replacing Eq. (3) with
a q-independent potential, and found a mobility anisotropy
ratio of ∼4.67, independent of n.

To summarize, we have calculated the charged-impurity-
scattering-limited hole mobility of monolayer BP within a
Boltzmann transport model, considering the full anisotropy of
the transport and electronic structure explicitly. We explored
the momentum relaxation time dependence on the electric field
direction as well as on the incoming wave vector. Although
τm(x̂,�ki) < τm(ŷ,�ki), we find μxx > μyy with anisotropy mo-
bility ratios ∼3.5–4. The influence of the effective mass ratio
is compensated by the opposing trend of the relaxation time.
The approach outlined in this paper can also be applied to other
emerging anisotropic 2D materials, such as the 1T phase of
transition metal dichalcogenides [35–37] and transition metal
trichalcogenides [38–40].
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