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Topological currents in black phosphorus with broken inversion symmetry
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We examine the nature of topological currents in black phosphorus when its inversion symmetry is deliberately
broken. Here, the conduction- and valence-band edges are located at the � point of the rectangular Brillouin
zone, and they exhibit strong anisotropy along its two crystal axes. We will show below that these salient features
lead to linear transverse neutral topological currents, accompanied also by nonlinear transverse charge currents
at the Fermi surface. These topological currents are maximal when the in-plane electric field is applied along the
zigzag crystal axes but zero along the armchair direction.
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Topological current is a well-known physical manifestation
when a crystalline solid possesses a finite Berry curvature
[1–3]. The Berry curvature is a geometrical property of the
Bloch energy band and acts as an effective magnetic field
in momentum space [1]. Hence, topological materials may
exhibit anomalous Hall-like transverse currents in the presence
of an applied electric field, in the absence of a magnetic field.
In topological insulators [4], topological bands with nontrivial
Berry phase lead to propagating surface states that are
protected against backscattering from disorder and impurities.
In transition-metal dichalcogenides, the two valleys carry
opposite Berry curvature, or magnetic moment, giving rise to
bulk topological charge neutral valley currents [5–7]. Recently,
these bulk topological currents were also experimentally
investigated in other Dirac materials, such as gapped graphene
and bilayer graphene systems [8,9].

In this paper, we will show that black phosphorus (BP)
belongs to a broad class of insulating systems with a nontrivial
band structure, where a finite Berry curvature in patches of
the Brillouin zone leads to dissipationless edge currents [7].
Unlike topological insulators [4], the system we are concerned
with in this paper has a zero integrated Berry curvature over a
given band, so that there are no edge states. Nevertheless,
the system that we study has a nonzero Berry curvature
over finite regions of the Brillouin zone, where regions with
opposite Berry curvature are contiguous, and near the center
of the Brillouin zone. They lead to the existence of topological
edge currents, which does not require edge states within
the insulating gap and behaves differently from topological
currents in more well-studied systems such as gapped graphene
and transition-metal dichalcogenides [5–7].

Below, we examine the nature of these topological currents
in BP [10–12], when its inversion symmetry is deliberately
broken. Unlike more well-studied two-dimensional (2D) ma-
terials such as graphene and transition-metal dichalcogenides,
several key differences are notable. First, in monolayer BP,
the conduction- and valence-band edges are located at the �

point of the rectangular Brillouin zone [13]. Second, the energy
bands exhibit strong anisotropy along its two crystal axes. We
will show below that these salient features will lead to linear
transverse neutral topological currents, accompanied also
by a nonlinear transverse charge current. These topological

currents are maximal (zero) when the in-plane electric field is
applied along the zigzag (armchair) crystal axes. We discuss
how these topological effects can be detected electrically and
optically.

In this work, we consider monolayer BP, described with a
four-band tight-binding model [13] as illustrated in Fig. 1(a).
We construct Bloch-like basis functions |χk

j 〉 = ∑
R exp[ik ·

(R + bj )]|φR
j 〉 where R and bj are the lattice and basis vectors,

and the index j runs over all the phosphorus atoms within the
primitive cell, with a single orbital on each atom denoted by
|φR

j 〉. The Hamiltonian matrix can then be constructed from

Hij (k) = 〈
χk

j

∣∣H∣∣χk
j

〉 =
∑

R

eik·(R+bj −bi )hij (1)

where hij ≡ 〈φ0
i |H|φR

j 〉 contains the tight-binding hop-
ping parameter. The hopping parameters [13] used in this
work are t1 = −1.22 eV, t2 = 3.67 eV, t3 = −0.205 eV, t4 =
−0.105 eV, and t5 = −0.055 eV. The secular equation to be
solved is Hk|�nk〉 = Enk|�nk〉, where Hk is the 4 × 4 matrix
of elements Hij (k), |�nk〉 and Enk are the eigenvectors and
eigenenergies.

The Berry curvature for the electronic Bloch states of the
nth band can then be computed from [2]

�n(k) = �n(k)ẑ = ∇k × 〈�nk|i∇k|�nk〉 (2)

and its magnitude has the following explicit form:

�n(k) = 2�
⎡
⎣∑

m�=n

〈�nk|i∂kx
|�mk〉〈�mk|i∂ky

|�nk〉
(Emk − Enk)2

⎤
⎦. (3)

Time-reversal symmetry implies that �n(k) = −�n(−k),
while a crystal lattice with inversion symmetry would require
�n(k) = �n(−k) = 0. Hence, inversion symmetry breaking is
necessary to generate a finite Berry curvature.

We consider some basic symmetry properties of the
Hamiltonian. When the on-site potentials Vj are zero, there
are two inversion centers, i.e., between atom 1 and 2 and
between atom 2 and 3. We denote these space inversion
symmetries as P1 and P2, respectively. In addition, we have
mirror-symmetry operations Mx , which interchange atoms
1 and 2 with atoms 4 and 3, respectively, and My , which is
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FIG. 1. (Color online) (a) Crystal structure of monolayer black
phosphorus and the hopping parameters included in the tight-binding
model. Here, x is along the so-called armchair direction, while y is
along the zigzag direction. (b) Top view of the crystal structure, and
the primitive unit cell is also indicated. (c) and (d) Energy dispersion,
Ek, and its Berry curvature, �k, for the conduction band in the vicinity
of the band minimum at the � point. Inversion symmetry is broken
by applying the following potentials to the basis atoms: V1,4 = 0 eV,
V2 = −0.5 eV, and V3 = 0.5 eV.

diagonal in the atomic species space. We constrain ourselves to
inversion symmetry-breaking schemes with only electrostatic
on-site potentials Vj within each unit cell. First, consider a
perpendicular electric field, i.e., V1 = V2 �= V3 = V4; it breaks
Mx andP2, but notMy andP1. Second, consider electrostatic
potentials staggering along the y (zigzag) direction, i.e.,
V2 = V3 �= V1 = V4. This scheme breaks only P1, but not P2,
Mx , and My . On the other hand, an electrostatic potential
staggering along the x (armchair) direction will break all
inversion symmetries and Mx , except for My . Although this
configuration can generate nonzero Berry curvature, additional
symmetries ensure zero transverse currents in this case, a subtle
point on which we will elaborate below.

Alternatively, the combination of an out-of-plane electric
field and an in-plane lattice commensurate electric field di-
rected along the y direction can break all inversion symmetries,
since V4 − V3 = V2 − V1 �= 0. For example, let us consider
V1,4 = 0 eV, V2 = −0.5 eV, and V3 = 0.5 eV. Figures 1(c)
and 1(d) plot the energy dispersion, Ek, and its Berry curvature,
�k, for the conduction band in the vicinity of the band
minimum at the � point. The smaller electron effective mass
along the armchair direction, x, leads to stronger dispersion as
shown. Indeed, �k is finite and can take either sign in the Fermi
sea of the � valley. This is reminiscent of the conventional
valley physics, e.g., in gapped graphene and transition-metal
dichalcogenides where the Berry curvatures of the two valleys
bear opposite signs, except we have only a single valley in this
case.

In the above-mentioned scheme, the mirror symmetry
My is maintained, even when its inversion symmetries are
being deliberately broken. Time-reversal symmetry requires
that its energy dispersion respects En(k) = En(−k). The
above-mentioned mirror symmetry would entail En(kx,ky) =

En(kx, − ky). These symmetries in combination also imply
En(kx,ky) = En(−kx,ky). For the Berry curvature, which is
analogous to an effective magnetic field, to produce a physical
observable that respects this My mirror symmetry would
require �n(ky) = −�n(−ky). Time-reversal symmetry would
then impose the additional constraint that �n(kx) = �n(−kx).
This accounts for the form of the computed Berry curvature
shown in Fig. 1(d).

Following these considerations, we examine the nature of
topological currents arising from the induced Berry curvature,
within the semiclassical Boltzmann transport theory. In the
presence of an external electric field ξ , the carrier velocity
acquires a nonclassical transverse term due to Berry curvature
as shown [2]:

vn(k) = 1

�
∇kEnk − e

�
ξ × �n(k). (4)

The transverse currents can be partitioned into contributions
from the forward and backward propagating states, denoted
by J ±. By the former (latter), we refer to states the vn(k) of
which is such that S ≡ sign(vn · ξ ) = ±, respectively. J ± can
be computed semiclassically up to second order in the electric
field, i.e., σ±

bulkξ + σ±
surfξ

2 + O(ξ 3), with the conductivities
defined as

σ±
bulk = − e

�

∫
S=±

dkf0(k)�(k),

σ±
surf = e2τ

�2

∫
S=±

dk[∇kf0(k) · ξ ]�(k) (5)

where f0(k) is the Fermi-Dirac distribution function, and τ

is the electron scattering time. The linear contribution to J
is a “bulk Fermi sea” phenomenon and can be partitioned
into forward/backward propagating currents J ±

bulk as illus-
trated in Fig. 2(a). These are counterpropagating currents
which persist even when the system is in equilibrium. These
transverse currents are certainly charge neutral since J +

bulk =
−J −

bulk. Nevertheless, recent experiments have shown that
such transport effects can be detected via a nonlocal transport
measurement [8,9].

On the other hand, the nonlinear contribution to J is a
“Fermi-surface” contribution, and can also be partitioned into
J ±

sur [see Fig. 2(b)]. These currents, however, are nonequilib-
rium in nature and require an electrochemical potential bias.
For example, Fig. 2(c) illustrates the flows of the various
current components in a typical two terminal device under
bias. Unlike bulk currents, the latter has a net charge current
since J +

sur = J −
sur. We contrast this with conventional valley

physics where Fermi-surface contributions lead to transverse
charge neutral currents instead, due to exact cancellation from
the two valleys. Recent work found that finite nonlinear current
can arise when the two valleys are not isotropic [14], leading
to partial cancellation. In a single valley system like BP, the
effect will be maximal.

The symmetry of the Berry curvature, i.e., �n(ky) =
−�n(−ky) and �n(kx) = �n(−kx), has important conse-
quences on the orientation dependence of the various trans-
verse currents.J ±

bulk andJ ±
sur will be zero when the electric field

ξ is directed along the armchair direction. These transverse
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FIG. 2. (Color online) (a) “Bulk Fermi sea” contribution to the
transverse current, which can be partitioned into forward/backward
propagating currents J ±

bulk. These currents are linear with electric
field ξ and persist even in equilibrium. (b) The “Fermi-surface”
contribution, also partitioned into J ±

sur, has a ξ 2 dependence and is a
nonequilibrium phenomenon. (c) Illustration of the various transverse
currents in a typical two terminal device. (d) and (e) Dependence of
the bulk and surface transverse currents with Fermi level μ, expressed
in terms of their conductivities (see text). Calculations assumed a
temperature of 10 K.

currents attain their maximum when ξ is directed along the
zigzag direction.

Figures 2(d) and 2(e) plot the dependence of these bulk and
surface transverse currents with Fermi level μ, expressed in
terms of their conductivities. In a 2D electron gas, μ ∝ n, n

being the carrier density. We found that σbulk ∝ μ and σsurf ∝√
μ. This is consistent with the fact that the number of bulk and

surface Fermi states scales with μ and
√

μ, respectively. The
computed linear response is an order of magnitude smaller
than that predicted for transition-metal dichalcogenides [5].
However, the finite nonlinear response in this case can produce
a comparable or larger effect at higher driving fields.

To gain deeper insight into the above-mentioned issues, we
consider an edge-free model system, an electrostatic junction
with a built-in electric field aligned along the zigzag (i.e., y)
direction. The electrostatic junction provides a built-in electric
field that drives the transverse bulk current response. Here, we
consider the device under an equilibrium condition.

Our approach solves the quantum-mechanical scattering
problem microscopically within the above-mentioned tight-
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FIG. 3. (Color online) (a) Schematic illustrating the electrostatic
junction at equilibrium, along the zigzag y direction. Fermi energy μ

and built-in potential V are indicated. (b) Distribution of transverse
current density J +

x (y), flowing along x, plotted across the junction,
under different applied out-of-plane potential �z and crystal potential
�y as indicated (see text). (c) and (d) Integrated transverse current
under different applied V and �y , respectively. All calculations
assumed μ = 0.5 eV and zero temperature.

binding model. We describe this built-in junction with V (y) =
V tanh( x

α
), as shown in Fig. 3(a), where V is the built-in

potential. In this calculation, we assumed a junction transition
length of α = 60 nm. The Fermi energy, μ, is biased
within the lowest conduction band of BP. We consider the
combined effect of an out-of-plane electric field, V1 = V2 =
1
2�z and V3 = V4 = − 1

2�z, and a periodic crystal potential
commensurate with the BP unit cell, V1 = V4 = 1

2�y and
V2 = V3 = − 1

2�y . A periodic boundary condition is imposed
along x, hence kx can be regarded as a good quantum number.
Assuming semi-infinite perfect leads, then what we have is
essentially a one-dimensional quantum scattering problem.
The scattering wave functions of the tight-binding problem,
as well as a key local observable (e.g., current density, the
quantity of interest here), can be solved numerically through
standard approaches [15–17]. In the following, we show
that a transverse current can indeed flow along the junction,
i.e., x direction, when appropriate symmetries are broken in
consistence with the semiclassical discussion above.

We are interested in the transverse current arising from the
forward propagating states deep in the Fermi sea, as depicted
by the shaded part of the energy dispersion in Fig. 3(a). Here,
all calculations assumed μ = 0.5 eV and zero temperature. In
Fig. 3(b), we plot the calculated transverse current density
profile J +

x (y) across the junction, assuming V = 0.2 eV.
When �y and �z are nonzero, crystalline inversion symmetry
is broken and a finite Berry curvature is present. Indeed, a
finite transverse current can be observed, which peaks at the
middle of the junction where the electric field is maximum.
Away from the junction, J +

x goes to zero.

235447-3



TONY LOW, YONGJIN JIANG, AND FRANCISCO GUINEA PHYSICAL REVIEW B 92, 235447 (2015)

zigzag

Jbulk
_

kx

ky

Built-i
electri

field

Jbulk
+

kx

ky

in 
ic 

d

FIG. 4. (Color online) Schematic illustrating the excitation of
states with positive or negative Berry curvatures with circularly
polarized light. For example, right circularly polarized light couples to
states with positive Berry curvatures, which will produce an electrical
current flowing towards the right contact and the top edge. The
transversal current changes sign with �z.

Symmetry arguments inform us that the transverse current
should be odd with respect to V , i.e., J ±

x (−V ) = −J ±
x (V ).

In the small V limit, the Hamiltonian will recover the mirror
symmetry My . Since My does not affect the transverse
current, we have J +

x (−V ) = J −
x (V ). On the other hand,

time-reversal symmetry would require J +
x (V ) = −J −

x (V ).
Taken together, we have J +

x (−V ) = −J +
x (V ). Hence, the

response to a small applied V should be linear. Numerical
results shown in Fig. 3(c) confirm this simple argument.

From the numerics, we found that the transverse current has
two distinct contributions, i.e., I+

x ∼ �zξ + �y�zξ . These
trends can be observed in Figs. 3(c) and 3(d). The latter
contribution is analogous to the bulk Fermi sea semiclassical
Jbulk we discussed earlier [18]. At small V , we clearly
distinguish the linear regime consistent with the semiclassical
resultJbulk ∝ ξ . We observed a rollover in I+

x at larger positive

V , as more states deep in the Fermi sea are completely reflected
due to the energy barrier. When V is negative, there is no
energy barrier, hence the linear trend persists. The former
contribution to I+

x is a residual transverse current that probably
has a different origin. A finite �z breaks Mx symmetry and
produces a current along x. Since the magnitude of I+

x is
tunable by varying �z, it provides an obvious way for the
detection of the proposed effect. The proposed effect can also
be detected optoelectronically. Figure 4 illustrates a possible
experimental scheme. Circularly polarized light can couple
preferentially to states with Berry curvatures of a particular
sign [5,6] and produce a net longitudinal and transversal charge
current. We stress that there will be no net charge current in
monolayer transition-metal dichalcogenides instead [5], due
to cancellation from the two valleys.

Last but not least, we discuss some considerations on the
experimental observation of this effect. Breaking of the crystal
inversion symmetry is key. Finding the appropriate substrate
which is commensurate along the zigzag direction of BP
is needed to provide a finite �y . Certainly, high mobility
samples are desirable for the observation of the proposed
effect. Recently, encapsulation of BP with hexagonal boron
nitride [19], all within a controlled inert atmosphere, has
allowed for higher carrier mobilities [19–23]. Indeed, high-
quality BP has made possible the first observation of prominent
quantum magneto-oscillations in these devices [19–23]. The
results we obtained here are also applicable to other emerging
2D materials with broken inversion symmetry and anisotropic
bands at the � valley [24,25].
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