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Nonlocal electromagnetic response of graphene nanostructures
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Nonlocal electromagnetic effects of graphene arise from its naturally dispersive dielectric response. We present
semianalytical solutions of nonlocal Maxwell’s equations for graphene nanoribbon arrays with features around
100 nm, where we found prominent departures from its local response. Interestingly, the nonlocal corrections are
stronger for light polarization parallel to the ribbons, which manifests as an additional broadening of the Drude
peak. For the perpendicular polarization case, nonlocal effects lead to blue-shifts of the plasmon peaks. These
manifestations provide a physical measure of nonlocal effects, and we quantify their dependence on the ribbon
width, doping, and wavelength.
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Introduction. Constitutive relationships present equations
that bridge the materials’ properties of a medium to the electro-
magnetic fields within. In classical electromagnetism, dating
from the 19th century, methods for considering more complex
material properties, such as anisotropy and nonlinearity, have
been developed and widely used [1]. In developing these
relationships, nonlocal effects or the so-called spatial disper-
sion are neglected for most natural media [2,3]. However, the
advances in fabricating materials with controlled nanoscale
geometries have enabled artificially structured metamaterials
with features orders of magnitude smaller than the free-space
wavelength. In these regimes, nonlocal effects are becoming
increasingly important [4–6]. In metallic devices, it was
evidenced that structures with sharp features lead to intense
accumulation of electrons which in turn yields large nonlocal
effects [7–9]. In addition, it is shown that the propagation of
surface plasmons is also influenced by the nonlocal effects
[10]. Under these conditions, one needs to solve Maxwell’s
equations for a medium where the dielectric displacement
vector D(r,ω) depends not only on electric field E(r,ω) but
also on its spatial derivatives.

In this Rapid Communication, we discuss the nonlocal
electromagnetic response in graphene, whose influence on the
optical properties of graphene plasmons and nanostructures
remains relatively unexplored [11–21]. Recently, graphene
received considerable attention as a plasmonic material [11]
due to its semimetallic nature, allowing for electrically tunable
plasmonic devices for terahertz to midinfrared applications
[12–16]. The plasmonic resonances in graphene can be
engineered by patterning it into nanostructures such as
ribbons, disks, antidots, or stacks [17–19], where nonlocal
effects might be important, especially with the continual
downscaling in sizes.

Models. Graphene is traditionally modeled by a homo-
geneous local conductivity σ (ω) relating the current density

*Corresponding authors: arya.fallahi@cfel.de and tlow@umn.edu
†Deceased.

J(r,ω) flowing on the surface to the tangential electric field
E(r,ω). However, when taking the nonlocal effects into
account, the surface current is a function of both the imposed
electric field as well as its spatial derivatives. Written in the
most general way for a linear two-dimensional (2D) material,
it bears the following form:

J(r,ω) = σ (∇,ω)E(r,ω) =
(

σxx σxy

σyx σyy

)
(∇,ω)

E(r,ω), (1)

where σ is the graphene’s conductivity tensor and ∇ =
x̂∂/∂x + ŷ∂/∂y denotes the bidimensional spatial derivative
operator. Coordinate transformation from spatial to spectral
domain makes the sophisticated nonlocal equations tractable,
i.e., J̃(k,ω) = σ (k,ω)Ẽ(k,ω), where the tilde sign denotes
quantities in the spectral domain. Graphene’s conductivity
tensor σ (k,ω) can be obtained by various techniques [22–27].
In this work, we employed the Bhatnagar-Gross-Krook (BGK)
model [25], which provides us with an analytical form for the
longitudinal and azimuthal components of σ (k,ω). According
to the BGK model the spatially dispersive conductivity of
graphene can be obtained from the following equations:

σxx = γ
Ixx + γD�qy(Ixxqy − Iyxqx)

Dσ

,

σxy = γ
Ixy + γD�qy(Ixyqy − Iyyqx)

Dσ

,

σyx = γ
Iyx + γD�qx(Iyxqx − Ixxqy)

Dσ

,

σyy = γ
Iyy + γD�qx(Iyyqx − Ixyqy)

Dσ

(2)

with

Ixx = 2π
v2

F q2
yq

2R − αvF qxp
2 − α2p2(1 − R)

v2
F (α + vF qx)q4

,

Ixy = −2πqxqy

v2
F q2R + 2αvF qx + 2α2(1 − R)

v2
F (α + vF qx)q4

,
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Iyx = −2πqxqy

v2
F q2R + 2αvF qx + 2α2(1 − R)

v2
F (α + vF qx)q4

,

Iyy = 2π
v2

F q2
xq

2R + αvF qxp
2 + α2p2(1 − R)

v2
F (α + vF qx)q4

(3)

and

γ = i
e2kBT

π2�2
ln

{
2

[
1 + cosh

(
μ

kBT

)]}
,

γD = −i
vf

2πωτ
, Dσ = 1 + γD�q2,

q2 = q2
x + q2

y , p2 = q2
x − q2

y ,

� = − 2π

vF q2

⎛
⎝1 − α√

α2 − v2
F q2

⎞
⎠ ,

R = α + vF qx√
α2 − v2

F q2
, α = ω + i/τ.

(4)

The BGK model also compares well with the Kubo formula
[22–24] or the so-called random phase approximation.

From the theory of Green’s functions, the radiated electric
field in response to a current excitation J(r) can be written as

E(r) =
∫

G(r − r ′) J(r ′)d r ′. (5)

Introducing the coordinate transformation in spectral domain
ζ̃ (k) = ∫

ζ (r) exp(−ik · r)d r [with the implicit exp(−iωt)
time-harmonic dependence], the equation transforms to the
following algebraic form:

Ẽ(k) = G̃(k) J̃(k). (6)

The superposition of the radiated field obtained from (6) with
the exciting field should satisfy the boundary condition at the
graphene surface, which is formulated as

Ẽ
inc

(k) = [G̃(k) + Z(k)] J̃(k), (7)

where Z(k) is the surface impedance of the graphene layer,
which by definition is just the inverse of the graphene’s
conductivity.

In order to solve Maxwell’s equation with the nonlocal
graphene conductivity σ (k,ω) described above, we follow
the method of moments (MoM) in the spectral domain
[28,29]. Here, we briefly outline the numerical procedure.
However, for the details of the MoM technique for solving
the plane wave interaction with a planar graphene structure,
the reader is referred to [28]. In the spectral MoM, we first
express the incident electric field in the spectral domain,
i.e., Ẽ

inc
(k), using a Fourier transformation, which follows

with evaluating the induced currents J̃(k) using (7), and
then computes the scattered field Ẽ(k) in the spectral domain
using (6) [28]. In order to account for the specific boundary
conditions imposed on J̃(k), (7) is expanded in terms of
well-suited basis functions. Including nonlocal effects within
this method is then straightforward. Instead of a constant
surface impedance (Z), one employs a k-dependent function

FIG. 1. (Color online) Graphene nanoribbons array, doped at
μ = 0.5 eV, residing on an infinitely thick substrate with light
incidence at (a) perpendicular and (c) parallel polarization. Power
transmission spectra are depicted in (b) and (d), respectively. The
simulations are performed with (solid lines) and without (dashed
lines) the spatial dispersion effects.

for the corresponding spectral component of the impedance,
i.e., Z(k). This procedure provides the unique possibility to
account for nonlocal effects in graphene within the Maxwell’s
equations in a numerically tractable fashion.

Results. Using the proposed method, we investigate the
interaction of an electromagnetic wave with graphene nanos-
tructures. We consider the simplest setup where spatial
dispersive effects can manifest, i.e., plane wave illumination on
periodic ribbons array, residing on an infinitely thick substrate,
as illustrated in Figs. 1(a) and 1(c). The inherent structural
periodicity means that the problem can be formulated in a
discrete Fourier space, removing the requirement for any
artificial discretization and the potential appearance of spu-
rious numerical effects. We assume a SiO2 substrate with a
dielectric constant εr = 3.9. Note that we have considered
a nondispersive permittivity for the SiO2 substrate in our
theoretical investigation. However, for realistic comparison
to experiment the dispersive dielectric constant of SiO2 in
the terahertz frequency ranges should be considered [30]. The
simulations are carried out for different nanoribbon widths,
assuming a filling factor of 1

2 , i.e., lattice constant of array
twice the ribbon width. In the graphene’s conductivity model,
we have adopted typical experimental parameters [17]: carrier
lifetime τ = 90 fs, doping at μ = 0.5 eV, and an ambient
temperature T = 300 K.

Figures 1(b) and 1(d) show the computed transmission
spectra for perpendicular (Tper) and parallel polarization (Tpar),
with and without spatial dispersion effects. The resonance
in the transmission spectra for perpendicular polarization is
due to the excitation of localized plasmon modes [13,17,31].
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Spatial dispersion introduces a blue-shift of the resonant
structure. Owing to the uniformity of the problem along
the ribbons (y direction), only the qx-dependent components
in the conductivity tensor are responsible for the observed
nonlocal effects. Moreover, the electric field polarization
allows coupling only to the σxx term. To first order in the
field variations in the graphene sheet (i.e., ∇ · E), σxx has the
following form [25]:

σxx = σ0

(
1 + v2

F

3ω + 2i/τ

4ω(ω + i/τ )2
q2

x

)
≡ σ0

(
1 + αSD

xx

)
, (8)

where σ0 is the graphene’s conductivity in the local limit.
Hence, the dimensionless quantity αSD

xx ∼ 3v2
F q2

x/(4ω2) dic-
tates the amount of nonlocal effects. In 2D graphene, the
plasmon resonance is directly related to its conductivity
via ωpl = qxσxx/2iε, where ε is the effective dielectric
permittivity of the two half spaces. In the local limit, it
reduces to ωpl → ω0 ≡ qxσ0/2iε. The blue-shift due to spatial
dispersion then bears the following form:

δωpl

ωpl

≈ 3v2
f επ�

2

2e2

qx

μ
∝ qx

kf

, (9)

where kf is the Fermi wave vector. The plasmon wave vector
is related to the ribbon width W via qx ≈ 3π/4W , after
accounting for the anomalous reflection phase off the edges
[32]. In our case, the proportionality constant in Eq. (9) is
∼0.4. The crossover between local to nonlocal electromagnetic
response occurs when qx ∼ kf , which unlike metals, can be
tuned in graphene through doping. We defer this aspect to later
discussion.

For the parallel polarization case, light does not couple
to plasmons, and the spectra resembles that of 2D graphene
with a Drude peak at terahertz frequencies. Figure 1(d) plots
the transmission spectra for nanoribbon arrays with different
W . Within a local conductivity model, the spectra produced
all collapse together, since the induced current is directed
along the ribbons and unable to distinguish the presence of
the ribbon edges. Rather unexpectedly, a considerable change
in the spectra is observed when spatial dispersion effects are
included. In general, the nonlocal longitudinal conductivity
can include terms quadratic in qx and qy , and beyond [25],
where the induced current is affected by the spatial variations
transverse to the electric field. From our calculations, the
transmission in the dc limit differs as much as 50% in the
W = 60 nm array. Nonlocal effects also produce an apparent
broadening of the Drude peak.

Visualizing the induced currents in graphene helps with
understanding the different nonlocal responses in these two
polarization cases. Figure 2 plots the induced longitudinal cur-
rent and the radiated electric field for the W = 60 nm ribbons
for perpendicular and parallel polarization, respectively, at
two terahertz frequencies, i.e., 50 cm −1 and 100 cm −1. First,
we see that the induced current in the parallel polarization is
four orders of magnitude larger than the perpendicular case.
This is reasonable since the current in the latter is directed
towards the ribbon edges. The induced current within the
ribbon is very minimal, since the field varies only 1/1000
of the free-space wavelength across the ribbon, and has to be

FIG. 2. (Color online) Induced longitudinal currents in graphene
nanoribbons array (W = 60 nm) with (a) perpendicularly and (c)
parallely polarized light at normal incidence. Calculations are
performed for two frequencies as indicated, with (red lines) and
without (blue lines) spatial dispersion. The transverse electric field
components are displayed: Ex for the (b) perpendicular (red for 1.0
and blue for 0.0) and Ez for the (d) parallel polarization (red for
0.5957 and blue for 0.5956). All displayed results are normalized to
the incident electric field E0.

zero at the edges. This explains the larger induced current in
the parallel polarization at terahertz.

Second, we observe an opposite dependence of the induced
current with frequency for the two polarizations. In the
perpendicular polarization case, the current and its variations
are larger at higher frequencies as depicted in Fig. 2(a). This
follows from the argument above and (8). The parallel polar-
ization case shows the opposite behavior. Figure 2 illustrates
the normalized transverse electric field profiles across the
cross section of the 60 nm ribbon for the two polarizations
at 50 cm −1. As shown in Fig. 2(d), the relative variation in E

is only around 0.01% in the parallel polarization. However,
since this variation occurs over the width of the ribbon,
which is 1/1000 of the free-space wavelength, it translates
to a large field gradient. We estimate that this electric field
gradient amounts to equivalent conductivity variations with
the same order of magnitude as the nondispersive conductivity.
Note that in this particular case, using a simple model with
accuracy up to q2

x will not suffice. The nonlocal corrections
in the conductivity can always be written in terms of q/ω.
Nonlocal effects are prominent in low frequency regime,
resulting in large values for the q/ω term. Therefore, unlike
the perpendicular polarization case, nonlinear contributions
from the higher order terms in the nonlocal conductivity
become significant, making the situation more complex and
the development of a simple model very challenging. The
equivalent conductivity variations, which are also spatially
inhomogeneous, can effectively amount to a broadening in the
spectral information. In our case, it manifests in an apparent
broadening of the Drude peak in Fig. 1(d). The spatial field
variations also impose a qualitatively similar spatial profile on
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FIG. 3. (Color online) Relative shift in the fundamental reso-
nance frequencies, i.e., δωpl/ωpl , due to nonlocal effects for perpen-
dicularly polarized light transmission across a graphene nanoribbon
array, for (a) varying chemical potential at given width W = 60 nm,
and (b) varying widths at given chemical potential of 0.3 eV. Similar
studies for the parallel polarization case, where relative broadening in
the Drude conductivity’s half-width at half-maximum, i.e., δγdr/γdr ,
are displayed in (c) and (d). Dashed lines are model calculations based
on Eq. (7).

the induced currents. In essence, the nonlocal effects introduce
a quantum capacitance to the field and current variations,
which in turn yields significant departure to the local results
in the long-wavelength regime.

Contrary to normal metals, the doping in graphene can be
tuned with a vertical electric field [33]. Hence, the crossover
between local to nonlocal electromagnetic response, which
occurs when qx ∼ kf , can be tuned by either doping or chang-
ing the physical dimension. Figures 3(a) and 3(b) quantify
the nonlocal effects in nanoribbon arrays under perpendicular
light polarization for varying dopings and widths, in terms
of the amount of blue-shift in the plasmon resonance, i.e.,
δωpl/ωpl . The blue-shifts increase inversely with ribbon width
and doping, in reasonable agreement with the simple model
of Eq. (9) as shown. Comparison between the simple model
and numerical results shows good agreement. In Figure 3(a),
the disagreement for small doping is due to finite temperature
effects not accounted for in the simple model. In Fig. 3(b),
the underestimation is due to higher nonlinear terms in the
nonlocal conductivity which are again neglected in the simple
model. Within the experimentally accessible doping and
widths, the blue-shift in the plasmon resonance can be as large

as 10%, which might explain partly the significant plasmon
blue-shifts observed experimentally in narrow ribbons from
local electromagnetic results [17]. Spatial dispersive effects
introduce an in-plane finite quantum capacitance which leads
to a smaller equivalent kinetic inductance and hence faster
plasmons.

For the parallel polarization case, nonlocality in the optical
conductivity leads to an apparent broadening of the Drude
peak at terahertz frequencies. Denoting the Drude peak’s half-
width at half-maximum as γdr , the nonlocal effects can be
quantified through the relative increase in γdr , i.e., δγdr/γdr .
Figures 3(c) and 3(d) quantify the broadening due to nonlocal
effects for varying dopings and widths, respectively. Since the
dispersive part of the longitudinal conductivity includes terms
in various powers of qx and qy [25], nonlocal contribution
to the conductivity increases with 1/Wβ . This is consistent
with the increased broadening as W decreases [Fig. 3(d)]. Like
the perpendicular polarization case, the nonlocal contribution
decreases with doping; however, at a much smaller rate. In fact,
the relative increase in broadening varies very weakly with the
chemical potential. For the parallel polarization, there is no
resonant behavior and the spatial variations of the field are
mainly imposed by the ribbon dimensions. This explains why
nonlocal effects show small variations with doping. Indeed, the
fractional change in the conductivity is independent of μ [see
Eq. (8) and [25]]. With the doping increase and accordingly
a more conductive platform for electron traveling, the field
behavior becomes more independent from nonlocal effects. In
the limiting case of a perfect electric conductor, the nonlocal
effects become negligible.

Conclusion. In this work, we present a modified method
of moment approach that solves the Maxwell’s equations
for a patterned graphene including its general dispersive
conductivity. We consider the simplest geometry, a periodic
array of nanoribbons, where nonlocal effects can be observed.
For the perpendicular and parallel light polarization, nonlocal
effects are manifested as a blue-shift of the plasmon peaks
and additional broadening of the Drude peak, respectively. We
quantified how these nonlocal effects depend on graphene’s
doping and physical dimensions. Interpretation of the optical
response of graphene nanostructures without accounting for
nonlocal effects might lead to inaccurate inference about basic
physical parameters; in particular, the electronic lifetimes.
The approach we outlined adapts to arbitrary shapes and
configurations. In particular, for more complex geometries, an
azimuthal current appears [25] in addition to the longitudinal
current studied in this work for ribbons array. Our study will
be useful for future investigations of graphene metasurfaces
for terahertz and midinfrared devices.
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