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Connectivity of edge and surface states in topological insulators
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The edge states of a two-dimensional quantum spin Hall (QSH) insulator form a one-dimensional helical
metal which is responsible for the transport property of the QSH insulator. Conceptually, such a one-dimensional
helical metal can be attached to any scattering region as the usual metallic leads. We study the analytical
property of the scattering matrix for such a conceptual multiterminal scattering problem in the presence of
time reversal invariance. As a result, several theorems on the connectivity property of helical edge states in
two-dimensional QSH systems as well as surface states of three-dimensional topological insulators are obtained.
Without addressing real model details, these theorems, which are phenomenologically obtained, emphasize the
general connectivity property of topological edge/surface states from the mere time reversal symmetry restriction.
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I. INTRODUCTION

Time reversal symmetry (TRS) has profound and some-
times mysterious consequences in quantum physics. Recently,
in the frontier of condensed matter physics, the exciting
development of two-dimensional (2D) and three-dimensional
(3D) topological insulators (TIs)"> marks a new depth of
our understanding of TR in the quantum exploration of the
material world. The TI materials have strong spin-orbital
coupling (SOC) while maintaining TRS. Prominently, these
materials are characterized by a nontrivial band structure with a
gapped bulk spectrum while their edge excitations are gapless.
Among divergent research activities in this field, the theoretical
proposal of 2D quantum spin Hall (QSH) insulators®® and
their experimental confirmation’® are of core importance to
the whole field. For our purpose, we would like to point
out especially that the nonlocal transport measurement has
confirmed that the transport property of a 2D QSH insulator is
dominated by helical edge states near its edges.®

Different from the traditional integer quantum Hall system,
where TRS is broken by a magnetic field and the edge states are
chiral, the edge states in the QSH system are helical, which are
composed of pairs of counter-propagating modes with opposite
spin polarizations. For each pair, the two branches of states
transform into each other under a TR transformation. Due to
their conducting property, such helical edge states are called
the helical liquid.9 In the 2D QSH phase, the helical states are
localized near edges and separated spatially by the gapped bulk
region. In this paper, we dub the phrase helical metal to refer
to the one-dimensional (1D) metal for which the low-energy
dispersion is characterized by a pair of helical edge states.
Such 1D helical metals are isolated from each other by a
macroscopic distance (e.g., the width of the Hall bar sample).

The Landauer-Buttiker theory (LBT) is one of the most
important frameworks for analyzing the transport property of
mesoscopic systems.!” In the LBT, the transport process is
treated as a quantum scattering problem where the connection
between the carrier reservoir (electrical contacts) and the
mesoscopic system (scattering region) is modeled as semi-

1098-0121/2011/84(20)/205324(5)

205324-1

PACS number(s): 73.61.Ng, 74.78.Na

infinite metallic leads. The central quantity in the LBT is the
scattering matrix, which can be different by using different
leads. In practice, the metallic leads can be described by an
arbitrary single-particle Hamiltonian with some propagating
modes for a given Fermi energy.

In this paper, we will conceptually use the fore-mentioned
helical metals as metallic leads and attach them to the central
scattering region. For such a conceptual scattering problem, we
find that TRS imposes a strong restriction on the form of the
scattering matrix. Then, the condition of a physically realizable
scattering problem is obtained in Theorem A. This restriction
has profound consequences on the connectivity property of
edge states. Based on it, we discuss the connectivity properties
for edge states in the 2D QSH system (embodied in Theorem B)
as well as the surface Dirac cone in the 3D TI (Theorem C).
Several discussions for these theorems are provided.

II. SCATTERING MATRIX WITH HELICAL METAL
AS LEADS

To begin with, let us consider a system with TRS which is
attached with two half-infinite helical metals at its left and right
sides. At energy E, the left lead has two eigenstates, denoted
as |1s); and |15);, while the right lead has eigenstates |1s)
and |15) g, where 1 refers to right-moving and 1 to left-moving,
and s,5 are two spin polarizations with respect to some spin
quantization axis. Two such states form a Kramers’s pair in
each lead, so that they change to each other under time reversal
operation T'. By a proper energy-dependent U(1) gauge fixing,
the two states satisfy

Tlls)p = 15)r, TI15), = —|1s)y, "
T|ls)g = [15)g, T[185)g = —|1s).
Through the above equation, 72 = —1 is respected for spin-

1/2 particles. In general, the spin quantization axis, as well as
wave vectors for the eigenstates, is different for the two leads.
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For the scattering problem, we generally assume the wave
functions on the two leads as

[Y)L = @ I1s). + @3 15) L,
V) r = oot |15)k + Pl 1s) R,
out

in which ¢}, ¢k, are incident wave amplitudes and ¢;%,

24 are outgoing amplitudes. It is convenient to introduce the

incident wave vector a = (¢ ,¢1 )7 and the outgoing wave
vectorb = (92,5 " In the standard scattering problem, the
scattering matrix S can be defined so that we have b = Sa. Due
to particle number conservation, S must be a unitary matrix
with a proper normalization,'? so that TS = 1, from which
we can get a* = STh*. Now let us consider the consequence
of TRS. From Eq. (1), we know that under T: a = a’' =
Ta=—-b"b=>b=Tb=a*,and §' = TST~' = S. Thus
we have a* = —Sb*. Putting these pieces together, we get the
following antisymmetry condition for the scattering matrix:

©))

sT = —&. 3)

This is a strong restriction on the form of the scattering matrix
due to the existence of TRS for the whole system. It turns
out that a lot of interesting results can be derived from this
property. Now let us discuss them as follows.

First, from the antisymmetry property and the unitarity
condition, we can conclude that

0 €
()

Here ¢ is areal phase. This result indicates that near the edge of
a QSH system, the helical state has no back scattering without
a T-breaking barrier or impurities, which is a well-known
property.! We may interpret this result in the connectivity
property of helical states: any T -invariant barrier or impurities
can not break the connectivity of helical states.

Second, following the same procedure, the derivation of
Eq. (3) can be easily extended to the case with an arbitrary
number, say 7, of helical metal leads attached to the central
region, with each lead again characterized by one pair of
helical states. As a mathematical fact, the determinant of an
antisymmetric matrix of odd dimension is zero, i.e., det(S) = 0
when n is odd. Consequently, for that case, S can not be a
unitary matrix, which is one of the very assumptions that leads
us to Eq. (3). To note, the unitarity property of the scattering
matrix is the direct consequence of the conservation law of
the particle number. What is the meaning of such a logical
contradiction? In the above conceptual scattering problem
model, we have assumed that n helical metal leads are attached
to the central region and thus form a standard multiterminal
scattering problem. While the helical states near two edges of a
QSH system are separated spatially by the gapped bulk region,
which encouraged us to coin the concept of “helical metal” for
the conducting edge, they are actually topologically correlated.
The above logical contradiction means the impossibility of
a reasonable scattering matrix in a conceptual scattering
problem with an odd number of helical leads. Based on these
analysis, we can state the following theorem:

Theorem A. In a physical scattering problem with TRS, any
central region allows only an even number of helical metals
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(each with a single pair of helical states) as conduction leads
attached upon it.

It can also be straightforwardly shown that the possible
existence of any normal leads (which, by definition, must be
composed of an even number of helical pair states) in the
conceptual scattering problem does not change the statement
in Theorem A. It is noteworthy that a related theorem was
given by Wu et al..’ in which they proved that the helical
metal can not be realized in 1D lattice models with TRS,
which is termed a no-go theorem. It turns out that this no-go
theorem is a direct consequence of Theorem A: if we can
construct a 1D model to be a helical metal, then such a helical
metal will become a physical system by itself (instead of being
an edge subsystem of another system). So, we can use it as
a single independent lead to attach to a TRS central region,
which contradicts Theorem A. Physically, Theorem A and the
no-go theorem have a common origin, i.e., both of them are a
direct consequence of TRS. However, being expressed in the
scattering language, Theorem A is more flexible to use. Since
only the parity of the number of pairs of helical states matters,
from now on, we can loosen the previous definition of helical
metals such that their energy spectrums are characterized by
any odd number (instead of just one) of helical states. Through
Theorem A, we will be able to prove several rigorous properties
in the following.

III. CONNECTIVITY PROPERTY OF EDGE/SURFACE
STATES OF THE 2D/3D TOPOLOGICAL INSULATORS

First, let us consider the 2D QSH system. We will prove that
all helical metals should be connected and form a closed loop
in a finite system. This result is quite easy to prove starting
from Theorem A. Suppose there is a section of line ab (with
two ends a and b), which is made of helical metal, and one
of its two ends, say a, does not belong to, or is not connected
with, any other section of the line which is also a helical
metal. If such an end a is chosen to be the central region
of the conceptual scattering problem, then there is only one
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FIG. 1. (Color online) 2D QSH states and helical edge states in
a stripe geometry. (Black arrows denote the propagating direction
for one state of the edge helical pair). The band insulator (bordered
by green dashed lines) is put on the QSH strip (a) on one edge and
(b) bridging two edges.
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helical metal attached to a, which is contrary to Theorem
A. Therefore, we can conclude that this can not physically
happen. In Fig. 1(a), we show that the helical state at one
edge of the QSH system can circumvent any barrier with TRS
and transmit to the other side. If the barrier is chosen to be an
insulator under which a forbidden region is defined, the perfect
transmission happens by a new helical edge formed around the
boundary of the barrier [as shown in Fig. 1(a)]. Furthermore,
if the barrier is large enough to bridge the two edges as shown
in Fig. 1(b), the helical states from one edge will connect to
the other side through the interface between the QSH system
and the barrier. From the above discussion, it can be known
clearly that there are always helical states near the boundary
along which we cut the QSH system. We can summarize this
result in the following theorem:

Theorem B. Along any edge of a 2D QSH system or a
boundary between a 2D TI and a band insulator, there is always
an odd number of pairs of helical states.

Particularly, Theorem B implies the Z, (i.e., even-
ness/oddness of the number of pair of helical states) connectiv-
ity property between the adjacent edges of any finite 2D QSH
sample. For further illustration, let us address the graphene
stripe with an intrinsic SOC** as an example. It is well known
that a graphene stripe with zigzag edges has zero-energy flat
bands near the zigzag edges.!! In the presence of an intrinsic
SOC, a bulk gap will open, and these flat bands will evolve
into helical edge states.®* However, for a graphene stripe with
armchair edges without any SOC, there are no such flat bands.
By mere expectation through a continuity consideration, we
may anticipate that there are no helical edge states with the
inclusion of an intrinsic SOC. However, from Theorem B, we
can predict helical edge states also exist near armchair edges,
which is in consistent with numerical results.'?

The famous bulk-edge correspondence theorem in the
quantum Hall effect states that the nontrivial topological
band structure will ensure the existence of conducting edge
modes along system edges, with the number of edge modes
determined by the topological Chern number of the filled
bands.'®> This theorem is generalized with limited success
to the QSH case,'* which involves sophisticated topological
analysis. Theorem B is a direct consequence of the much
sought-for bulk-edge correspondence theorem for 2D QSH
systems, where only the parity of the number of edge states
is important. Our approach leading to Theorem B, though
somewhat phenomenological (see discussion below), is model

VooXXer S
’ ke to;) face
k,

FIG. 2. 3D TI in a pipe geometry with translationally invariant
cross section. The local coordination for the wave vector is drawn for
the front and the top faces. If the low-energy Hamiltonian of the front
face is characterized by a single Dirac cone, how many Dirac cones
are on the top surface?

front face

PHYSICAL REVIEW B 84, 205324 (2011)

independent and general. Furthermore, it can be extended to
3D TIs as discussed below.

Now let us turn to the 3D TI, which has also been
firmly established both theoretically and experimentally.'>"”
As depicted in Fig. 2, we will consider an infinitely long
rectangular column composed of a 3D TI. The system is
translationally invariant in the x direction. The size of its
rectangular cross section is of macroscopic scale so that the
quantum confinement effect can be neglected in our discussion.
As is well known, a 3D TI is characterized by bulk gap and
midgap surface excitations. Now, let us assume that the front
face is characterized by a single surface Dirac cone (e.g., in
Bi,Tes) around the center of the Brillouin zone (I" point).
In the following, we shall prove that the top face is also
characterized by an odd number of Dirac cones. Let us denote
the wave vector k,,k, for the front face and k;,k; for the
top face (as the local coordinate frames drawn in Fig. 2 ).
Since the system is translationally invariant in x direction, k
and k. are good quantum numbers. On the other hand, we
can linearly combine the degenerate states with different k,
(or k;) and use the proper boundary condition to obtain the
wave function around the perimeter of the cross section. The
geometrical edge between the front and the top face can be
regarded as a scattering region for each k,-fixed subspace;
thus we have a conceptual scattering problem. At a general E,
we have surface states |y (ky,k,)) r and [y (ky, — ky)) r for the
front face. On the other hand, according to TRS, [ (kx,ky)) ¢
and | (—ky, — ky)) s form a Kramers’s pair. Picking up the
ky = 0 case, |¥(0,k,)) r and | (0, — k,)) ; form a Kramers’s
pair (or a helical metal by using the foregoing terminology)
so that they cannot scatter into each other in a TRS scattering
process [all diagonal elements of the antisymmetric scattering
matrix are zero, see Eq. (3)]. By Theorem A, there must be
an odd number of Kramers’s pair states on the top surface.
For simplicity, we consider the case where there is just one
pair of Kramers’s states |1/f(0,k;)), and |y (0, — k/y))t (later
we will generalize this result to the case of an odd number of
Kramers’s pairs). Perfect tunneling occurs from [/ (0,k,)) s to
[¥(0,k));. This is similar to Klein tunneling phenomena for
relativistic particles.’>?! It has important implications. At the
edge position, which is common to the front face and top face,
the wave functions [y(0,k,)) s should be equal to W(O,k;)),.
However, as we assumed before, the quantum confinement
effect is neglected and the eigenstates [ (0,k,)) ; are nothing
but plane wave spinor eigenstates for an infinite plane.

This property will be useful when one tries to write an
effective continuum Hamiltonian for a particular surface for
one such Dirac cone case.

When k, is away from but still near to 0, [ (k,,ky)) s can
be scattered into |y (k,, — k,)) y with a finite probability, since
they are not TR pairs. At the same time, due to the continuity of
the physical property with respect to the parameters, there will
be degenerate states |1/f(kx,k;l)>t and |y (ky, — k;,z)), (k;1 may
be different from k/y2 in general) on the top surface with their
TR partners. These two states, together with the two states on
the front surface, constitute an even number of helical states
for the scattering problem (their TR partners being grouped
into another subspace characterized by -k,). The boundary
condition is that the wave function should be continuous at

205324-3



JIANG, LU, ZHAI, LOW, AND HU

the edge, which gives two complex equations. Thus, two
unknown coefficients for |y(ky.k},)); and [Y(ky, —ky)) s
in the scattering problem can be solved exactly. Perfect
reflection from [y (k,,ky)) s to [Y(k,, —k,))s may occur
but only accidentally. On the other hand, if |y (k,, — k;z),
is the incident wave from top surface side onto the edge,
then the reflection coefficient |1//(kx,k;l)) . and transmission
coefficient |y (k., — ky)); can be solved as well. Thus, the
scattering matrix can be determined exactly. By tuning k,
continually, as |y (ky,k,)), and |¥(kc, —k,)); cover the
whole Dirac cone on the front surface once, the corresponding
states |1ﬂ(kx,k/y1)), and |y (ky, — k;z), will also form a closed
Fermi surface on the top face. So, in this case, we reach the
conclusion that the top face is characterized also by one Dirac
cone.

The above analysis of the existence of one Dirac cone on
the top face has an essential assumption that in the k, =0
subspace, there is only one pair of Kramers’s states on the
top face at E. However, according to Theorem A, any odd
number of pairs is possible. Let’s consider the case where
there are, say, three pairs | (k, = 0, + k;,i)),, i =1,2,3, near
the I' point of the Brillouin zone for the top face at the
incident energy E. Now, there is still perfect transmission
according to Eq. (3), but the transmitted wave is a linear
combination of three forward-propagating modes on the top
face. For a certain k, subspace, the boundary conditions for
the scattering spinor wave functions between the top and
the front surfaces are such that the unknown coefficients
in the scattering problem can be solved exactly. This is a
general requirement. Physically, such a boundary condition
for continuum wave functions should be obtained from the
underlying lattice system. It is noteworthy to mention two
previous works on such a boundary condition between regions
of qualitatively different single-particle energy spectrums (the
front face and top face are now qualitatively different in the
sense that they have different numbers of Dirac cones; see
below). First, for a graphene/vacuum boundary, the boundary
condition for Dirac particles is nicely expressed as a constraint
of some matrix equation form to the four-component spinor
wave functions.?? Second, for three types of monolayer/bilayer
graphene interfaces, boundary conditions, i.e., connecting con-
ditions for the continuum wave functions, are obtained from
the underlying lattice structure, based on which the scattering
problem of the monolayer/bilayer graphene interface can be
solved.?

If the top face has multiple pairs of Kramers’s states at
a k, = 0 subspace, similar to the single pair case described
above, we can argue that from the continuity principle that the
transmitted waves and their TR partners will form closed Fermi
surfaces as the incident wave | (ky,k,)) s and the reflected
wave | (ky, — ky)) y cover the whole Dirac cone of the front
face. Zero transmission probability for some channel will
happen, but only accidentally. The closeness of Fermi surfaces
is a more natural choice (especially for the noninteracting
system we are considering).

Theorem C. If the low-energy spectrum of one surface of
a TT is described by a single Dirac cone, then the low-energy
spectrum of any other surfaces should be described by an odd
number of Dirac cones (though they maybe deformed), which
are topologically equivalent to the standard Dirac cone.
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In the above, deformed means that anisotropy, nonlinearity,
or even particle-hole asymmetry of the dispersion are allowed
in general. Theorem C ensures the connectivity property of
low-energy surface states of the 3D TI, which, in combination
with the 2D counterpart given in Theorem B, form the central
connectivity theorems of the edge/surface states of the TIs in
this paper.

The above discussion is somewhat ideal. We assumed
the surface state can be described by an effective surface
Hamiltonian in the bulk gap region and the boundary between
surfaces can be treated as a geometrical line in the long
wavelength limit. Recently, the bulk-surface correspondence in
3D TIs was addressed by Isaev er al.** using the lattice version
of the Dimmock model.”> For this particular model, they
found that the number of surface states intersecting the line
connecting two time-reversal-invariant momenta (i.e., number
of deformed Dirac cones for a given sample surface) can
be changed by tuning surface boundary conditions while the
parity of this number remains unchanged. This is in consistent
with our Theorem C. Based on the foregoing analysis, it is
interesting to note that different boundary conditions used
to terminate the 3D lattice at some surface can change
the boundary conditions near the edge between that surface
and other surfaces intersecting with it. When two surfaces
are characterized by different numbers of Dirac cones, the
boundary condition near the edge can be drastically different
from the usual case where there are the same number of Dirac
cones for the intersecting faces. Further model study is needed
to explicitly demonstrate this point.

The connectivity properties embodied in Theorem B-C are
more or less assumed by many researchers. However, as far
as we know, explicit proofs have not been reported so far. For
3D TIs, such a connectivity property of the surface states for
different surfaces has profound consequences. For example,
transport measurement necessarily involves multiple surfaces
simultaneously. In Ref. 26, an analysis is given with respect
to the interesting issue of the half conductance quanta under a
magnetic field for Dirac particles living on the 2D connected
surfaces of a 3D TI.

IV. CONCLUSION

In conclusion, we have examined the effect of TRS in
the conceptual scattering problem in which helical metals
(whose low-energy excitation is one pair of helical states)
are attached to the central scattering region as electrical leads.
The scattering matrix is found to be antisymmetric so that
in any physically realizable situations, the number of helical
metal leads must be even. Based on this point (Theorem A),
we proved that the quasi- 1D helical edge states should always
form a closed loop; thus each edge of a 2D QSH system or any
boundary between 2D topological/nontopological insulators is
characterized by helical states (Theorem B). For the 3D TI, we
have proved that if the low-energy surface states are described
by a single Dirac cone for one surface, then the low-energy
excitation of an arbitrary surface can also be described by an
odd number of Dirac cones (Theorem C) (though they maybe
deformed). These connectivity properties are global properties
of TIs. They result from and are protected by TRS.
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