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Band structure and gaps of triangular
graphene superlattices
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The general properties of long wavelength triangular graphene superlattices are studied.
It is shown that Dirac points with and without gaps can arise at a number of high-
symmetry points of the Brillouin zone. The existence of gaps can lead to insulating
behaviour at commensurate fillings. Strain and magnetic superlattices are also discussed.

Keywords: graphene; superlattices; electronic states

1. Introduction

Graphene is a two-dimensional metal when carriers are induced by an electric field
(Novoselov et al. 2004, 2005; Geim & Novoselov 2007; Castro Neto et al. 2009).
A gap at the Fermi level has been observed by scanning tunnelling microscopy
measurements (Zhang et al. 2008; Li et al. 2009; see also Wehling et al. 2008). We
analyse the gaps induced by a periodic structure, and the possibility that these
gaps are generated spontaneously.

Graphene superlattices have been observed in graphene layers grown on
transition metals (Vázquez de Parga et al. 2008; Borca et al. 2010; see also
Oshima & Nagashima 1997; NDiaye et al. 2006; Marchini et al. 2007; Jiang et al.
2008; Martoccia et al. 2008; Pan et al. 2008; Usachov et al. 2008). Superlattices
are also found in graphene grown by the decomposition of SiC (Zhou et al.
2007). In general, graphene superlattices can have interesting properties, such
as highly anisotropic transport properties (Park et al. 2008a) or Dirac points
at finite energies (Park et al. 2008b; Brey & Fertig 2009; Tiwari & Stroud
2009; Arovas et al. 2010; Barbier et al. 2010). In general, the study of the
properties of graphene superlattices has attracted great interest, owing to the
many novel features their electronic spectra can show (Pedersen et al. 2008;
Abedpour et al. 2009; Bliokh et al. 2009; Gibertini et al. 2009; Park et al.
2009; Rosales et al. 2009; Shytov et al. 2009; Snyman 2009; Balog et al. 2010;
*Author for correspondence (paco.guinea@icmm.csic.es).
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da Silva-Araújo et al. 2010; Guinea et al. 2010). In the following, we analyse the
general properties of the spectra of graphene superlattices with a two-dimensional
triangular periodicity. These superlattices share the symmetries of the graphene
lattice, and are commonly found in graphene layers grown on metallic surfaces.
As discussed below, these superlattices can show a gap at the Fermi energy for
a number of commensurate fillings. It seems probable that they can be formed
spontaneously on very uniform substrates, such as BNi, or as a result of intrinsic
instabilities of graphene.

In this paper, we study the general properties of triangular graphene
superlattices created by a scalar potential, followed by a discussion of strain and
magnetic superlattices.

2. Brillouin zone of triangular graphene superlattices

We define the lattice vectors of the graphene lattice as

a1 ≡ nx

and a2 ≡ 1
2
nx +

√
3

2
ny .

⎫⎬
⎭ (2.1)

A triangular superlattice is described by the unit vectors

b1 ≡ n1a1 + n2a2

and b2 ≡ −n2a1 + (n1 + n2)a2,

}
(2.2)

where n1 and n2 are arbitrary integers different from zero.
There are three types of high-symmetry points in the Brillouin zone of a

triangular lattice, G, M and K. There are two inequivalent K points, K and K′,
at the corners of the hexagonal Brillouin zone, and three inequivalent M points,
at the centres of the edges. Time reversal exchanges K and K′, while leaving the
G point and the three M points unchanged (Mañes et al. 2007). The vectors that
define these points are such that

Ga1 = Ga2 = 0,

Ka1 = 4p

3
K ,

a2 = 2p

3
,

K ′a1 = 2p

3
K ′,

a2 = 4p

3
,

M 1a1 = p M 1a2 = p,

M 2a1 = p M 2a2 = 0

and M 3a1 = 0M 3a2 = p.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.3)
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Figure 1. Examples of Brillouin zones of superlattices. (a) n1 = 1 and n2 = 4. (b) n1 = 2 and n2 = 4.
(Online version in colour.)

The low-energy states of graphene lie close to the K and K′ of the original
Brillouin zone. The positions of these points in the superlattice Brillouin zone
are determined by

KSb1 = 4p

3
n1 + 2p

3
n2, KSb2 = −4p

3
n2 + 2p

3
(n1 + n2)

and K ′
Sb1 = 2p

3
n1 + 4p

3
n2, K ′

Sb2 = −2p

3
n2 + 4p

3
(n1 + n2).

⎫⎪⎪⎬
⎪⎪⎭ (2.4)

Thus, when 2n1 + n2 is a multiple of three, the graphene K and K′ points will
be mapped onto the GS point of the superlattice Brillouin zone. Otherwise, they
will be mapped onto the corners of the Brillouin zone, KS and K′

S. Examples of
superlattice Brillouin zones are given in figure 1.

3. Dispersion near high-symmetry points

(a) The model

We study superlattices induced by a modulation of the on-site energy of the p
orbitals. We assume that it is a weak perturbation of the graphene Dirac equation,
except in cases where degeneracies occur. We consider the Fourier components of
the potential with lowest wavevector, of modulus

G = 4p

a
√

3(n2
1 + n2

2 + n1n2)
. (3.1)

We write the potential as the sum of symmetric part VG , and an antisymmetric
part, DG , with respect to the interchange of sublattices. We neglect for the
moment the short wavelength components that mix the two inequivalent Dirac
points of the unperturbed graphene layer.

We analyse the changes in the Fermi velocity near the Dirac energy induced by
the superlattice potential, and the points in the lowest bands of the superlattice
where degeneracies persist when VG �= 0 and DG = 0. As discussed below, this
situation gives rise to a new set of Dirac equations at finite energies.
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(b) Dirac energy at the GS point

We consider the case when the K and K′ points of the graphene Brillouin zone
are mapped onto the GS point of the superlattice Brillouin zone. Using lowest
order perturbation theory, we find, near the GS point, a renormalization of the
Fermi velocity (Park et al. 2008a,b)

dvF(k) ≈
∑
G

−V 2
G + D2

G

vF|G|2 + V 2
G − D2

G

vF|G|2 [cos2(fk,G) − sin2(fk,G)], (3.2)

where fk,G is the angle between vectors k and G. For the hexagonal superlattice
considered here we find the isotropic reduction in the Fermi velocity

dvF ≈ −6|VG |2
vFG2

− 6|DG |2
vFG2

. (3.3)

There is a twofold degeneracy at the three MS points, if DG = 0. The energy of
these states is vFG/2. At finite distances from the MS points, we can write an
effective hamiltonian,

H ≡

⎛
⎜⎜⎝

vFG
2

+ 2vFkx DG + 4iVGky

G

DG − 4iVGky

G
vFG

2
− vFkx

⎞
⎟⎟⎠, (3.4)

which gives an anisotropic Dirac equation with a gap,

eMS ≈ vFG
2

±
√

4v2
Fk2

x + D2
G + 16V 2

Gk2
y

G2
. (3.5)

At the KS and K′
S points, there are three degenerate levels for VG = DG = 0,

with energy eKS = vFG/
√

3. When VG �= 0, these three levels are split into a
doublet, with energy ed

KS
= vFG/

√
3 + VG/2, and a singlet, at es

KS
= vFG/

√
3 −

VG . Expanding around the KS point, the effective hamiltonian for the doublet is

H ≡

⎛
⎜⎜⎝

vFG√
3

+ VG

2
− vFkx

2
vFky

2
− 3iDG

4
vFky

2
+ 3iDG

4
vFG√

3
+ VG

2
+ vFkx

2

⎞
⎟⎟⎠. (3.6)

This is the two-dimensional Dirac equation with a mass term. The dispersion
relation is

es
KS

≈ vFG√
3

− VG + O

(
D2

G

VG
,
v2

F(k2
x + k2

y )

VG

)

and ed
KS

≈ vFG√
3

+ VG

2
±

√
v2

F(k2
x + k2

y )

4
+ 9D2

G

16
.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.7)
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Figure 2. Points in the superlattice Brillouin zone where degeneracies occur when VG �= 0. (Online
version in colour.)

There are two sets of degenerate bands, derived from the K and K′ points of the
Brillouin zone of graphene. This degeneracy will be broken by short wavelength
terms in the superlattice potential.

(c) Dirac energy at the KS and K′
S points

The renormalization of the Fermi velocity near the KS and K′
S points is the

same as in equation (3.3).
There are doubly degenerate states, even when VG �= 0, at the six inequivalent

points at positions LS = KS/2, as shown in figure 2. The energy of these points
is eLS = vFG/2. Expanding around these points, we find an effective anisotropic
Dirac equation, given by equation (3.4).

There is another set of doubly degenerate states at the MS points. The two
states arise from the K and K′ points of the original graphene Brillouin zone.
The degeneracy persists when VG �= 0 and DG �= 0, and is broken only by short
wavelength components of the superlattice potential. When these components
are finite, an effective anisotropic Dirac equation will arise similar to that in
equation (3.4).

For VG = DG = 0, there are six degenerate states at the GS point. The
long-range part of the superlattice potential will hybridize states that are
derived from the K and K′ points of the original graphene Brillouin zone. We
obtain two sets of isotropic Dirac equations, described by equation (3.6), and
two degenerate states. The short-range part of the Dirac equation will break
these degeneracies.

(d) Results

We analyse the bands induced by an N × N superlattice. The hopping matrix
between p orbitals in neighbouring carbon atoms is t = 3 eV. The bands for VG =
0.3 eV and DG = 0 are shown in figure 3. The bands show Dirac points at the MS
and KS points. When DG is increased to DG = 0.1 eV, a gap appears between
successive bands, as shown in figure 4. The density of states for those two cases
is shown in figure 5. Note that the potential breaks the electron–hole symmetry
of clean graphene, and the gaps are not of the same magnitude for positive and
negative energies.
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Figure 3. (a) Low-energy bands for a 12 × 12 superlattice, with VG = 0.3 eV and DG = 0. (b)(i)
Detail near the MS point. (ii) Detail near the KS point. (Online version in colour.)
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Figure 4. (a) Low-energy bands for a 12 × 12 superlattice, with VG = 0.3 eV and DG = 0.1 eV. (b)(i)
Detail near the MS point. (ii) Detail near the KS point. (Online version in colour.)

The results are in reasonable agreement with the analytical description in the
previous section. A gap of order 2DG is induced at the MS point. In order for this
gap to be possible, the following inequalities must be satisfied:

es
KS

≈ vFG√
3

− VG ≤ e−
MS

≈ vFG
2

− DG

and e+
MS

≈ vFG
2

+ DG ≤ ed
KS

≈ vFG√
3

+ VG

2
− 3DG

4
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.8)
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Figure 5. Density of states (DOS) for a 12 × 12 superlattice. Black, VG = 0.3 eV and DG = 0; grey,
VG = 0.3 eV and DG = 0.1 eV. (Online version in colour.)

The scaling properties of the Dirac equation imply that, if the dimension of the
superlattice is increased, G → lG, with l < 1, then a rescaling of the superlattice
potential, VG → lVG , DG → lDG , will lead to the same band structure, with
energies scaled as E → lE .

4. Strain superlattices

A superlattice can also be produced by inducing strains, which modulate
the interatomic hoppings. The corresponding perturbation can be seen as a
gauge field, A, which shifts locally the momentum (Vozmediano et al. 2010).
A simple case is when the strains are due to height modulations, h(r), which can
be induced by a substrate. In terms of the Fourier components of the modulation,
hG, and allowing for the relaxation of the in-plane displacements, the effective
gauge field can be written as (Guinea et al. 2008)

Ax(G) = b

a

(l + m)(G2
x − G2

y )[hxx
G G2

y − (hxy
G + hyx

G )GxGy + hyy
G G2

x ]
|G|4(l + 2m)

and Ay(G) = b

a

(l + m)2GxGy[hxx
G G2

y − (hxy
G + hyx

G )GxGy + hyy
G G2

x ]
|G|4(l + 2m)

,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.1)

where b = v log(t)/v log(a) ≈ 2 − 3, t ≈ 3 eV is the hopping between nearest
neighbour p orbitals, a ≈ 1.4 Å is the distance between nearest neighbour carbon
atoms, and the tensor hij

G is the Fourier transform of the functions

hij(r) = vh
vxi

vh
vxj

(4.2)

and l and m are the elastic Lamé coefficients of graphene. The field in equation
(4.1) has opposite signs in the two valleys in the Brillouin zone.

The calculation of the effective magnetic field induced by the gauge field
in equation (4.1) is simplified when, as in the previous sections, only one
component, h(r) = hG

∑
l=1,...,6 eiGlr , in a superlattice is considered. The tensor in

equation (4.2) has non-zero components for all combinations of the type Gk + Gl .
When the gauge field A(G) is parallel to G, the vector potential can be gauged
away, and does not induce an effective magnetic field. This implies that out of
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the 18 possible values of the vector Gk + Gl , only six possible values contribute
to the effective magnetic field. These vectors are given by G ≡ G(3/2,

√
3/2) and

the vectors equivalent to it by a symmetry transformation. After some algebra,
we obtain for the effective magnetic field

Bstrain(r) = b

a
l + m

l + 2m

27
√

3
8

G3h2
G

[
2 cos(

√
3Gy) + 4 cos

(√
3Gy
2

)
cos

(
3Gx
2

)]
.

(4.3)

The superlattice defined by the effective magnetic field has a unit vector of length√
3G, so that the area of its unit cell is smaller than the area of the unit cell of

the original superlattice by a factor 1/3.
Using equation (4.3) and G = 2p/L, where L is the length of the unit vector of

the superlattice, we can write the magnetic length associated with the maximum
effective field in the system as

1
�2

B

= l + m

l + 2m

b

a
9
√

3p3

2
h2

max

L3
, (4.4)

where hmax = 6hG is the maximum value of h(G), assuming hG > 0. For values
hmax ≈ 1 nm and L ≈ 40 nm, we find lB ≈ 14 nm, so that the effective field is such
that Bmax

strain ≈ 1–2 T.

5. Magnetic superlattices

A superlattice can also be induced by a spatially modulated magnetic field. A
combination of a modulated magnetic field and a scalar potential opens a gap at
the Dirac energy, and the resulting insulator is a quantum Hall system (Snyman
2009), with chiral currents at the boundaries (Haldane 1988). Here, we obtain
this effect using second-order perturbation theory, instead of the arguments used
in Snyman (2009). As in the previous sections, we assume the simplest periodicity
compatible with the superlattice hexagonal symmetry

V (r) = VG

∑
l=1,··· ,6

eiGlr

and B(r) = BG

∑
l=1,··· ,6

eiGlr .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5.1)

The eigenstates of the unperturbed Hamiltonian at the K and K′ points of
the Brillouin zone can be written as |0〉A = (1, 0) and |0〉B = (0, 1), of which
each component of the spinor corresponds to one sublattice. These states are
hybridized with states |G±〉K = (1, ±eifG ) and |G±〉K′ = (1, ∓e−ifG ), with energies
eG = ±vF|G| and eifG = (Gx + iGy)/|G|.

The energies of states |0〉A and |0〉B are modified in different ways by virtual
hoppings into states |G±〉K and |G±〉K′ , leading to gaps in both valleys. Moreover,
the gaps have different signs, showing that the time reversal symmetry in the
system is broken, and that a quantum Hall phase has been induced. The gap can
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be written as

D = ±
∑

l=1,...,6

2vFRe{V ∗
Gl

[Ax(Gl) + iAy(Gl)]e−ifGl }
|eGl |

, (5.2)

where AG is the vector potential, which we define as

Ax(G) = iGy

|G|2
BG

F0

and Ay(G) = −iGx

|G|2
BG

F0
,

⎫⎪⎪⎬
⎪⎪⎭ (5.3)

where F0 = eh/c is the quantum unit of flux. Using this expression, we
finally obtain

D = 12
BGVG

F0G2
(5.4)

in agreement with Snyman (2009).

6. Self-consistent opening of a gap

The previous analysis shows that a gap can open at finite energies in graphene in
the presence of a superlattice potential with a staggered component. When the
number of carriers is such that only a small number of subbands are completely
filled and the rest are completely empty the electronic energy will be lowered in
the presence of the gap. A lattice distortion that leads to the appropriate potential
will be energetically favourable if the gain in electronic energy exceeds the
formation energy of the distortion, as in the Peierls instability in one dimension.

In graphene on top of a metal or other substrate with a large dielectric constant,
as in Vázquez de Parga et al. (2008), out-of-plane displacements lead to changes
in the on-site energies of the p orbitals. An electron in a given carbon atom
experiences the image potential owing to the screening. A change in position
of Dz leads to a change in the image potential of order ee∗Dz/(4d2), where e∗ =
e(e0 − 1)/(e0 + 1) is the image charge, e0 is the dielectric constant of the substrate
and d is the distance to the substrate. A vertical displacement of Dz ∼ 1 Å when
the graphene layer is at a distance d ≈ 3 Å of the substrate can lead to shifts of
the on-site energies of order 0.1 eV. The electronic gain of energy owing to the
existence of a gap, per unit cell, is then Eelec ≈ DG ≈ ee∗Dzd−2.

The elastic energy per unit cell required to create a staggered distortion of
amplitude Dz is of order Eelas ≈ kDz2a−2, where k ≈ 1 eV is the bending rigidity
of graphene.

A gap will exist above a threshold for the superlattice potential, VG ∼ DG �
vFG(1/

√
3 − 1/2). The area of the Brillouin zone of the supercell,

√
3G2/2, should

be close to the area within the Fermi surface of the unperturbed graphene, pk2
F.
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Hence, a spontaneous staggered distortion is favoured if

Eelec + Eelas ≈ −ee∗Dz
d2

+ k

(
Dz
a

)2

< 0,

VG ≈ ee∗Dz
d2

> vFG
(

1√
3

− 1
2

)

and

√
3G2

2
≈ pk2

F.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.1)

The last equation in (6.1) implies that G ∝ kF, and from the first two we obtain
that vFG � (ee∗)2a2d−4k−1. Hence, a spontaneous distortion is energetically
favoured for carrier densities such that

r = pk2
F � (ee∗)4a4

v2
Fk2d8

(6.2)

and the staggered distortion, with inverse wavelength G ∼ kF of the order

Dz ∼ vFkFd2

ee∗ . (6.3)

For a metal, we have e0 = ∞ and e∗ = e. For a ≈ 2 Å, d ≈ 3 Å and k ≈ 1 eV, we
find that a staggered corrugation is energetically favoured for carrier densities
r � 1013 cm−2, leading to maximum deformations of 0.2 Å. For SiO2, where e0 = 3.9
and e∗ ≈ 0.6e, the corrugations take place for carrier densities r � 3 × 1012 cm−2,
and maximum deformations of 0.15 Å.

The formation of these long wavelength modulations is only possible in systems
with a high degree of order, as the superlattice features will be reduced by
disorder. For instance, weak scatterers with concentration nimp, which change
the on-site potential by an amount of order DG , lead to a mean free path
lel ∼ v2

F/(D2
GkFa4nimp). A large concentration of these defects, nimp ∼ a−2, will

suppress the formation of a superlattice, while little affecting the conductivity,
s ∼ (e2/h) × (kFlel) ∼ (e2/h) × (v2

Fa−2D−2
G ).

7. Conclusion

We have analysed the formation of Dirac points and gaps at high-energy points of
triangular graphene superlattices. We have shown that, in some cases, a gap can
be formed over the entire Fermi surface, making graphene insulating. We have
discussed instabilities that might give rise to the spontaneous formation of gaps
of this type. General properties of strain and magnetic superlattices have also
been discussed.
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