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A spin metal-oxide-semiconductor field-effect transistor �spin MOSFET�, which combines a
Schottky-barrier MOSFET with ferromagnetic source and drain contacts, is a promising device for
spintronic logic. Previous simulation studies predict that this device should display a very high
magnetoresistance �MR� ratio �between the cases of parallel and antiparallel magnetizations� for the
case of half-metal ferromagnets �HMF�. We use the nonequilibrium Green’s function formalism to
describe tunneling and carrier transport in this device and to incorporate spin relaxation at the
HMF-semiconductor interfaces. Spin relaxation at interfaces results in nonideal spin injection.
Minority spin currents arise and dominate the leakage current for antiparallel magnetizations. This
reduces the MR ratio and sets a practical limit for spin MOSFET performance. We found that MR
saturates at a lower value for smaller source-to-drain bias. In addition, spin relaxation at the detector
side is found to be more detrimental to MR than that at the injector side, for drain bias less than the
energy difference of the minority spin edge and the Fermi level. © 2008 American Institute of
Physics. �DOI: 10.1063/1.3013438�

I. INTRODUCTION

In recent years, a vigorous research effort to demonstrate
spintronic devices1,2 has been pursued. One of the motiva-
tions has been that spin-based devices are identified as one of
the most promising alternatives to traditional charge-based
logic devices by the International Technology Roadmap for
Semiconductors.3 Simulations have predicted that spintronic
logic can scale in its size with smaller switching energy and
less overall power dissipation than electronic logic.4

The concept and operating principles of the first mag-
netic three-terminal device, i.e., the spin current modulator,
was proposed by Datta and Das5 in 1990. It comprises of a
gate controlling the spin precession in a semiconductor chan-
nel, a ferromagnetic �FM� source injecting highly polarized
spins, and a FM drain detecting the spin polarization. The
current depends both on the relative directions of magnetiza-
tion of the source and the drain and on the gate bias. Without
the gate field, the spin current modulator can acts as a giant
magnetoresistance �MR� device.6 The gate exerts an effective
magnetic field �Rashba field�,7,8 which causes precession of
the spins as they move along the channel. With enough chan-
nel length and strong enough Rashba field, the angle of spin
precession can be varied from 0 or �, generating the device
ON and OFF states, respectively, for parallel magnetizations.
Since the device operation involves a precise phase of the
spins, it is desirable to suppress any scattering mechanisms,
i.e., the device works best at low temperature and in samples
with few defects. Physical realization of the Datta–Das spin
current modulator is mainly impeded by the substantial dif-
ficulties of obtaining efficient room-temperature spin injec-

tion from the FM contacts into the semiconductors such as
GaAs �Ref. 9� and Si.10 A recent realization of spin field
effect transistor11 �FET� using hot-electron transport through
FM thin films for all-electrical spin polarized injection and
detection12 with a Si channel is encouraging. There the elec-
tric field controls the transit time of electrons and thus its
precession in the magnetic field. However, it seems unlikely
that the Datta–Das spin current modulator or any other spin
precession devices can provide the ON/OFF current ratio
comparable to traditional electronic metal-oxide-
semiconductor FETs �MOSFETs�.

Another type of a spin transistor, a spin MOSFET, was
proposed by Sugahara and Tanaka.13 It is in essence a
Schottky barrier �SB� MOSFET, where the source and drain
are FM. A half-metal ferromagnet �HMF� was employed in
the original proposal, i.e., a material having 100% of elec-
trons with one direction of spin at its Fermi level.14 This
property is conducive to higher spin polarization of injected
carriers. Silicon’s mature technology base makes it a pre-
ferred choice for a channel material. Furthermore, the low
spin relaxation rate due to its relatively small spin-orbit ef-
fects and negligible hyperfine interaction gives propagating
electrons in Si a substantially long spin lifetimes.15 The au-
thors of Ref. 13 argued that spin MOSFETs might be used
for high-density nonvolatile memory, whose cell contains a
single spin transistor, as well as for nonvolatile, reconfig-
urable logic circuits.16 The difference between the spin
MOSFET and a spin current modulator is that the former
does not rely on the phase of the spin precession. Instead, the
current is controlled by the height of the SBs, which is dif-
ferent for electrons with different spins. This is due to the
fact that the states of electrons with spin along and opposite
to the magnetization are split by the value of the exchangea�Electronic mail: tonyaslow@gmail.com.
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interaction in the ferromagnet. The role of the gate is to
change the electrical potential and thus the thickness of the
SBs. Together the directions of magnetization and the gate
bias determine the current through the transistor.

In all types of spin transistors, the key device metric is
the MR ratio, i.e., the ratio of currents for parallel and anti-
parallel magnetizations. It is a measure of the control of car-
rier transport by the magnetic state of the device. Theoreti-
cally, HMFs will have 100% spin polarization �all the spins
being aligned with the magnetization� as first predicted by
density functional theory for NiMnSb �Ref. 14� and also sup-
ported by experiments such as spin-resolved positron
annihilation17 and infrared reflectance spectroscopy.18 There-
fore, one expects injection of 100% spin polarized carriers
from a HMF source, which would lead to an extremely large
MR ratio in the spin MOSFET.13 The class of Heusler alloys
of type X-MnSb are excellent candidates for HFM.19 Genu-
ine half-metallic interfaces of NiMnSb with III-V semicon-
ductors �e.g., InP and CdS� were predicted in the �111� di-
rection with both HMF and semiconductor being anion
terminated at the interface.20 Alternatively, one could also
consider nonmagnetic semiconducting Heusler alloys �e.g.,
NiMbSb, NiScSb, NiTiSn, and CoTiSb�, which provide a
smaller lattice mismatch with Heusler type HMF. Of particu-
lar importance is CoTiSb, a semiconductor with indirect
bandgap with conduction energy minimum along the sixfold
degenerate �X symmetry lines, just like Si.21

However, high spin polarization of injected carriers has
not yet been achieved with HMF. Experiments on spin-
polarized photoemission22 and spin-polarized tunneling23

with HMF result in spin polarization values far below 100%.
This is attributed to the presence of a “magnetically dead
layer,” i.e., an area close to the surface of the FM which is
not FM. Its random magnetization interacts with the spins of
injected carriers and thus decreases their spin polarization. In
particular, a recent first-principle study of half-metallic
NiMnSb /CdS interface reveals that the NiMnSb surfaces are
not half-metallic, even if they are stoichiometric and per-
fectly ordered.20 Therefore, in order to estimate a realistic
performance of spin MOSFET, one has to take into account
spin relaxation processes at these interfaces.

Many publications have addressed the simulation of
spin-dependent transport. The drift-diffusion approach to
spin transport with spin flip processes is reviewed in Ref. 24.
However, quantum tunneling processes cannot be handled by
this method. The quantum conductance treatment had been
applied25 to simulation of a spin-flip transistor. Nonequilib-
rium Green’s function �NEGF� treatment of tunneling in FM
metal-oxide multilayers with spin relaxation was described
in Refs. 26 and 27. NEGF has also been applied to spin
transport in carbon nanotubes28 and molecures.29 The contri-
bution of our work is to treat quantum transport through
metal and semiconductor structures with spin relaxation at
the interfaces and under the influence of a self-consistent
electrostatic field.

In this paper, we describe a full quantum-mechanical
model for simulating carrier transport in a spin MOSFET,
based on the Keldysh NEGF approach.30–32 In our model, we
capture the physics of carrier injection and extraction, tun-

neling through SBs, quantum interference of electron wave
reflections, and spin relaxation. The influence of the magneti-
cally dead layer is incorporated via a scattering self-energy
of interaction of spin of carriers and localized electrons, de-
rived within the self-consistent Born approximation.26,33 We
quantify the effects of spin relaxation on the MR ratio of the
spin MOSFET. The rest of this paper is organized as follows.
In Sec. II, we introduce the NEGF formalism with a detailed
mathematical description of the physical quantities used in
the formalism. In Sec. III, we apply this approach to the
study of spin MOSFET in the coherent regime �without spin
relaxation�. The bias dependence of MR ratio is explained in
this section. In Sec. IV, we examine the effect of the mag-
netically dead layer on spin transport in spin MOSFET. In
Sec. V, we explore the dependence of the MR ratio on the
strength of interaction with a magnetically dead layer. Con-
clusions are drawn in Sec. VI. In Appendix A, we present a
derivation of the scattering self energy within the self-
consistent Born approximation. In Appendix B, a simple
ohmic model analysis of spin MOSFET with HMF and FM
source/drain contacts is discussed.

II. MODEL DESCRIPTION

A schematic drawing of a spin MOSFET is illustrated in
Fig. 1. We employed here a double-gate structure with a thin
film semiconductor for which the gate control of electrostat-
ics is optimal. The channel is a semiconductor and the
source/drain contacts are HMFs �Ref. 21� with magnetization
of MS and MD, respectively. The device is large in the y
direction. Therefore Fig. 1 depicts the supercell for our trans-
port problem, where the wavefunction solution repeats peri-
odically in the y direction. We employ the effective mass
approach to the description of the bandstructure. The Hamil-
tonian and the Schrödinger equation reduce to the following
Sturm–Liouville problem in the longitudinal plane �r
= �x ,z�� �omitting the spin relaxation terms here�,

FIG. 1. �Color online� �a� A schematic illustration of the three terminal �i.e.,
gate contact VG, drain contact VD and source contact VS� spin MOSFET
device. A double-gate structure is employed. �b� A zoom-in illustration of
the supercell used for the construction of device Hamiltonian depicting the
various self-energies used in the calculation.
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H���r� � −
�2

2
�r�M−1�r��r��r�� + �V�r� + �y

+ M�r������r� = ����r� , �1�

where M−1�r� is the effective mass tensor, with diagonal el-
ements mx

−1 and mz
−1.34 We assume that the transport mass

�mx�, transverse mass �my�, and quantization mass �mz� are
spatially uniform within each material. M�r� is the magneti-
zation at r, �= ��x ,�y ,�z� are the Pauli spin matrices, and
�r��xi+�zk. The eigenvalue of H is the total energy �,
while �y =�2ky

2 /2my is the transverse energy corresponding to
the transverse mode solution ��y�=exp�ikyy� /�w. In this
work, we use the finite difference approach to express our
physical quantities in matrix representation.30 Assuming that
the electrostatic potential is separable, i.e., can be repre-
sented as V�r��V1�x�+V2�z�, we can further reduce our sys-
tem Eq. �1� to a one-dimensional problem.35

The Keldysh NEGF approach30–32 is a powerful tech-
nique in solving electronic transport in nanostructures having
open boundary conditions. The infinite problem domain ���
which consists of the semiconductor channel and two semi-
infinite HMF leads is partitioned into an exterior ��e� and an
interior domain ��i�, where only the solutions within �i is to
be sought. In this work, �i is composed of the semiconduc-
tor channel and a small segment of the HMF at the source/
drain. In the absence of scattering, the Green’s function G in
�i is written as

G��x� = ���x�I − H − V1 − 	c��x��−1, �2�

where 	c=	L+	R is the contacts self-energy30 and �x=�
−�y −� j with � j being the subband energy of the jth mode due
to the z confinement. For a one-dimensional lattice with a
nearest neighbor coupling energy of t and lattice spacing of
a, the contact self-energy is written as

� ci si

− si ci
	�− teiki

↑a 0

0 − teiki
↓a
	� ci si

− si ci
	†

, �3�

where ci=cos�
i /2�, si=sin�
i /2�, i labels the left �source�
and right �drain� contacts �i.e., i=L ,R�, and 
i is the magne-
tization angle with respect to z-axis. We will designate the
majority spin as “spin up” and the minority spins as “spin
down.” ki

↑= �2mx��−�y −� j −Ei
↑��1/2 /� is the wave vector in

the contact i, and the energy of the majority band edge is Ei
↑.

A similar identity holds for ki
↓ and Ei

↓. The difference be-
tween the energies of the minority and the majority spin band
edges is the exchange splitting in the ferromagnet �s=Ei

↓

−Ei
↑. The Fermi energy �equivalently, the electrochemical

potential� in contact i is designated �F
i . The energy band-

width of occupied states in HMF is defined as Ew=�F
i −Ei

↑,
where Ei

↑ is the energy of the majority spin band.
In the ballistic case, states in the device are filled and

emptied through the contacts. Conventionally, they can be

defined as the filling and emptying functions �analogous to
the inscattering and outscattering functions in the case of
scattering30�,


	i
in��x�
�y,�j

= f0��x + �y + � j − �F
i ��i��x� ,


	i
out��x�
�y,�j

= �1 − f0��x + �y + � j − �F
i ���i��x� , �4�

where �i= i�	i−	i
†� is the broadening functions of the re-

spective contact i=L ,R. The electron and hole correlation
functions are defined as


Gn,p��x�
�y,�j
= 
G��x�	c

in,out��x�
�y,�j
G��x�†, �5�

where 	c
in,out=	L

in,out+	R
in,out. The transverse modes can be

summed over, and we obtain the aggregated electron corre-

lation function G̃n,

G̃n��x� = G��x�	̃c
in��x�G��x�†, �6�

with the aggregated filling function defined as

	̃c
in��x� = �

j

F��x + � j − �F
i ��i��x� , �7�

where F��x+� j −�F
i � is the Fermi Dirac integral of order − 1

2 .36

The diagonal elements of G̃n��x� are related to the charge
spectral density at energy �x. Once the total charge density is
evaluated, the electrostatic potential V1 can be obtained using
Poisson equation self-consistently.

To include the effect of spin relaxation, we have to
modify the Green’s function in Eq. �2�. Spin relaxation pro-
cesses arise from the interaction of spins of free carriers with
the spins of localized electrons, e.g., in the magnetically dead
layer. The Heisenberg Hamiltonian for the spin interaction is

HI = JS · S , �8�

where the spin operators for free electrons are s and those for
localized electrons are S, all in units of �. For spin=1 /2,
these operators are related to the Pauli matrices s=� /2. The
interaction energy is given by J.

Assuming that the localized electrons are numerous, they
thus form a reservoir causing an incoherent evolution of the
free carrier spins. The state of the reservoir is described by
its density matrix. For the case of spin=1 /2 reservoir, it has
the form

� = �Fu �

�* Fd
 , �9�

where the spin-up and spin-down occupation numbers are Fu

and Fd �such that Fu+Fd=1�.
In this paper, we assume that spin relaxation processes

are elastic �do not change the energy of free carriers�. In the
self-consistent Born approximation,32 one can express the in-
and outscattering self-energy as a function of the electron
and hole correlation functions,26,33

	s,ij
in ��� = ����ijkl

n Gkl
n ��� ,

	s,ij
out��� = ����ijkl

p Gkl
n ��� , �10�

where ��� is the quantity with the dimension of energy-
squared proportional to the relaxation rate, which depends on
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the number of localized spins and the interaction energy,
�n/p are the four-index tensors which provides a mapping
between electron/hole correlation functions with the in/
outscattering functions. They are products of spin operators

and the reservoir density matrix �9�. Their specific form and
derivations are provided in Appendix A.

In the case of spin=1 /2 reservoir and diagonal density
matrix ��=0�, the explicit form can be derived


	s
in��x�
�y,�j

= ��x��FuG↓↓
n ��x� +

1

4
G↑↑

n ��x� −
1

4
G↑↓

n ��x�

−
1

4
G↓↑

n ��x� FdG↑↑
n ��x� +

1

4
G↓↓

n ��x� �
�y,�j

,


	s
out��x�
�y,�j

= ��x��FdG↓↓
p ��x� +

1

4
G↑↑

p ��x� −
1

4
G↑↓

p ��x�

−
1

4
G↓↑

p ��x� FuG↑↑
p ��x� +

1

4
G↓↓

p ��x� �
�y,�j

. �11�

The broadening function due to scattering is given by


�s��x�
�y,�j
= �
	s

in��x�
�y,�j
+ 
	s

out��x�
�y,�j
� . �12�

If we assumed there is no coupling between the different �y

and � j modes,


	s
out��x�
�y,�j

=
1

2�
� 
�s��x�
�y,�j

�x� − �x

d�x� − i

�s��x�
�y,�j

2
.

�13�

The noncoherent Green’s function for a particular transverse
mode ��y ,� j� is given by


G��x�
�y,�j
= ���x�I − H − V1 − 	c��x� − 
	s��x�
�y,�j

�−1,

�14�

whereas the electron and hole correlation functions are de-
fined as


Gn,p��x�
�y,�j
= G��x��
	c

in,out��x�
�y,�j

+ 
	s
in,out��x�
�y,�j

�G��x�†. �15�

The solutions are sought by solving the set of functions

	s��x�
�y,�j

, 
Gn,p��x�
�y,�j
and 
G��x�
�y,�j

self-consistently
for each energy �x and modes ��y ,� j�. This iterative process
makes it numerically prohibitive to solving realistic transport
problems.

In this work, we shall introduce some simplifications to
make the numerics more tractable. First, we assumed that the
relaxation rate  is energy independent. Under the condition
where the impurity spin state is uncorrelated and with equal
up and down spin occupation probabilty, i.e., Fu=Fd= 1

2 , it
can also be shown that the function �n=�p=�.26 Hence-
forth, the broadening due to scattering is given by


�s��x�
�y,�j
= �A��x� � �s��x� ,

where A is the local density of state

A��x� = i�G��x� − G��x�†� = Gn��x� + Gp��x� . �16�

We had assumed in Eq. �16� that the local density of states
for each transverse modes ��y ,� j� is the same and is only
dependent on the longitudinal energy �x. Similarly, the scat-
tering self energy 	s��x� �computed using Eq. �13�� and
Green’s function G��x� are modes independent. The aggre-
gated electron correlation function can then be computed
self-consistently from

G̃n��x� = G��x��	̃s
in��x� + 	̃c

in��x��G��x�†, �17�

where the aggregated inscattering self-energy for a spin 1
2

impurity is written as

	̃s
in��x�

= �FuG↓↓
n ��x� +

1

4
G↑↑

n ��x� −
1

4
G↑↓

n ��x�

−
1

4
G↓↑

n ��x� FdG↑↑
n ��x� +

1

4
G↓↓

n ��x� � .

�18�

The scattering strength of a layer of impurities is defined by
the product a, where a is the lattice spacing, which physi-
cally speaking is the thickness of the interfacial layer in our
study. Current is calculated from the self-consistent solution
of the above equations for any terminal i,

Ii = �
−�

�

I��x�d�x, �19�

where I��x� is defined as
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I��x� =
q

h
Tr�	̃i

in��x�A��x� − �i��x�G̃n��x�� . �20�

The formalism described in this section allows us to combine
the description of quantum transport in the device with the
incoherent processes of spin relaxation.

III. SPIN-MOSFET: COHERENT REGIME

We consider a spin MOSFET with a double-gated struc-
ture, as depicted in Fig. 1 with a 3 nm thin film Si channel.
The channel length is 12 nm with gate oxide thickness of
1 nm. Due to the strong body confinement, electrons pre-
dominantly occupy the doubly degenerate valleys along k
= �0,0 ,1�. Its energy dispersion can be described within the
effective mass approximation with a longitudinal mass of
0.91m0 �mz� and a transverse mass of 0.91m0 �mx ,my�. HMFs
are employed for the source and drain contacts.

Despite optimistic theoretical projections, engineering
half-metallic interfaces with semiconductors is still in its
early stages of development.19 For the purpose of this work,
we shall assume some reasonable material parameters for
HMF to be used for our theoretical calculations. Heusler al-
loys of type X-MnSb have minority spin bands with energy
gap ranging from 0.5 to 1 eV.19 Therefore, we assumed that
the HMF’s minority spin band energy minimum to be 0.4 eV
above the metal Fermi energy. This value coincides with that
of NiMnSb �Ref. 20� based on a first-principle calculation.
The metallic nature of HFM is due to the electronic states
occupying a large energy bandwidth Ew, which is the energy
of the conduction band minimum of majority spin band from
Fermi energy. In this work, we arbitrarily set the metal’s
occupied bandwidth to Ew=2 eV. We also assumed that the
majority and minority spin bands in HFM has the same
transport mass as Si. The choice of different transport mass
in HMF would essentially introduce more reflections at the
interfaces, which can also be compensated by a larger Ew.
However, in the general case �e.g., Fe�, the minority and
majority spin bands have to be modeled differently.37

The current-voltage characteristics of spin-MOSFETs for
the case of parallel and antiparallel magnetization configura-
tions in the coherent regime are plotted in Figure 2�a� and
2�b�, respectively. They exhibit similar current-voltage char-
acteristics, except that the antiparallel magnetization con-
figurations exhibits a drain offset voltage by an amount of
�s−Ew. This is due to the potential blockade of the majority
spin at the drain HMF contact in the antiparallel configura-
tion �see Fig. 3�b��. Figure 3 is an intensity plot of the ma-
jority carrier density of spin MOSFETs for the case of par-
allel and antiparallel magnetization configurations. Also
shown in Fig. 3 is the energy-resolved current �on the left�.
Oscillations in the energy resolved current for the parallel
case are signatures of tunneling through a barrier, e.g., com-
monly observed in a Fowler Nordheim tunneling through
Si
SiO2
Si sandwiched structure.38 In the antiparallel case
�Fig. 3�b��, the potential barrier at the drain HMF contact
permits transmission of the majority spin only when carrier
energy is greater than �s. Resonance states due to lateral
confinement are observed when the carrier energy is less
than �s, and these states will not contribute any current.

These resonance states results in the oscillatory behavior in
the derivatives of the potential profile in the antiparallel con-
figuration. It is also numerically challenging to resolve these
states in the energy domain due to the relatively fine line-
width in these strongly localised resonance levels, i.e., a nu-
merical challenge faced similarly in modeling of resonant
tunneling diode. A fine gridding is employed to resolve these
resonance states so that the charge density can be more reli-
ably computed.

The magnetocurrent ratio �MR� is defined to be MR
= �IP− IAP� / IAP. It serves to quantify the MR difference be-
tween the parallel and antiparallel magnetization configura-
tion states of the device. Since the device in the antiparallel
state has an apparent drain offset voltage of �s−Ew, IAP will
generally be less than IP. Figure 4 plots the MR of the spin
MOSFET under different biasing conditions. The MR follow
an approximately exponential relationship with VD at a given
VG bias. We can also see that the MR begins to diminish
�MR�10% � when the VD in the antiparallel configuration
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FIG. 2. �a� Current-voltage characteristics for spin MOSFET with the con-
tacts magnetization in parallel configuration plotted for VG=0.2, 0.4, and
0.6 V. �b� Current-voltage characteristics for spin MOSFET with the con-
tacts magnetization in antiparallel configuration plotted for VG=0.2, 0.4, and
0.6 V.

FIG. 3. �Color online� �a� Intensity plot of the majority spin density Du�r�
�where it is scaled to present color contrast, i.e., Du�r�0.8� for the case where
magnetization is in �a� parallel and �b� antiparallel configuration respec-
tively. The terminal bias for both cases are VG=0.6 V and VD=0.6 V. The
energy-resolved current is plotted to the left.
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approaches the current saturation condition, i.e., VD=Vsat.
Consequently, there is a rightward shifts of the MR versus
VD curve when the gate bias VG increases, since Vsat in-
creases with increasing VG.

IV. SPIN-MOSFET: INCOHERENT REGIME

Spin exchange scattering processes between the tunnel-
ing electron and the localized spin impurities at the HMF/Si
interfaces are responsible for the incoherent nature of the
electron transport. These localized spin impurities lead to
decoherence of the electronic spins states. In our model, we
assume that there are external reservoirs constantly maintain-
ing these localized spin impurities in a state of equilibrium
with a random polarization of spin. For a spin=1 /2 case, the
completely unpolarized states corresponds to the density ma-
trix with Fu=Fd=0.5 and �=0.33,39

As discussed in Sec. II, coupling between the number of
available electrons/holes ��Gn� / �Gp�� for a particular state,
and the in/out-flow ��	s

in� / �	s
out�� to/from that state is related

through a four-index scattering tensors �. The scattering
strength a is assumed to be energy independent. It is pro-
portional to nI, the impurity concentration and to �J2�, the
averaged interaction energy of the impurity layer �see Ap-
pendix A�. These parameters can be mapped to available
experimental data, and they are the only parameters used to
characterize the spin relaxation of the impurity layer. Figure
5�a� shows the spin polarization P in the channel due to spin
injection from a HMF contact into a long-channel
semiconductor.P is defined as

P =
I↑ − I↓
I↑ + I↓

. �21�

Our model is capable of capturing the nonideal spin injection
of a HMF due to the presence of a magnetically dead layer
by tuning the value of a �see Fig. 5�a��. The spin polariza-
tion in the channel decreases with the increase of spin relax-
ation strength in an approximately linear fashion.

Figures 5�b� and 5�c� plots the drain current versus drain
voltages at VG=0.6 V for both the parallel and antiparallel
configuration, in the presence of spin relaxation at the HMF/
semiconductor interfaces on both the detector and injector
sides, characterized by spin relaxation strength of a
=0.5 eV2 nm. In contrast to the current-voltage characteris-
tics in the coherent case �see Fig. 2�, the minority spin can
now contribute to spin current, which significantly modifies
the current-voltage characteristics in the antiparallel configu-
ration. This “leakage current” is facilitated through spin re-
laxation at the HMF/semiconductor interfaces. Spin relax-
ation renders the blocking �due to the potential barrier at the
drain HMF� of the majority spin transmission ineffective.
Majority carriers injected from the source can now undergo
spin relaxation at the HMF/semiconductor interface at the
drain side and become a minority spin. Therefore, substantial
amount of minority spin current is registered in the antipar-
allel configuration even when the drain bias is less than �s

−Ew.
Figures 6�a�–6�d� plots the majority and minority spin

densities in the parallel and antiparallel configuration at VG

=VD=0.6 V. Their respective energy resolved current is plot-
ted in Figs. 7 and 8. In this set of calculations, the minority
spin density is approximately an order of magnitude smaller
than the majority spin density. In the intensity plot for the
minority spin density, we observe signatures of spin-flip pro-
cess at the spin injector interface as a layer of high intensity
minority spins. Majority spin was scattered into the minority
spin states in the injector as evanescent states with finite
probability to tunnel through the SB into the channel. There-

FIG. 4. MR ratio, MR= �IP− IAP� / IAP, plotted for VG=0.2, 0.4, and 0.6 V.
The lines are the least square fitted to data points with VD�0.3 V for each
VG.

FIG. 5. �Color online� �a� Spin polarization P in the channel as a function of
the interface scattering strength characterized by a, for spin injection
through a SB in a HMF/Si structure. �b� Current-voltage characteristics for
spin MOSFET with the contacts magnetization in parallel configuration
plotted for VG=0.6 V. All spin currents are measured at the drain. �c�
Current-voltage characteristics for spin-MOSFET with the contacts magne-
tization in antiparallel configuration plotted for VG=0.6 V. For both cases,
the spin relaxation strength at the HMF/semiconductor interfaces on both
the detector and injector sides are characterized by a=0.5 eV2 nm. The
minority spin current is plotted as dashed curve.
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fore, HMF will not have perfect spin injection efficiency
when spin relaxation mechanisms are incorporated into the
model.

Figures 7 and 8 plots the corresponding energy-resolved
spin current density in each of the respective device regions,
i.e., �a� source, �b� channel, and �c� drain, when the device is
in the parallel and antiparallel magnetization state, respec-
tively. Although the spin current is not conserved across the
device, the charge current at each energy is conserved, i.e., a
property ensured by virtue of the self-consistent Born frame-
work. From the energy resolved spin current characteristics,
we can make the observation that more minority spin current
is produced in the antiparallel configuration than its parallel
counterpart. The energy resolved minority spin current in the
antiparallel configuration is characterized by multiple reso-
nance peaks. This is in part due to the laterally confined
majority spins in the channel where the minority spin current
was derived from it through spin relaxation processes.

V. INFLUENCE OF SPIN RELAXATION ON MR RATIO

In this section, we discuss MR ratio in the presence of
spin relaxation. Figure 9�a� shows the MR ratio versus the
drain voltage bias at VG=0.6 V in the presence of spin re-
laxation at the HMF/semiconductor interfaces on both the
detector and injector sides, characterized by spin relaxation
strength of a=0−1 eV2 nm. As evident in Fig. 9�a�, the
increasing spin relaxation strength at the HMF/
semiconductor interfaces results in decreasing MR ratio over
the whole drain voltages sweep, especially for drain biases
less than �s−Ew. Spin relaxation process enhance the prob-
ability of conduction through the minority spin channel,
which consequently smears the distinction between transport
in the parallel and antiparallel configuration, resulting in di-
minishing MR ratio. Our analysis in this work focuses only
on HMF contacts. The impact of interfacial spin dephasing
on normal FM contacts could have intrinsically different de-
pendence on the spin dephasing processes. In the Ohmic re-
gime, one could model the interfacial spin dephasing process
with a resistor element �r� between the majority and minor-
ity spin channels at each contact interfaces. A simple electri-

FIG. 8. �Color online� Same as in Fig. 7, for the antiparallel directions of
magnetization of source and drain.
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FIG. 6. �Color online� Intensity plot of the �a� majority spin density nu�r�� and �b� minority spin density nd�r�� �where it is scaled to present color contrast, i.e.,
nu�r��0.8 and 10�nd�r��0.8, respectively� for the case where magnetization is in parallel. Similar plots for the majority and minority spin density for the
antiparallel configuration in �c� and �d�, respectively. The terminal bias for both cases are VG=VD=0.6 V.

FIG. 7. �Color online� Spin current spectral density vs carrier energy, for the
parallel directions of magnetization of source and drain. Total current-black
dashed line, majority spin-red solid line, majority spin-blue shaded area. Top
plot-at the source, middle-plot-in the center of the channel, bottom plot-at
the drain.
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cal analysis of such a setup for spin-MOSFETs with either
HFM or normal FM contacts shows that they have different
dependence on r �see Appendix B�.

Lastly, we studied the impact of spin relaxation at each
of HMF/semiconductor interfaces. Figure 9�b� plots the MR
ratio for spin relaxation at the HMF/semiconductor interfaces
at either the injector or detector side. It is evident from Fig.
9�b� that spin relaxation at the HMF/semiconductor inter-
faces at the detector side is more detrimental to the MR ratio
than that due to the spin relaxation at the injector side, for
drain bias less than �s−Ew. For each of these cases, Fig. 10
shows the minority spin current in the parallel and antiparal-
lel configurations at different drain biases. As discussed pre-
viously, the fractional contribution of minority spin current
in the parallel case is relatively small and arises only when
the drain bias is larger than �s−Ew. More minority spin cur-
rent is produced in the antiparallel case in this regime. From
Fig. 10�b�, it is evident that more minority spin current is
produced when spin relaxation at the HMF/semiconductor
interfaces is at the detector side compared to when it is at the
injector side. The consequence is that spin relaxation at the
HMF/semiconductor interfaces at the detector side is more
detrimental to the MR ratio, at least for drain bias less than
�s−Ew. A plausible explanation to why spin relaxation at the

detector side produces more minority spin current in antipar-
allel case could be understood from Fig. 6�d�. When VD

��s−Ew, majority carrier undergoing spin relaxation at the
detector interface will either be admitted into the drain as a
minority spin or be reflected back into the channel as major-
ity spin. Waves that backscatters at the detector interface will
then be reflected back and undergoes another scattering
event. This multiple scattering processes enhances the spin
relaxation rate. This study reveals that proper HMF/
semiconductor interface treatment at the detector side is
more pertinent to achieving high MR ratio in spin MOSFET
for operation regime where biasing conditions is less than
�s−Ew.

We note that a spin MOSFET uses MR caused by the
change in spin transport through the device. However, in
experimental relaizations, a large role is played by fringe
magnetic fields near the ferromagnets, which might induce
local Hall effect in the semiconductor channel at vicinity of
the interface. This results in a spurious contribution to the
MR, as it was explained in Refs. 40–42. Measurements
based on the precession of spins in the channel and the cor-
responding Hanle effect provide a rigorous method to detect
the spin transport.11,12,43 Practically, one should be able to
minimize this spurious Hall effect via a proper geometrical
setup of the spin injection device.44

VI. SUMMARY

In this paper, we have simulated the operation of a spin
MOSFET using the NEGF approach. A large spin-splitting
energy �s for the HMF contacts is beneficial for achieving a
large MR ratio. This is because the spin-splitting energy pre-
sents a potential barrier at the drain side in the antiparallel
configuration and blocks the transmission of majority spins,
resulting in a larger drain threshold voltage of �s−Ew for the
device in the antiparallel configuration. We highlighted and
explained the bias dependence of MR ratio of spin MOSFET.
Next, we demonstrated the incorporation of spin relaxation at
the HMF/semiconductor interfaces via scattering self-
energies. Once spin relaxation is included in the model, mi-
nority spin current arises and it dominates the leakage cur-
rent in the antiparallel configuration even when the drain bias
is less than �s−Ew. This substantially reduces the spin MOS-
FET MR ratio. Lastly, we studied the impact of the magneti-
cally dead layer at the injector and at the detector sides in
isolation. It was found that spin relaxation caused by the
magnetically dead layer at detector side is more detrimental
to the MR ratio. This can be attributed to the fact that spin
relaxation due to the magnetically dead layer at the detector
side is more efficient in flipping the majority spin to minority
spin current.
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FIG. 9. �Color online� �a� MR ratio �IP− IAP� / IAP vs drain biases for VG

=0.6 V. The spin relaxation strength at the HMF/semiconductor interfaces
on both the detector and injector sides are characterized by a=0, 0.1, 0.5,
and 1.0 eV2 nm. �b� MR ratio vs drain biases for VG=0.6 V for spin relax-
ation at both detector and injector HMF/semiconductor interfaces �dashed
line�, at detector HMF/semiconductor interface only �solid line with square
symbol� and at injector HMF/semiconductor interface only �solid line with
circle symbol�.

FIG. 10. �Color online� Minority spin current vs drain bias for VG=0.6 V at
�a� parallel and �b� antiparallel configuration. The spin relaxation strength at
the HMF/semiconductor interfaces on either/both the detector and injector
sides are characterized by a=0.5 eV2 nm. We consider the situation where
spin relaxation are at both detector and injector HMF/semiconductor inter-
faces �solid line�, at detector HMF/semiconductor interface only �dotted
line� and at injector HMF/semiconductor interface only �dash-dotted line�.
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APPENDIX A: DERIVATION OF SCATTERING SPIN
TENSORS

In this appendix, we provide a simplified derivation and
the explicit form in a particular case of spin=1 /2 of the
scattering tensors in Eq. �11�. It follows earlier papers,26,33

but is presented here for completeness sake. In general, the
scattering tensor is determined by the Hamiltonian of inter-
action with the reservoir HI as follows:33

�ijkl
n = �

NI

Tr��HIljHIik� ,

�ijkl
p = �

NI

Tr��HIikHIlj� , �A1�

where � the density matrix of the reservoir spin, like in Eq.
�9�, and NI is the number of reservoir modes. In our case, the
Hamiltonian �8� corresponds to the spin-spin interaction. The
spin-dependent four-index tensors are thus

�ijkl
n = Tr��S�S��slj

�sik
� , �A2�

where indices � and � run over the projections of the opera-
tors on Cartesian axes, and summation over repeating index
is implied.

Moreover, the prefactor contains the interaction energy J
averaged over the spectral range of reservoir modes resonant
with the transition �this averaging is designated by angled
brackets�, which according to Ref. 26 is,

 = �
NI

J2 � nI�J2� , �A3�

where nI is the area density of impurities in the layer and
averaging is done with the account of geometry of the two-
dimensional layer.

For the particular case of the spins of localized electrons
�reservoir� equal to 1 /2, more explicit expressions can be
obtained. It is convenient to use the raising and lowering
Pauli matrices

�+ =
1

2
��x + i�y� , �A4�

�− =
1

2
��x − i�y� . �A5�

The interaction Hamiltonian can be rewritten as

HI = J�� + S−

4
+

�−S+

4
+

�zSz

2
	 . �A6�

It is easy to evaluate the averages of the spin operators in the
state of the reservoir �9�. The scattering tensor becomes

�ijkl
n = �Fu + Fd�slj

z sik
z + �slj

+sik
z − �slj

z sik
+ + �*slj

−sik
z

− �*slj
z sik

− + Fdslj
+sik

− + Fuslj
−sik

+ , �A7�

and similarly for �p.

APPENDIX B: ELECTRICAL ANALYSIS OF HMF/FM
CONTACTS IN OHMIC REGIME

The magnetocurrent ratio is an important device metric
that provides a measure of the degree of distinguishability

between the parallel and antiparallel states of the spin tran-
sistor through their measured current. The Julliere’s descrip-
tion of the magnetocurrent ratio in terms of the available
effective tunneling density of states proves to be
inadequate,45 especially when there is interfacial spin flip
scattering processes. A simple analysis using the electrical
circuit equivalent in Figs. 11�a� and 11�b� can offer more
reliable insights.

Figures 11�a� and 11�b� plot the equivalent circuit for the
parallel and antiparallel configuration in the Ohmic regime
where r�/� �g�/�� is the resistance �conductance� of the
majority/minority spins in the FM contacts, rc �gc� the chan-
nel resistance �conductance� and r �g� is the resistance
�conductance� related to spin dephasing. The transistor in the
circuit is to model the effect of the minority/majority spin
blocking due to the spin exchange energy at the drain HMF
in the parallel/antiparallel configuration. A simple Ohmic
model can adequately explains the late turn on of the minor-
ity current in parallel configuration at VD=�s−Ew, as de-
picted in Fig. 5. Recall that in the parallel state, no minority
spin current can be detected at the HMF drain when VD

��s−Ew, as the source injected states �with energy lesser
than the source Fermi energy� admitted into the drain will
either decay evanescently or revealed itself as resonant levels
in the channel �see Fig. 6�d��. In addition, it also explains
why the minority spin current in the antiparallel configura-
tion can leak effortlessly into the drain once the spin dephas-
ing process opens up the minority spin channel through g.

Consider the regime where the drain bias is less than
�s−Ew, the respective resistance for the parallel and antipar-
allel configuration are written as

rP = 2r� +
1

2

rc�rc + 2r�
rc + r

,

rAP = 2r� +
1

2
�rc + r� , �B1�

which both converges to 2r�+rc /2 when the scattering is
large, i.e., r�rc, yielding a zero magnetocurrent ratio.
Maximum magnetocurrent ratio is achieved when the scat-
tering is minimal, i.e., r�rc, with a large magnetocurrent

FIG. 11. �a� and �b� plot the equivalent circuit for the parallel and antipar-
allel configuration of a spin MOSFET in the Ohmic regime where r�/� is the
resistance of the majority/minority spins in the HFM contacts, rc the channel
resistance and r is the resistance related to spin dephasing. The transistor
switch in the equivalent circuit model has a threshold voltage of �s−Ew.
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ratio of the order r /rc. We can also derive similar expres-
sions for normal FM contacts;

rP =
2r�r�

r�

+
�2rr� + r�rc��2rr� + r�rc�

r��2rr� + r�rc� + r��2rr� + r�rc�
,

rAP =
2r�r�

r�

+
r�r� + r�� + r�rc

2r�

, �B2�

where r�=r�+r�+r. By making the assumption that the rc

�r, we arrive at the result that the magnetocurrent ratio for
the HMF and FM case varies with the spin dephasing con-
ductance g according to g

−1 and g
−2 under these limiting

conditions, respectively. This simple analysis illustrates that
the impact of interfacial spin relaxation might have a differ-
ent impact on the FM case.
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