Designing 2nd Courses (Entry-Level Graduate Courses) in Power Electronics based on the UMN-Developed Undergraduate Curriculum
Topics covered in Undergraduate course in Power Electronics based on UMN-developed curriculum

1. Switch-mode DC-DC Converters:
 Switching power pole, DC-DC Converters switching analysis in DC Steady state, DCM operation, etc.

2. Designing Feedback controllers in Switch-mode DC Power Supplies
 Dynamic average representation, linearization, controller design, peak-current mode control etc.

3. Rectification of utility input and power factor correction
 Distortion and power factor, diode rectifier bridge front-end, single-phase PFC, Control of PFC etc.

4. Magnetic circuit concepts and Switch-Mode DC power supplies
 Magnetic circuits, transformer isolated DC-DC Converters, Area-product method of magnetics design

5. Synthesis of DC and Low-Frequency Sinusoidal AC voltages for motor drives and UPS
 Bi-directional switching power pole, Single-phase & three-phase inverters, synthesis of low frequency AC, etc.

6. Thyristor converters
Designing 2nd Courses (Entry-Level Graduate Courses) in Power Electronics based on the UMN-Developed Undergraduate Curriculum

Summary of Group Discussion:

• Knowledge of the undergraduate course in power electronics is assumed
• Central theme for the course based on current curriculum: Application based or converter based with applications added as appropriate
• Design of power electronic components to be included – semiconductor terminal characteristics, gate drives, snubber circuits, magnetics design, thermal management
• Course project should be included to give students a practical design and laboratory experience
Designing 2nd Courses (Entry-Level Graduate Courses) in Power Electronics based on the UMN-Developed Undergraduate Curriculum

Summary of Group Discussion: (contd.)

• Specialized applications such as charge pumps, energy harvesting can also be mentioned
• Topics that can be covered in graduate courses in electric drives or power systems such as inverters, FACTs to be excluded
• Soft-switching in dc-dc converters in this course to be covered in detail using examples of converters
• Digital control, control systems can be discussed but it is assumed that students will be taking separate courses on these topics
• Students should be exposed to one or more circuit simulation tools

ONR/NSF Sponsored Faculty Workshop Feb 4-6 2010