First Course on **Electric Drives**

- Harnessing Wind Energy (speed / position)
- Electric and Hybrid-Electric Vehicles

•© UMN 2010

Windmills: Example of an Integrated System

UNIVERSITY OF MINNESOTA Driven to Discover^{ss}

°C UMN 2010

Course Objectives

 \times

 \times \times

- Analyze
- Control
- System Design (not machine design)

Two Common Principles

$$f_{em} = Bi\ell$$

 $e = B \ell u$

UNIVERSITY OF MINNESOTA Driven to Discover⁵⁴

Use of Space Vectors

UNIVERSITY OF MINNESOTA Driven to Discoversm

Physics-Based Analysis

UNIVERSITY OF MINNESOTA Driven to Discover™

•© UMN 2010

Topics

- Designing for the Mechanical Load
- DC Motor Drives
- Permanent Magnet AC Drives
- Induction Motor Drives: Steady State and V/f Control
- Stepper and Switched-Reluctance Drives
- Feedback Control
- Power Quality Considerations

Textbook

- Presentation Slides
- Solutions Manual

© UMN 2010

Electric Drives Lab

- Low-cost; 42-V no Shock Hazard!
- DSP Controlled; easy to use
- Active Load Allows Experiments
 otherwise not possible
- Very Popular with students!

Host Computer running Simulink

Drives Board for Motor and Active Load (Generator)

42 - V Motor Set

UNIVERSITY OF MINNESOTA Driven to Discoversm

Graduate-Level Course

d-q axes control

Applications in windmills, hybrid and electric vehicles, robotics and factory automation

Control of Drives in Windmills

Seamless Transition to Dynamic Control and Encoderless Operation

Mutual Inductance Between dq Windings on Stator and Rotor

Figure 3-3 Stator and rotor representation by equivalent dq winding currents. The dq winding voltages are defined as positive at the dotted terminals. Note that the relative positions of the stator and the rotor current space vectors are not actual, rather only for definition purposes.

$\lambda_{sd} = L_s i_{sd} + L_m i_{rd}$	$\lambda_{rd} = L_r i_{rd} + L_m i_{sd}$
$\lambda_{sq} = L_s i_{sq} + L_m i_{rq}$	$\lambda_{rq} = L_r i_{rq} + L_m i_{sq}$

Drives Board for Motor and Active Load (Generator)

Graduate

Level Course

- Low-cost
- 42-V no Shock Hazard!
- DSP Controlled; easy to use
- Active load allows experiments not otherwise possible

42 - V Motor Set

