
Direct observation of Kramers–Kronig self-phasing in
coherently combined fiber lasers

Hung-Sheng Chiang,1,* James R. Leger,1 Johan Nilsson,2 and Jayanta Sahu2

1Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
2Optoelectronics Research Centre, University of Southampton, Highfield, Southampton, Hampshire SO17 1BJ, UK

*Corresponding author: chia0078@umn.edu

Received July 15, 2013; revised September 3, 2013; accepted September 11, 2013;
posted September 12, 2013 (Doc. ID 193791); published October 9, 2013

A highly stable coherent beam-combining system has been designed to measure self-phasing in fiber lasers due to
nonlinear effects. Whereas self-phasing in previous coherent combination experiments has been principally attrib-
uted to wavelength shifting, these wavelength effects have been efficiently suppressed in our experiment by using a
dual-core fiber with closely balanced optical path lengths. The self-phasing from nonlinear effects could then be
measured independently and directly by common-path interferometry with a probe laser. The Kramers–Kronig
effect in the fiber gain media was observed to induce a phase shift that effectively canceled the applied path length
errors, resulting in efficient lasing under all phase conditions. This process was demonstrated to result in robust
lasing over a large range of pump conditions. © 2013 Optical Society of America
OCIS codes: (140.3298) Laser beam combining; (140.3410) Laser resonators; (140.3290) Laser arrays; (140.3510)
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Passive coherent beam combining of fiber lasers has
been demonstrated by several groups using a variety
of architectures [1,2]. In this technique, an external res-
onant cavity establishes one or more optical supermodes,
where each supermode is a coherent state containing
light from a large number of laser emitters. By designing
the optical cavity to oscillate in a single supermode, the
lasing light field is confined to a single coherent state,
and mutual coherence is established across the array.
However, the cavity loss to this supermode is a strong
function of the individual laser path lengths [3,4], requir-
ing the phase of each laser to be correctly established
and maintained for efficient lasing. The light associated
with this cavity loss is generally directed out of the res-
onator and does not contribute to the optical feedback,
nor to the useful output.
Early success in passive coherent combining of fiber

lasers was reported where the lasers appeared to be
selecting the correct phases automatically, even in the
presence of time varying path length errors. It is now gen-
erally understood that changes in oscillation wavelength
can produce phase shifts between unequal length fibers
[5]. Lasing at the proper wavelength can then result in
phase states that are close enough to ideal to reduce
the path-length error loss, resulting in a low lasing thresh-
old and efficient single mode out-coupling and lasing
among a modest number of fibers. However, wavelength
shifting is not the only passive phase mechanism that can
take place in a fiber. In particular, the Kramers–Kronig
(K–K) phase shifts that accompany laser gain have long
been thought to play a role in self-phasing. Many theoreti-
cal models have been suggested that incorporate this and
other nonlinear effects into the coupled cavity to predict
lasing behavior in large lasing ensembles [6–9]. Unfortu-
nately, experimental verification of these models has
been difficult due to the complex behavior of the com-
bined phase effects. In particular, it has been difficult
to measure and interpret the phase adjusting role played
by the K–K effect in the presence of the phase shifts
induced by wavelength tuning. Consequently, questions

such as the total number of lasers that can be combined
by passive architectures, the optimum cavity design, and
the ultimate utility of these passive techniques have been
left largely unanswered. The purpose of this current
work is to isolate, measure, and analyze the effect of
K–K phase shifting in the absence of wavelength tuning
and other nonlinear effects. Understanding the role of
this and other nonlinear effects is considered key to
understanding and optimizing passive beam combining
systems.

Our experimental laser test bed has been designed to
remove wavelength tuning effects, facilitate accurate ad-
justment of differential laser path lengths, and allow for
precise interferometric measurements of K–K phase
shifts. There are two principal methods available to elimi-
nate wavelength tuning as a phase adjusting mechanism.
One is to limit the wave number tuning range of the laser
Δk � 2πΔλ∕λ2 by internal spectrally selective optics,
where Δλ is the laser gain bandwidth and λ its central
wavelength. A second is to use fiber lengths that are
as close to identical as possible. If the optical path length
difference between two fibers ΔL is much less than
1∕Δk � λ2∕�2πΔλ�, wavelength shifts across the allow-
able tuning range will have a negligible effect on the
phase difference between the fibers. Satisfying this
condition effectively eliminates wavelength tuning as a
confounding variable.

Our experimental setup is shown in Fig. 1. Since we are
interested in measuring the influence of the K–K
effect under controlled and fundamental conditions,
we have chosen to restrict the beam addition to two fiber
lasers. The laser gain media, consisting of two ytterbium-
doped phosphosilicate glass cores, were contained in a
common inner cladding. Stress rods of borosilicate glass
were added to remove the polarization degeneracy and
promote lasing in a single polarization state, further sim-
plifying the physical system. A core separation of 20 μm
was chosen to produce negligible evanescent coupling,
ensuring that all beam coupling would take place
external to the fiber. The local environment of each core,
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however, was expected to be sufficiently similar to allow
common path interferometry to measure small phase
differences unperturbed by laboratory noise [10]. A
Dammann grating laser cavity was chosen as the coher-
ent beam combining architecture [11]. Splitting one laser
beam into two (or combining two beams into one) can be
performed by a simple 50% duty cycle square wave gra-
ting with a phase depth of π rad. It is easy to show that
both the splitting and combining efficiencies η of this gra-
ting are given by η � 8∕π2 ≈ 0.81. One advantage of the
Dammann grating architecture is that it contains only one
supermode [12]. This ensures that the cavity will
always oscillate in a coherent state, further simplifying
physical models of the system.
The left end of the fiber is perpendicularly cleaved to

produce a 4% end mirror, whereas the right end of the
fiber is angle cleaved to eliminate feedback. The two
beams exiting the fiber gain media are collimated by a
lens and overlap at the Dammann grating. The common
output of the Dammann grating is then passed through a
Brewster polarizer to ensure lasing in a single polariza-
tion state. A Littrow grating completes the cavity while
restricting the lasing bandwidth to a narrow band of
wavenumbers Δk ∼ 60 cm−1 centered around 1051.6 nm.
The inner cladding of the dual-clad fiber is pumped by a
fiber-coupled diode laser at a wavelength of 975 nm.
During fiber fabrication, particular attention was paid

to balancing the optical paths of the two laser cores.
After fabrication, the remaining optical path length differ-
ence seen by white light interferometry was minimized
by coiling the fiber around a cylindrical mandrel to
add a small corrective path length to one core relative
to the other. The final path length difference was mea-
sured to be ΔL � 23 μm across the 3-meter-long fiber,
ensuring that ΔL ≪ 1∕Δk and eliminating the effect of
wavelength tuning on the phase of the fiber laser cores.
A tunable semiconductor laser beam was injected into

the right side of the cavity to measure the K–K phase shift
in the gain media. By passing this probe beam through
the Dammann grating, the light was efficiently coupled
into the two laser cores. The interference of the probe
light exiting the two laser cores on the left-hand side
was then used to measure the K–K phase shift inside
the cores. In addition, the phase of the coupled fiber
laser supermode could be measured by observing the

interference of the fiber laser light. These two interfer-
ence patterns were isolated and independently measured
using a spectral filter. The stability of both these phase
measurements was estimated to be better than λ∕40
under constant pumping conditions.

The laser cores on the right side of the fiber were
placed in the front focal plane of the collimating lens
(see Fig. 1) and the Dammann grating was placed in
the back focal plane. As such, the field distributions in
these two planes are two-dimensional spatial Fourier
transforms of each other [13]. The effect of a spatial
translation of the grating in the x direction by an amount
Δx can be calculated by the Fourier shift theorem to pro-
duce a phase shift at the fiber cores of �Δϕ in a single
pass, where Δϕ � 2πΔx∕Tg and Tg is the period of the
grating [13]. One of the two grating orders (coupled into
one fiber core) receives a positive phase shift while the
other receives a negative phase shift. Although this same
shift can be created by physically making one fiber core
longer than the other (e.g., by bending the fiber), it is far
more accurate to introduce the phase shift external to the
fiber by a Dammann grating translation. Since a transla-
tion of one complete grating period (1.5 mm) corre-
sponds to a phase shift Δϕ of 2π and we can control
the grating position to better than 5 μm, this corresponds
to a phase adjustment accuracy of better than λ∕300.

In the absence of wavelength phase shifting and all
nonlinear effects, the loss to the coupled laser cavity
supermodes can be determined by calculating the
round-trip system propagation matrix and solving for
the matrix eigenvalues and eigenvectors. In the case of
the two-laser Dammann grating cavity used in this experi-
ment, the cavity loss L as a function of path length error
Δϕ is given by

L � 1 −
64
π4

cos2�2Δϕ�:

Thus, in the linear regime, the cavity has minimum loss at
phase values Δϕ � nπ∕2, where n is an integer. Figure 2
shows the results from operating this coherently com-
bined laser at 1.2 W of pump power for applied path
length errors ranging from 0 to 2π rad. At this low pump
power, the laser output power is seen to approximately
follow the simple theory, with maximum output power

Fig. 1. Experimental setup.
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occurring at the low loss path length error states 0, π∕2,
π, 3π∕2, etc. Between these states, the laser power drops
considerably (and sometimes lasing stops) due to the
loss introduced by path length error. Also shown in this
figure is a measurement from the probe laser of total
single-pass path length error as a function of applied path
length error Δϕ. Because the probe laser passes through
both the Dammann grating and the two laser cores, it
measures the total path length error between the two las-
ing arms of the cavity (i.e., the sum of the phase error
applied by the grating shift and any phase shifts induced
in the fiber cores). Figure 2 shows that the single-pass
path length error measured by the probe is approxi-
mately equal to that introduced by the Dammann grating
shift, as expected for laser cores with fixed phases.
Figure 3 shows a dramatically different result when the

pump power is increased to 2.2 W. In this case, the laser
is able to lase quite efficiently at all applied path length
errors, as evidenced by the almost-flat output power
curve. This ability of the coupled laser system to correct
for phase errors implies that the laser gain medium itself
is changing phase to correct the applied path length er-
rors. To verify this, the probe laser was used to measure
these phase shifts directly, and the resulting total cavity
phase measurements are shown as the stair-case shaped
graph in Fig. 3. Although the applied path length error
introduced by the grating translation varies from 0 to
2π, the laser gain medium is self-adjusting to maintain
the total cavity phase at, or near, the low loss states
of 0, π∕2, π, 3π∕2, etc. To show that these phase changes
are a result of the laser beam-combining architecture, we
also measured the path length errors when the coher-
ently combined laser light was blocked at the Littrow gra-
ting. These measurements are shown in Figs. 2 and 3 as
dashed lines. When lasing was interrupted in this way,
the gain media no longer provided phase tuning and
the measured path length errors were again approxi-
mately equal to those introduced solely by the translated
grating.
There are several mechanisms that could be respon-

sible for the self-phasing observed in these fibers.
Besides the K–K effect, we have also considered thermal
expansion Δl∕l � αLΔT and thermal effects on core

index of refraction Δn∕ΔT as possible causes, where l
is the fiber core length, T is the temperature, αL is the
coefficient of thermal expansion, and n is the refractive
index. To differentiate between all these effects, we clad-
ding-pumped the fiber in a manner similar to our main
experiment. However, rather than combining the power
from the two laser cores, we let each lase independently
and at slightly different thresholds. We then observed the
differential phase shift between the cores with the probe
laser as before. Figure 4 shows the differential phase shift
as a function of pump current. We note that when both
fibers are below lasing threshold, they exhibit phase
shifts that are slightly different from each other, giving
rise to the slowly varying function on the left side of
the graph. However, when one laser achieves threshold
and starts to lase, the differential phase changes quickly
and linearly at a rate of approximately 7.5 rad per ampere
of cladding pump current. This continues until the other
laser achieves threshold, whereupon the differential
phase no longer changes with pump current. We interpret
this to indicate that the K–K effect is most likely respon-
sible for the observed phase shift. When both lasers are
below threshold, they both exhibit similar K–K phase
shifts. The small difference in rate gives rise to shallow

Fig. 2. Measured lasing power and single-pass path length
error as a function of applied path length error Δϕ at low pump
powers (1.2 W).

Fig. 3. Measured lasing power and single-pass path length
error as a function of applied path length error Δϕ at elevated
pump powers (2.2 W).

Fig. 4. Measured differential phase shift between independ-
ently lasing fiber cores.
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slope in the left part of the curve, and probably comes
from slightly different pumping or loss conditions. How-
ever, when one laser starts to lase (clamping its gain and
phase shift), the K–K phase shift from the nonlasing fiber
exhibits a strong linear function of current. Finally, when
both fibers lase, both gains and phase shifts are clamped
and we no longer observe any phase change as a function
of pump current.
We believe that the self-phasing results can be ex-

plained by considering the simultaneous effects of the
cavity loss as a function of phase shift, and the K–K phase
shift as a function of cavity gain (or loss). This model will
be the subject of a future paper.
In summary, we have observed and measured K–K self-

phasing in a passive coherently combined laser cavity.
Whereas the K–K effect has undoubtedly influenced
previous passive coherent combining experiments, we
believe we have, for the first time, isolated and quantified
its influence on passive phasing in the absence of other
confounding effects. Importantly, the K–K self-phasing
appears to correct for all applied phase errors accurately
and virtually completely under a variety of pump condi-
tions and levels, and only fails when the pump power is
too low to excite a sufficient number of Yb-ions to
produce the required phase shift. A fundamental under-
standing of this phasing mechanism should prove valu-
able in evaluating more complex laser systems, and
may ultimately lead to improved passively combined
laser cavity designs.

This work was funded by the Air Force Office of
Scientific Research, grant FA9550-10-1-0485 P00003.
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