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We present a numerical method for calculating inhomogeneous refractive index fields in rectangular gradient-
index (GRIN) elements from measured boundary positions and slopes of a collection of rays that transit the
medium. The inverse problem is reduced to a set of linear algebraic equations after approximating ray trajectories
from the measured boundary values and is solved using a pseudo-inverse algorithm for sparse linear equations.
The ray trajectories are subsequently corrected using an iterative ray trace procedure to ensure consistency in the
solution. We demonstrate our method in simulation by reconstructing a hypothetical rectangular GRIN element
on a 15 × 15 discrete grid using 800 interrogating rays, in which RMS refractive index errors less than 0.5% of the
index range (nmax − nmin) are achieved. Furthermore, we identify three primary sources of error and assess the
importance of data redundancy and system conditioning in the reconstruction process. © 2015 Optical Society of

America
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1. INTRODUCTION

Gradient-index (GRIN) materials belong to a class of inhomo-
geneous optical media whose refractive index varies with posi-
tion. Myriad techniques have been studied for fabricating
increasingly complex index variations [1,2]. In recent years,
there has been increasing interest in exploring novel GRIN ma-
terials to develop compact, lightweight, and robust optics.
Current methods for fabricating GRIN materials include neu-
tron irradiation [3], chemical vapor deposition (CVD) [4], ion
exchange [5,6], and variations of polymer-based processes
[7–9]. The underlying physical principles behind these fabri-
cation methods have always limited their ability to produce ar-
bitrary index profiles. However, several new methods have been
developed (e.g., Ref. [10]) that permit unprecedented control
over the index profile in two and three dimensions.

GRIN materials are useful in a variety of applications; they
offer appealing form factors as well as additional degrees of free-
dom (DoFs) in controlling the propagation of light. These ma-
terials have found application in telecommunications and
compact imaging. For instance, their unique dispersion char-
acteristics can be incorporated into optical fibers to reduce mo-
dal dispersion and thereby increase the bandwidth and repeater
distance of optical communication systems [1]. In addition, the
cylindrical form factor of GRIN optics simplifies coupling

between optical fibers and sources. The optical power of
GRIN lenses is determined not only by their surface geometry
but also by their refractive index distribution. By combining
the two effects, new approaches to chromatic as well as
spherical aberration correction become possible [11,12].
Furthermore, GRIN optics can be designed to redistribute
irradiance in an optical beam and perform coherent mode con-
version in beam shaping applications [13–15].

The refractive index profile of the GRINmaterial dictates the
propagation of light inside the medium. Accurate knowledge of
its index is therefore required for integration into optical systems.
For one-dimensional (1-D) GRIN profiles, conventional meth-
ods of measuring the index utilize beam displacement or beam
deflection to measure the index gradient. These methods are
typically based on simplifying geometric assumptions [16–18]
that become invalid when a significant amount of refraction oc-
curs inside the sample. Interferometric methods that utilize
fringe patterns for phase retrieval [19] are ambiguous without
prior knowledge of the index field under investigation. In addi-
tion, resolving fringes becomes impractical when propagation
distances inside the medium are substantial. Optical coherence
tomography (OCT) has been shown to provide high-resolution
imaging of layeredGRINprofiles [20], but the principles behind
this approach require scattering elements, such as discontinuities
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in the index, inside themeasured sample. In a previous study, we
showed that boundary measurements of ray position and slope
can be bootstrapped to ascertain the index profile of a thick 1-D
GRIN element, provided the index is known at some initial
location [21].

In the case of two-dimensional (2-D) GRIN profiles,
straight ray trajectories assumed in tomographic approaches
facilitate Fourier synthesis of the index field from interferomet-
ric data with the help of the projection slice theorem [22].
However, reconstruction accuracy is quickly compromised in
the presence of even a modest refracting index field. In more
recent studies, deflectometry principles have been utilized in
interrogating weakly refracting index fields using x rays
[23,24]. While ray trajectories can be approximated as linear
in the x-ray regime, the refractive index of materials is generally
significantly higher than unity for longer wavelengths and the
medium cannot be assumed to be weakly refracting.
Consequently, ray trajectories are seldom linear and the effects
of Snell’s law at discontinuities at interfaces cannot be ignored.
Finally, although analytical solutions have been shown for de-
flectometry in specific geometries such as radially symmetric
index profiles of optical fiber preforms [25], there has been
no reported method of directly inverting deflectometry
measurements for 2-D index fields in the general case.

In this study, we propose a method for calculating 2-D in-
dex fields in rectangular GRIN elements using boundary mea-
surements of ray position and slope. We will first discuss the
simplifying assumptions that enable us to formulate the inverse
problem as a linear system in Section 2, where we use optical
path length (OPL) measurements to explain the mathematical
method in a simpler context. An extension of our formulation
to deflectometry data will be detailed in Section 3, where we
will establish the primary system of equations to be inverted. In
Section 4, an implementation of the proposed method will be
demonstrated in the reconstruction of a hypothetical index
field, where deflectometry data are generated in simulation
and the primary system equation is inverted using numerical
methods. We will then identify the primary sources of error
in the reconstruction process and outline a few practical
numerical aspects of system inversion in Section 5. In
Section 6, we will provide the justification for the assumptions
made in Section 2 and demonstrate an iterative procedure to
ascertain more accurate ray trajectories from boundary mea-
surements. Finally, a conclusion and outlook for future work
will be provided in Section 7.

2. LINEAR ALGEBRAIC SYSTEM FORMULATION

Determining an unknown 2-D index field through boundary
measurements of ray position and slope is an inverse problem
that can be described as a set of simultaneous algebraic equa-
tions in the DoFs in the system. The number of DoFs needed
to represent the index field is associated with its space–band-
width product [26]. Suppose that we discretize a 2-D index
field n�x; y� using a uniform rectangular grid, as shown in
Fig. 1, such that the index value at each sample point nl;k
represents an unknown in the system. In order to maintain gen-
erality for interpolation purposes, the unknowns of the system

are treated as sample points rather than discrete rectangular
elements.

With the help of a simplifying assumption, we will show
that path integrals of the field quantity n�x; y� measured by
individual interrogating rays can be expressed as algebraic equa-
tions in the unknowns of the system. For the sole purpose of
illustrating the underlying principles in our method, suppose
that interrogating rays propagating through the index field re-
port the absolute OPL traveled along their trajectories from
point a to point b in Fig. 2(a). This measurement can be
expressed as the path integral

φ �
Z

b

a
ds · n�x; y�; (1)

where φ is the total OPL and d s is the differential arc length
along the ray path, as seen in the figure. In a low-order approxi-
mation scheme, Eq. (1) can be discretized in the form of a
Riemann sum:

φ �
Z

b

a
ds · n�x; y� �

X
l

X
k

dsl ;kn�l ; k�; (2)

where indices l , k correspond to a discrete rectangular region at
laboratory coordinates �x; y� inside the index field. In this
approximation, the index nl ;k is assumed to be constant within
each region and d sl ;k represents the arc length for the ray seg-
ment inside the region, as shown in Fig. 2(b).

Multiple interrogating rays used to measure the index field
in the form of Eq. (2) produce a set of algebraic equations. At
present, these equations are nonlinear in nl;k because the arc
length d sl ;k depends on the trajectory of the interrogating ray,
which in turn depends on the index field according to the ray
equation of geometric optics [27],

d
d s

�
n
dr⇀

d s

�
� ∇n; (3)

where d s is the arc length along the ray, r⇀ is the position vector
of a point along its trajectory, and n is the refractive index.

We argue that index fields in practical GRIN elements do
not lead to large differences in ray trajectory as far as the local
position and direction are concerned; any reasonable trajectory
that satisfies the measured boundary values of position and

Fig. 1. Discrete representation of a 2-D index field using a uniform
rectangular grid.
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slope (e.g., a trajectory defined by a cubic polynomial) will
exhibit enough similarity to the actual trajectory to be used
as an approximation. Hence, we intend to ignore the depend-
ence stated in Eq. (3) initially and construct approximate ray
trajectories solely from measured boundary values of ray posi-
tion and slope. This greatly simplifies the system because
Eq. (2) becomes linear in nl;k and the coefficients d sl ;k can
be determined from these approximate trajectories. A sufficient
number of measured rays will produce a set of simultaneous
linear algebraic equations of the form

�S� · n⇀� φ
⇀: (4)

In this equation, �S� is the system matrix containing all the dis-
crete arc lengths from multiple measured rays, where each row
of the matrix contains a lexicographically ordered (or raster
scanned) version of the 2-D field shown in Fig. 2(b), with
the elements of each row containing pieces of the arc length
d sl ;k from a single measured ray traversing the field. The col-
umn vector φ⇀ contains the OPL values associated with path
integrals from each measured ray, and the vector n⇀ contains
all unknown values of nl ;k lexicographically ordered into a sin-
gle column vector. In principle, we can solve for the unknowns
using the inverse formula n⇀� �S�−1 · φ⇀, provided that we have
enough equations such that �S� is a full rank matrix. If we have
more equations than the number of unknowns, then the system
is overdetermined and can be solved in the least squares sense
by invoking the formula n⇀� ��S�T · �S��−1 · �S�T · φ⇀. Once an

initial estimate for the index field nl;k has been obtained, an
iterative ray trace procedure can be used to correct the approxi-
mate trajectories such that all final ray trajectories observe the
relation in Eq. (3). This procedure is detailed in Section 6.

3. EXTENSION TO DEFLECTOMETRY

We have established above that path integrals in an unknown
index field describing the absolute OPL traveled by a set of rays
can be expressed as linear algebraic equations in the discrete
sampled values of the index field. Similarly, the angular deflec-
tion of a set of interrogating rays can be expressed as path in-
tegrals of the index field’s partial derivatives. Assuming ray
trajectories are of the form y � y�x�, Eq. (3) can be rewritten
as (see Appendix A)

∂w
∂y

−
∂w
∂x

y 0 � y 0 0

1� �y 0�2 ; (5)

where w�x; y� � ln�n�x; y�� is the logarithmic index and the
prime symbol denotes differentiation with respect to x. It is
straightforward to show from Eq. (5) that the normal compo-
nent of the local index gradient induces a change in the ray’s
direction (see Appendix B), such that the differential angular
deflection is given by

dθ � ∇w · n̂ · d s �
�
−
∂w
∂x

sin�θ� � ∂w
∂y

cos�θ�
�
d s; (6)

where n̂ � − sin�θ�î � cos�θ�ĵ is the normal unit vector to the
ray and ∇

⇀
w � ∂w

∂x î � ∂w
∂y ĵ is the gradient of the logarithmic in-

dex field w�x; y�. Hence the total angular deflection accumu-
lated over the entire trajectory of an interrogating ray from
point a to point b can be expressed as a path integral of two
distinct field quantities,

Δθ �
Z

b

a
ds ·

�
−
∂w
∂x

sin�θ� � ∂w
∂y

cos�θ�
�
: (7)

Equation (7) is the analog of Eq. (1) for deflectometry measure-
ments; it is the mathematical description of the measured inter-
rogating ray in Fig. 3, provided that ray slopes are reported at a
and b and the trajectory y�x� is known. In analogy with Eq. (2),
Eq. (7) can be represented in discrete form (in a low-order
approximation) as the Riemann sum

Δθ �
Z

b

a
ds∇w�x; y� · n̂ �

X
l

X
k

dsl ;k∇wl;k · n̂l ;k ; (8)

Fig. 2. Geometry of (a) deflectometry path integral measured by an
individual interrogating ray and (b) the discrete approximation of that
integral.

Fig. 3. Geometry of interrogating rays in two-dimensional
deflectometry.
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where indices l , k correspond to a discrete rectangular region at
laboratory coordinates �x; y� on a rectangular grid representing
the index field. In this approximation, the gradient vector∇wl;k
is assumed to be constant within each rectangular region; d sl ;k
represents the arc length for the ray segment inside each region,
and n̂l ;k is taken to be the mean normal unit vector for this ray
segment. As before, d sl ;k is obtained from approximate trajec-
tories generated from measured boundary values such that
Eq. (8) remains linear in ∇wl;k.

At first glance, it appears that Eq. (8) contains twice the
number of DoFs as Eq. (2), as it contains two distinct field
quantities sampled on the same grid. However, these field
quantities correspond to the partial derivatives of an underlying
scalar potential function and hence must satisfy

∇ × ∇w � ∂
∂y

∂w
∂x

−
∂
∂x

∂w
∂y

� 0: (9)

The vanishing curl in Eq. (9) ensures that w�x; y� is single-
valued; any gradient field∇w � ∂w

∂x î � ∂w
∂y ĵ with nonzero curl is

unphysical. Computationally, Eq. (9) reduces the number of
DoFs by a factor of 2. GivenM sample points used to describe
each partial derivative field, Eq. (9) produces M constraints.
This means that, in principle, only M interrogating rays are
needed to fully determine both ∂w

∂x and ∂w
∂y .

Writing Eq. (8) more explicitly, we have

Δθ �
X
l

X
k

d sl ;k

�
−
∂w
∂x

����
l ;k

sin�θl ;k� �
∂w
∂y

����
l ;k

cos�θl ;k�
�
;

(10)

where θl ;k is the average ray angle relative to the laboratory x
axis in each rectangular region. The accuracy of the discrete
approximation to Eq. (7) can be improved significantly by
using higher-order interpolation schemes and invoking the
trapezoidal rule of integration. The constraints in Eq. (9) can
be discretized in the form�

∂w
∂x

����
l ;k�1

−
∂w
∂x

����
l ;k

�
−

�
∂w
∂y

����
l�1;k

−
∂w
∂y

����
l ;k

�
� 0: (11)

Notice that Eq. (11) does not apply to all sample points and
produces only �L − 1� × �K − 1� constraints if L × K is the total
number of sample points (M ). In practice, however, the num-
ber of measurements needed to accurately invert the system is
significantly larger than L × K and the deficit resulting from the
finite-element implementation in Eq. (11) does not generally
cause a problem in the inversion process. The redundant mea-
surements also help suppress error contributions from individ-
ual measurements, which we will examine in detail in Section 5.
Combining the path integrals from Eq. (10) and the constraints
in Eq. (11) results in a set of simultaneous linear algebraic equa-
tions of the form

�S� · δ⇀� P
⇀
; (12)

where the unknown vector δ
⇀
now contains 2�L × K � sampled

values, of which half describe ∂w
∂x jl ;k and the other half specify

∂w
∂y jl ;k . Letting N be the number of measured rays, N equations

representing the deflectometry path integrals in Eq. (10) are

augmented by an additional �L − 1� × �K − 1� equations
corresponding to the irrotational constraints from Eq. (11)
such that the total number of rows in �S� and P

⇀
is equal to

N � �L − 1� × �K − 1� in the final construction of the 2-D
deflectometry system. The first N elements in P

⇀
correspond

to angular deflection values, while the remaining spots are filled
with zeros in accordance with Eq. (11). Equation (12) is the
analog of Eq. (4) for deflectometry measurements and can,
in principle, be inverted to obtain the gradient vector field
∇wl;k . Upon integrating ∇wl;k , the index field is specified
up to an unknown constant, which can be identified with a
single independent measurement of the refractive index, e.g.,
along the boundary.

4. NUMERICAL DEMONSTRATION OF
MEASUREMENT PROCEDURE

We demonstrate the efficacy of our method by applying it to
computer-generated deflection data. This has the advantage of
allowing us to measure the intrinsic accuracy of the numerical
method separate from the measurement noise. The effects
of measurement noise will be discussed in Section 5. We
start by describing how deflection data are generated and
then apply the method described in Section 3 in a step-by-step
procedure.

A. Generating the Test Data

We began with an assumed index distribution shown in
Fig. 4(a). The units along x and y in the figure are arbitrary
provided that we use the same unit of measure for both spatial
variables. We then utilized a numerical ray trace method based
on the Eikonal equation [28] to generate boundary values for
ray position and slope at the exit face of the rectangular index
field for all rays applied to the entrance face. The ray trace pro-
vides interrogating ray trajectories that connect all possible pair-
ings of entry and exit points, which are distributed uniformly
along y. Figure 4(b) illustrates a set of interrogating rays that
connect one particular entry point to all possible exit points. In
the actual simulation, 20 entry points and 20 exit points were
used to generate 400 interrogating rays.

We note that inverting the system using a family of inter-
rogating rays that range primarily from left to right will likely
produce highly inaccurate reconstructions of the index field due
to poorly distributed sampling of the partial derivative fields. In
particular, the sample points near the top and bottom boun-
daries of the field quantities are sampled by very few interrog-
ating rays. Furthermore, it is evident from Eq. (8) that the
index gradient component lying normal to the ray trajectory
is responsible for the local angular deflection of the ray.
Since the predominant direction of propagation is horizontal
for the set of interrogating rays launched from the left-hand
side of the GRIN element, these rays do not provide adequate
sampling of ∂w∂x . In order to rectify this issue, we require a second
set of rays propagating between the top and bottom boundaries
of the rectangular index field. Thus, 20 entry points and 20 exit
points uniformly distributed along x are used to generate 400
additional interrogating rays in a similar fashion, increasing the
total number of measured rays to 800.
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We then applied Snell’s law to the calculated boundary val-
ues of ray position and slope inside the GRIN medium result-
ing from the ray trace to obtain the corresponding external
boundary conditions that would be measured in an actual ex-
periment. Assuming free space as the ambient medium, any
interrogating ray that exceeded the critical angle for total inter-
nal reflection at the boundaries was discarded from our mea-
surements. The ray locations and external slopes, as well as the
index of refraction along the boundary, were subsequently used
as input data for our recovery algorithm.

B. Recovering the Index of Refraction

An outline of the overall procedure for calculating the index
field from boundary values of ray position and slope is provided
below, where it is understood that the index field and its gra-
dient have been discretized on a rectangular grid and the rays
used to interrogate the medium cover all grid points. Within
this scenario, we proceed as follows:

1. Measure the index of refraction on the boundary using,
e.g., a refractometer.

2. Measure the exit location and angle of a family of probe
laser beams introduced at specific entrance locations and angles.

3. Ascertain internal ray slopes along the entrance and exit
boundaries of the medium using Snell’s law.

4. Construct approximate ray trajectories from internal
boundary values.

5. For each ray trajectory, derive the corresponding path
integral as an algebraic equation in ∂w

∂x and ∂w
∂y , where

w � ln�n�x; y��, and n is the 2-D index of refraction we seek.
6. Assemble the algebraic equations into a linear system

and augment the system with curl equations from the irrota-
tional constraint of a conservative gradient field.

7. Invert the overall system equation to solve for ∇w and
integrate to obtain the index field.

In our computer-based test, step 1 is replaced by using the
assumed boundary value data, and step 2 is replaced by using
the calculated ray location and external slope data described in
Section 4.A. Step 3 then consisted of applying Snell’s law at the
entrance and exit boundaries to ascertain the internal boundary
values for rays that could be measured externally.

After defining the partial derivative fields on a 15 × 15 grid,
we used cubic polynomials to construct approximate ray trajec-
tories according to step 4. We then derived the discrete expres-
sions corresponding to the deflectometry path integral for each
interrogating ray in step 5. In our discretization of Eq. (7), the
partial derivatives of the logarithmic index field were obtained
via constrained cubic spline interpolation, and numerical inte-
gration was carried out using the trapezoidal rule. The resulting
expression for each path integral was considerably more com-
plicated than the low-order approximation shown in Eq. (10).
These methods were necessary to mitigate the quantization ef-
fects introduced into our model, as a low-order approximation
will often led to large discrepancies between generated deflec-
tion values and those calculated from the solution. Augmenting
these equations with the irrotational constraints from Eq. (11)
in step 6, we constructed the overall deflectometry system
expressed in Eq. (12).

In principle, computing the inverse or the pseudo-inverse of
�S� will enable us to compute the partial derivative fields we
seek. In practice, however, solving for the partial derivative
fields is more complicated than a direct inversion of �S�.
Due to the similarity in the system coefficients generated in
adjacent interrogating rays, the deflectometry system matrix
�S� is inherently ill-conditioned. In addition, �S� is sparse be-
cause only a small set of sample points pertain to individual
path integrals. These factors generally make the direct inversion
of �S� unreliable due to numerical instability. The method of
least squares QR factorization (LSQR), on the other hand, pro-
vides a far more reliable approach that is well-suited for solving
sparse linear equations. While similar to other iterative numeri-
cal inversion techniques, it has been shown to be more reliable
when the system matrix is ill-conditioned [29]. Furthermore,
the LSQR method will optimize a solution in the least squares
sense if the system is overdetermined. In the current and all
subsequent simulations, the LSQR method will be employed
for system inversion once �S� has been determined in Eq. (12).

The partial derivative fields obtained from the system inver-
sion in step 7 and the resulting gradient vector field are shown
in Fig. 5. These partial derivative fields were integrated

Fig. 4. (a) 3-D plot of the test index field used to generate boundary
values of ray position and slope (resolution used in the numerical ray
trace is 35 × 35) and (b) sample interrogating ray trajectories obtained
from the ray trace connecting one entry point to all possible exit points
(reduced number of exit points are displayed in the plot for illustration
purposes).
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(see Appendix C) to obtain the potential function w�x; y� �
w1�x; y� � w0, where w0 is the integration constant deter-
mined from the boundary index values obtained in step 1 of
the procedure. We illustrate the reconstructed index field
in Fig. 6, where the RMS error in the refractive index is
7.67 × 10−4 refractive index units, less than 0.5% of the total
index range �nmax − nmin�.

The strong agreement between our reconstruction and the
test index field from Fig. 4(a) suggests that the inversion process
is relatively insensitive to small variations in the ray trajectories

associated with individual rays. It stands to reason that the co-
efficients in �S� remain relatively static when ray trajectories are
perturbed, at least in the case of slowly varying index fields.
Hence, the discrepancies between approximate ray trajectories
and those obtained from a ray trace through the actual index
distribution are expected to be extremely small. We will take
advantage of this feature to make corrections to the approxi-
mate ray trajectories in Section 6.

Upon closer examination of the reconstructed plots, we note
that the errors are particularly high in the corner regions of the
GRIN medium in both Figs. 5 and 6. This is primarily due to
the reduced quality of interpolation near boundary sample
points, which is exacerbated in the corner regions, resulting
in a poor representation of the associated sample points in
the discretized deflectometry path integrals.

5. RECONSTRUCTION ERROR ANALYSIS

We have so far demonstrated that an unknown index field can
be accurately reconstructed from approximate trajectories using
our proposed method. In the ensuing analysis, we identify three
primary sources of error that contribute to the error in the
reconstructed index field and characterize the conditioning
of the system based on measurement parameters.

Fig. 5. Contour plots of reconstructed fields for (a) ∂w∂x and (b)
∂w
∂y on

a 15 × 15 grid and (c) resulting gradient vector field ∇w.

Fig. 6. (a) Reconstruction of the test index field after integrating the
field quantities from Fig. 5 and (b) index error relative to the test index
field from Fig. 4(a), with an RMS value of 7.67 × 10−4 refractive index
units.
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A. Quantization Error

In order to model experimental measurements, deflection val-
ues for interrogating rays were generated through simulation
using Euler’s method for tracing rays [28] as described in
Section 4.A. The quantization effects associated with this proc-
ess introduce random noise to the calculated boundary values of
ray slope and ray position. For this reason, a higher resolution
was used for the discrete representation of the test index field
during the initial ray trace than during the reconstruction proc-
ess. Furthermore, the step size in Euler’s method was chosen to
reduce the quantization noise in the deflectometry data to a
negligible level. When we apply these data to the system inver-
sion procedure, the quantization noise introduced by the ray
trace is analogous to experimental measurement error. Of
course, these quantization effects are not present in an actual
experiment and the error in the boundary values of ray slope
and ray position is entirely dictated by measurement accuracy.

In addition to the quantization error associated with the
generated deflectometry data, there exists a second type of
quantization error of a different nature that also contributes
to the reconstruction error observed in Section 4.B; the latter
is associated with the discretization of the deflectometry path
integral and acts independently of measurement error. This
contribution depends on the quality of interpolation used in
obtaining the quantities involved in the integral, namely,
d sl ;k and θl ;k in Eq. (10) or analogous parameters in similar
discrete expressions of Eq. (7) employing higher-order interpo-
lation schemes. Moreover, the numerical integration technique
used to discretize Eq. (7) also plays a role. In principle, one can
always increase the grid resolution of the system to reduce the
overall reconstruction error to an arbitrarily low value, provided
that the geometric assumptions in Appendix B hold. However,
doing so increases the DoFs in the system, and accurate inver-
sion will require more measurements (interrogating rays).

B. Measurement Error

In order to study the effects of measurement error on the
reconstruction process, we introduced white Gaussian noise
to the calculated boundary values (on top of the base-line quan-
tization noise present in the ray trace used to generate the boun-
dary values) prior to system inversion. As a preliminary test, we
computed �S� in the deflectometry system equation based on
cubic ray trajectories that fit the noise-free deflectometry data.
�S� was left unchanged, while the values in P

⇀
corresponding to

the total deflection of ray slope in the index field were sub-
sequently contaminated with Gaussian noise. All other param-
eters were unchanged from the reconstruction in Figs. 5 and 6.
This test allowed us to quantify the base-line inversion sensi-
tivity of the linear system to measurement noise. Our results
showed that the RMS index error in the reconstruction in-
creased linearly with the Gaussian noise level, characteristic
of a direct inversion of any linear system. This is seen in
Fig. 7, where each data point represents the ensemble average
over 100 trials of the simulation.

It follows that the base-line inversion sensitivity is related to
the amount of data redundancy used in inverting the system. In
theory, the minimum number of interrogating rays is equal to
the number of DoFs in the system. In practice, however, any

measurement error or quantization error (in simulated mea-
surements) in the boundary values can be greatly amplified
in the reconstruction process. When used in conjunction with
inversion methods that optimize the solution in the least
squares sense, redundant measurements reduce the effect of er-
ror contributions from individual measurements by averaging
over more samples, provided that the errors from different mea-
surements are uncorrelated. In Section 4, we used approxi-
mately 800 deflectometry path integrals and almost 200
additional irrotational constraints to specify two discrete partial
derivative fields consisting of 450 DoFs in total.

In a similar test, we increased the amount of data redun-
dancy used during system inversion by changing the total num-
ber of interrogating rays to 2450. Plotting the resulting RMS
index error for the same noise levels, the linear scaling factor
between the noise level and the index error is seen to vary
inversely with the amount of data redundancy, which we show
in Fig. 7. The minimum RMS index error at the very left of the
plot corresponds to the reconstruction error observed in
Section 4.B and is due to the quantization effects discussed
in Section 5.A.

In a more realistic model, the coefficients in �S� must be
modified in accordance with the contaminated boundary values
as they are generated from approximate trajectories that change
with the measured boundary conditions. As before, the deflec-
tion values in P

⇀
are also subjected to the contamination. A sub-

sequent simulation incorporating these perturbations in both
�S� and P

⇀
after contaminating only boundary ray slope values

at the exit reveals this dependence to be super-linear at high
noise levels. This super-linear contribution to the index error
is attributed to the path dependence of �S� and becomes neg-
ligible for low noise levels, as is evident from Fig. 8(a). For this
simulation, we reduced the total number of interrogating rays
to 450 and reconstructed the index field along with its partial
derivative fields on an 11 × 11 grid in order to make the
super-linear contribution more apparent.

Unlike boundary slope values, uncertainty in boundary val-
ues of only ray position does not have any impact on P

⇀
and only

affects the coefficients in �S�. As a result, its contribution to the
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Fig. 7. Index error resulting from contaminated angular deflection
values under different data redundancy conditions, where system co-
efficients are unaffected by the contamination.
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reconstruction error is small compared to the error resulting
from noise in the ray slope. This is apparent in Fig. 8(b), where
the majority of the index error can be attributed to quantization
effects. However, because the noise in the boundary ray
positions affects the trajectories of the deflectometry path
integrals in our model, we still expect its contribution to the
overall reconstruction error to be super-linear.

To summarize, the reconstruction error resulting from
system inversion can be attributed to three primary sources.
At extremely low measurement noise levels, quantization noise
becomes the major contributor. In an actual experiment, the
quantization noise is limited to interpolation and integration
error incurred in the process of discretizing Eq. (7). If the
deflectometry data are generated through simulation, then
the quantization error incurred during the initial ray trace also
plays a role. At moderate noise levels, the base-line sensitivity in
inverting a linear system is dominant while the super-linear
contribution from the path dependence of �S� becomes signifi-
cant at extremely high noise levels.

C. System Conditioning

In order to gain a better understanding of the limitations of the
LSQR method, it is useful to examine the numerical aspects of
system inversion through its conditioning. Conditioning

measures the sensitivity of a system’s output to small changes
in its input. In our context, the input corresponds to measured
boundary values of ray position and ray slope while the system’s
output is the reconstructed index field. As before, we can im-
prove the system’s conditioning through the use of data redun-
dancy. While the difference between the plots in Fig. 7 clearly
illustrates this reduction in sensitivity to measurement error, a
more thorough characterization of data redundancy’s impact
on reconstruction accuracy is seen in Fig. 9(a), where we
reduced the number of interrogating rays used in the
reconstruction process without introducing artificial noise to
the deflectometry data.

Angular coverage of the chosen family of interrogating rays
also plays an important role in the conditioning of our deflec-
tometry system. Figure 9(b) illustrates the impact of reducing
angular coverage on reconstruction accuracy, where interrogat-
ing rays are omitted from the reconstruction process if their
internal angles at either end exceed a threshold value. Once
again, no artificial noise is introduced into the system in this
simulation. There are no improvements beyond 45° in the fig-
ure because this is the absolute maximum angle allowed for
interrogating rays propagating between opposite boundaries
of the GRIN element due to its geometry.
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Fig. 9. Reduced reconstruction accuracy resulting from (a) reduced
data redundancy and (b) limited angular coverage of interrogating rays.
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Figure 9(b) explains why we were able to accurately recon-
struct the test index field of Fig. 4(a) using the chosen set of
interrogating rays. This result also holds implications for
reconstruction accuracy based on the aspect ratio of the GRIN
element. More specifically, the large angles required for accu-
rate results may be difficult to achieve in GRIN elements with
large aspect ratios. Furthermore, one must keep in mind the
restrictions imposed by total internal reflection conditions at
discontinuities along the boundaries of the GRIN element;
it is possible that prism coupling or immersion in a fluid
may be needed to access specific internal angles.

Both plots in Fig. 9 appear to indicate threshold values along
the horizontal axis below which a significant increase in
reconstruction error occurs. This increase is primarily due to
the numerical instability of the LSQR method in the inversion
of extremely ill-conditioned systems. We hasten to add that
these characterization plots for conditioning are specific to
the test index field in Fig. 4(a). Generally speaking, the require-
ments for data redundancy and angular coverage will depend
on the complexity of the index field under investigation. For
instance, an index profile whose gradient field is aligned in one
direction would require significantly less angular coverage, pro-
vided that the rays used to interrogate the medium propagate
predominantly in a direction that is perpendicular to the
gradient.

6. CORRECTIONS TO RAY TRAJECTORIES

In Section 4, we hinted at the insensitivity of the inversion
process to small variations in ray trajectories associated with
individual interrogating rays. This was also apparent in
Section 5, where extremely high measurement noise levels in
measured boundary values were needed for the system’s path
dependence to manifest in the error plots. Despite the strong
agreement we were able to achieve in our reconstruction of the
test index field from Fig. 4(a), the solution is still fundamentally
flawed as it is based on a set of ray trajectories that do not obey
the ray equation of geometric optics. In this section, we show
that successively refining the ray trajectories using an iterative
ray trace procedure will eventually arrive at a consistent solution
where the reconstructed index field reproduces the ray trajec-
tories assumed in the reconstruction process. In other words,
the trajectories obtained from ray tracing through the
calculated index field wl;k will produce the path-dependent
parameters assumed in computing �S�.

In the following simulation, the initial reconstruction of the
index field from Fig. 6(a) is used as a starting point for our
corrective procedure. Two separate ray traces are performed
for each interrogating ray to improve the approximation to
its trajectory. In one instance, the ray is launched with initial
conditions associated with its entry point and is propagated to-
ward its exit point; in the other, a ray is launched in reverse with
initial conditions associated with the exit point. A weighted
sum of the two similar trajectories is computed to ensure that
the refined trajectory satisfies the measured boundary values at
both ends, where the weighting coefficients start at unity at the
launching point of the trace and decay linearly to zero as the
trace approaches its terminating point. Upon obtaining new ray
trajectories, �S� in the deflectometry system equation is updated

and a new solution is calculated in the usual manner. This proc-
ess is repeated until consistency in the solution is achieved.

It is useful to define an error metric for quantifying incon-
sistencies in the approximate trajectories assumed during
reconstruction. A natural choice is the integrated absolute
difference between the initial trajectory and the traced
trajectory, i.e.,

Δ �
Z

b

a
jytrace�x� − yinitial�x�jdx; (13)

where ytrace�x� is the trajectory obtained from a ray trace
through the reconstructed index field and yinitial�x� is the
trajectory assumed in the computation of �S� prior to system
inversion. Following the corrective procedure outlined above,
progressive improvement in the linear system description of de-
flectometry measurements is apparent after each iteration and
consistency in the solution is achieved after just three iterations,
as shown in Fig. 10, where the interrogating rays are sorted in
ascending order based on their error metric to prevent coinci-
dental patterns from developing in the plot.

In this simulation, the overall RMS index error relative to
the test index field did not show a discernible improvement,
but a notable difference between the reconstructed index fields
in the first and last iterations of the procedure was observed
(RMS difference of 1.96 × 10−4 refractive index units). This
indicates that the path dependence of the system was not a sig-
nificant contributor to the reconstruction error observed in
Section 4.B. Furthermore, this result justifies our initial
assumption used for decoupling ray trajectories from the index
field and linearizing the system in measuring practical GRIN
elements.

7. CONCLUSION

Using a simplifying assumption that decouples the trajectories
of interrogating rays from the index field, a linear system de-
scription can be formulated for the inverse problem of solving
a 2-D index field from boundary value measurements of ray
position and slope. Under this assumption, ray trajectories
can instead be approximated from measured (or simulated)
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Fig. 10. Progressive improvement in the error metrics evaluated for
individual rays after three iterations of refining ray trajectories.
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boundary values, and each deflectometry path integral can be
expressed as a linear combination of the system’s DoFs. These
DoFs constitute Cartesian vector components of the index
gradient field at discrete locations and are obtained through
a numerical algorithm that can reliably invert sparse and
ill-conditioned linear systems. The resulting gradient vector
field can then be integrated to reconstruct the index field to
within an unknown constant, which can only be identified with
an additional measurement such as the index at some location.
Using this approach, we were able to reconstruct a 2-D test
index field using boundary values of ray position and ray slope
obtained from a numerical ray trace, where the resulting RMS
index error is below 0.5% of the index range.

To assess the sensitivity of the reconstruction process to
measurement error, we introduced artificial Gaussian noise
to the measured boundary values (obtained through simula-
tion) and observed regimes in the noise level where one of three
identified error mechanisms (quantization noise, base-line in-
version sensitivity, and trajectory dependence) was dominant in
contributing to the overall reconstruction error. In addition, we
examined the limitations of the numerical inversion method by
reconstructing the index field with varying amounts of data re-
dundancy as well as angular coverage and testing the impact of
system conditioning on inversion accuracy. Taking advantage
of the system’s resilience to slight variations in the ray trajec-
tories, a numerical ray trace was performed on reconstructions
of the index field to improve approximate trajectories. The end
result enforces the dependence of ray trajectories on the index
field so that the optimized solution is consistent with the
principles of geometric optics.

The basic inversion procedure described in this paper
employed internal ray positions and angles, and we required
additional measurements of the index of refraction across
the entrance and exit surfaces (e.g., by a refractometer) to ex-
tend the method to external rays. In the future, we plan on
exploring methods of reconstructing the index field directly
from externally measured ray slopes so that the refractive index
along the boundaries of the GRIN element will not be needed
to invert the system.

Finally, the rectangular geometry of the test field described
in this paper was chosen simply to demonstrate the measure-
ment procedure, and the method can be readily adapted to
more complex geometries. In addition, the measurement
principles are fully generalizable to three-dimensional GRIN
elements.

APPENDIX A

Equation (5) can be deduced from Eq. (3) as follows. The first
derivative with respect to arc length variable s in terms of
Cartesian coordinates is

d
d s

� dx
d s

d
dx

� f
d
dx

;

where

f � dx
d s

� dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2 � dy2

p �
�
1�

�
dy
dx

�
2
�
−1∕2

using the fact that d s2 � dx2 � dy2. The second derivative is
then

d 2

d s2
� f

d
dx

�
f

d
dx

�
� f

df
dx

d
dx

� f 2 d 2

dx2
:

Rewriting Eq. (3) in scalar form, we have

dn
d s

dx
d s

� n
d 2x
d s2

� ∂n
∂x

;
dn
d s

dy
d s

� n
d 2y
d s2

� ∂n
∂y

:

From the first scalar equation, we find that�
f
dn
dx

��
f
dx
dx

�
� n

�
f
df
dx

dx
dx

� f 2 d
2x

dx2

�
� ∂n

∂x
;

f 2 dn
dx

� ∂n
∂x

− nf
df
dx

;

where we have used dx
dx � 1 and d 2x

dx2 � 0. The second scalar
equation becomes�

f
dn
dx

��
f
dy
dx

�
� n

�
f
df
dx

dy
dx

� f 2 d
2y

dx2

�
� ∂n

∂y
;

d y
dx

f 2 dn
dx

� n
�
f
df
dx

dy
dx

� f 2 d
2y

dx2

�
� ∂n

∂y
:

Substituting the result for f 2 dn
dx from the first scalar equation

into the equation above, canceling terms, and dividing by n
yields Eq. (5):

dy
dx

∂n
∂x

−
dy
dx

nf
df
dx

� nf
df
dx

dy
dx

� nf 2 d
2y

dx2
� ∂n

∂y
;

∂w
∂y

−
∂w
∂x

y 0 � y 0 0

1� �y 0�2 ;

where w � ln�n� is the logarithmic refractive index.

APPENDIX B

It is useful to switch to relative coordinates to illustrate the
relationship between the gradient of w�x; y� and the angular
deflection of a ray propagating through w�x; y�. If we define
the x axis parallel to the ray at a particular point of interest, we
have y 0 � 0 in the final expression from Appendix A, which
then simplifies to

∂w
∂y

� y 0 0;

where y is taken to be the direction normal to the ray in relative
coordinates. Hence, the index field’s directional derivative
along the normal of the ray trajectory induces a local curvature
in the ray’s path. Rewriting y 0 0 as d

dx y
0 results in the differential

Δy 0 � ∂w
∂y

Δx:

Constructing a right triangle between the quantities Δx, Δy,
and Δs as seen in Fig. 11, we have the trigonometric relation

tan�Δθ� ≈ Δθ � Δy
Δx

� Δy 0;

where Δθ can be interpreted as angular deflection from the
ray’s current direction due to the local index gradient.

An explicit expression ofΔθ in terms of Δs is desired since it
allows for a straightforward computation of the overall path
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integral. This is achieved with the first-order approximation
cos�Δθ� � Δx

Δs ≈ 1, where the differential angular deflection
Δθ is assumed to be small, such that

Δθ ≈ Δy 0 � ∂w
∂y

Δx ≈
∂w
∂y

Δs;

where we have made the substitution Δx ≈ Δs. Noting that y is
the direction normal to the ray trajectory and switching back to
laboratory coordinates, the differential above can be written as

Δθ � ∇
⇀
w · n̂ · Δs �

�
−
∂w
∂x

sin�θ� � ∂w
∂y

cos�θ�
�
Δs;

where n̂ � − sin�θ�î � cos�θ�ĵ is the unit vector normal to the
ray and ∇

⇀
w � ∂w

∂x î � ∂w
∂y ĵ is the gradient of the logarithmic

index field. θ is the angle of the ray relative to the (laboratory)
x axis such that tan�θ� � y 0.

APPENDIX C

We integrate a 2-D gradient vector field by inverting the dis-
crete gradient operator composed of linear algebraic equations
used to compute the partial derivatives from the logarithmic
index field w. For instance, the central difference is used at
interior grid points, i.e.,

∂w
∂x

����
i;j
� 1

2Δx
�wi�1;j − wi−1;j�;

∂w
∂y

����
i;j
� 1

2Δy
�wi;j�1 − wi;j−1�;

where Δx is the separation between grid points along x and Δy
is the separation in y. For leading-edge grid points, we take the
forward difference while the backward difference is used for
trailing-edge points. These algebraic equations are assembled
into a sparse matrix describing the gradient operator, whose
inverse can be obtained using standard numerical methods.
We then use the inverse operator to compute the logarithmic
index w�x; y� from its partial derivatives, e.g.,

�∇�−1 · δ⇀� w⇀1 � w0;

where �∇� is the discrete gradient operator and δ
⇀
is the partial

derivative column vector from Eq. (12), which has presumably
been solved from inverting the deflectometry system equation.
The integration constant w0 can be identified with additional
information such as the index at some location, and the column
vector w⇀1 represents the potential function w1�x; y� defined on
the same grid as the partial derivative fields, whose discrete
elements are lexicographically ordered into w⇀1. In cases in

which δ
⇀
does not describe a conservative gradient field, the in-

verse operator optimizes w1 so that discrepancies between ∇w1

and the partial derivative fields in δ
⇀
are minimized in the least

squares sense.
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