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Multiplexed volume Bragg gratings can be applied to many types of broad- and narrowband spectral
systems. However, there are often deleterious side effects to combining several gratings into a single
holographic optical element, including loss of efficiency in diffracted waves of interest and the introduc-
tion of spurious waves. Design of these spectral systems requires analysis methods that are flexible and
efficient and that take these side effects into account. We present a matrix-based algorithm for deter-
mining diffraction efficiencies of significant coupled waves in these multiplexed grating Holographic
optical elements (HOEs). Several carefully constructed experiments with spectrally multiplexed gratings
in dichromated gelatin verify our conclusions. © 2014 Optical Society of America
OCIS codes: (090.7330) Volume gratings; (090.6186) Spectral holography; (230.1950) Diffraction

gratings; (000.3860) Mathematical methods in physics.
http://dx.doi.org/10.1364/AO.53.005477

1. Introduction

Volume Bragg gratings find uses in a wide range of
spectral applications. Holographic optical elements
(HOEs) employing these gratings provide high dif-
fraction efficiency and narrowband spectral charac-
teristics to spectral beam combining systems [1–3]
and wavelength division multiplexing (WDM)
systems [4–6]. Further, volume Bragg gratings can
be designed with a broadband characteristic and
applied to efficient power generation in spectrum
splitting photovoltaic systems [7].

While single volume Bragg gratings are relatively
simple to design and construct, there are limitations
to the applicability of single grating HOEs in some
applications. In beam combining, essentially only
two channels can be combined without resorting to
a cascade of HOEs. Further, in a broad-spectrum

application (e.g., solar spectrum splitting), the ap-
proximately sinc-squared nature of the grating’s
diffraction efficiency as a function of operating wave-
length is a poor approximation to an ideal spectral
filter. For a single passband, a straightforward
dichroic mirror may perform better. In addition, a
volume grating, like any diffraction grating, is dis-
persive, and dispersion over a wide band of interest
can complicate the design of the system.

Combining multiple volume gratings in a single
element adds design flexibility to these types of
narrow- and broadband systems. In a laser beam-
combining system, multiplexed volume gratings
allow multiple channels to be combined in a single
HOE and also provide decoupling between the wave-
length of a source and its physical position in the
system. This decoupling is not generally available
in spectral beam combining systems based on thin
gratings, and dichroic filters lead to impractical
complex arrangements in systems with many
channels. In broadband applications, multiplexing
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gratings have two advantages: (1) the gratings can be
tailored to better approximate an ideal spectral filter,
and (2) the dispersive effects of the filter can be
reduced by overlapping the output spectra of the
multiplexed gratings.

Of course, this design flexibility comes at the
expense of complexity in the design and analysis of
the HOE, and often requires minimization of un-
wanted cross coupling effects among multiplexed
gratings. Efficient mathematical methods are
needed to perform this analysis and to optimize
systems that utilize multiplexed grating HOEs.

Multiplexed volume Bragg gratings and math-
ematical methods for their analysis have, indeed,
been previously studied for various applications.
Many methods find their origins in Kogelnik’s
coupled wave theory, developed for single volume
gratings [8]. Subsequently, Alferness and Case stud-
ied cross coupling (i.e., an input wave being coupled
to multiple output waves) in two-grating monochro-
matic systems. Their mathematical methods were
based on the so-called thin-grating decomposition
[9,10] or involved special cases of monochromatic
two-grating systems for which analytical solutions
of the coupled wave equations could be found [11].

Other authors also offered solution methods for
monochromatic two-grating systems, including
multiple-scattering theory [12], vector-synthetic gra-
tings [13], and treatments of double-exposed gratings
in both transmission [14] and reflection [15] modes.
Minier [16,17] was one of the first to describe spectral
interference effects in multiplexed grating systems
operating at multiple wavelengths, toward the devel-
opment of narrowband WDM systems in planar
waveguides. That work extended the coupled wave
equations to allow both angle and wavelength varia-
tion from the Bragg condition, with the resulting
equations solved through numerical integration. In
addition, Moharam and Gaylord [18] presented their
rigorous coupled wave analysis, which eliminates
several assumptions present in Kogelnik’s and in
later work. Namely, the rigorous theory does not
neglect boundary diffraction, does not eliminate
second-derivatives stemming from the application
of the wave equation, and does not assume a single
diffracted wave from a grating.

In the current work, an in-depth study of spectral
interference in multiplexed volume holograms is
conducted, new mathematical methods are derived
for calculating thediffractionefficiency of thesemulti-
plexed grating systems, and carefully controlled
experiments are conducted to verify the theory. The
mathematical method presented in Section 2 starts
by constructing a characteristicmatrix for the grating
system, and includes an algorithm to select a set of
significant plane-wave diffraction orders to preserve
for the analysis. The diffraction efficiencies of the
various waves are then computed through straight-
forward eigenvector decomposition of the matrix.
Thismethod is quite flexible for holograms consisting
of many gratings, and allows for calculations of

direct and cross coupled orders as a function of both
incident angle and operating wavelength. The
method is also fast, as it relies on efficient matrix
manipulation techniques rather than numerical inte-
gration. Our overall theory of spectral interference
is verified experimentally for a broad-spectrum
multiplexed grating pair in Section 3.

2. Multiplexed Grating Algorithm

The mathematical model for quickly calculating dif-
fraction efficiencies in systems of multiplexed vol-
ume gratings begins with the well-known model
described by Kogelnik [8]. For brevity, many details
of Kogelnik’s derivation are not included here. How-
ever, for clarity, Section 2.A begins with a summary
of Kogelnik’s symbology and the differential equa-
tions describing coupled waves in a single planar
volume transmission phase grating. We then convert
this model to a matrix formulation before expanding
the matrix solution in Section 2.B to treat arbitrary
systems of multiplexed plane gratings with plane
wave inputs at arbitrary angles and wavelengths.

A. Single Transmission Mode Grating

A single planar volume grating is typically depicted
conceptually in a momentum or k-space diagram, as
in Fig. 1. Here, the radius of the circle is β � 2πn∕λ,
where n is the bulk index of refraction of the
material. Two plane waves are present in the system
and are referred to as the reference and signal waves,
with field symbols R and S and vector symbols ρ and
σ, respectively. The figure can be interpreted as the
condition for grating construction where ρ and σ are
given and the grating vector K is equal to ρ − σ. The
figure can also be interpreted as the situation for gra-
ting reconstruction where ρ and K are given and σ is
derived. This second interpretation leads to the

Fig. 1. Momentum or k-space diagram for a single grating. Inset:
the physical model of a single grating defining plane wave angles
θ1 and θ2, and the grating thickness d.
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differential equations used to calculate diffraction
efficiency for a given input wave.

The electric field in the material is assumed to be
the sum of two plane waves, each polarized
perpendicular to the plane of incidence:

E�x; y; z; t� � R�z�ej�ρ·x−ωt� � S�z�ej�σ·x−ωt�: (1)

At the same time, the grating vector K describes a
sinusoidal variation of the index of refraction of
the bulk material:

ϵ�x; y; z� � ϵ0 � ϵ1 cos K · x; (2)

where ϵ0 � n2.
Combining these equations with the familiar sca-

lar wave equation, and dropping second derivatives
in z, Kogelnik’s assumption that “energy interchange
between S and R is slow,” leads to the system of
first-order differential equations:

cRR0 � jκS; (3a)

cSS0
− jϑS � jκR: (3b)

Here, primes indicate first derivatives in z and κ �
πn1∕λwhere n1 is the index modulation of the grating
given by

n1 � ϵ1
2

�����
ϵ0

p : (4)

In addition, cR and cS are the respective direction
cosines of the two significant waves

cR � cos θ1 � ρz
β
; (5a)

cS � cos θ1 −
jKj
β

cos ϕ � σz
β
; (5b)

where ϕ is the tilt of the grating relative to the z-axis.
Finally, ϑ is the dephasing parameter, defined as

ϑ � β2 − σ2

2β
� jKj cos�ϕ − θ� − jKj2

4πn
λ: (6)

By assuming solutions of the form R�z� � aeγz,
with a constant, the system of differential equations
can be written in matrix form as

Mx � γx; (7)

where

M �
"
0 jκ

cR
jκ
cS

jϑ
cS

#
; (8a)

x �
�
R
S

�
: (8b)

For the eigenvectors of M to form an orthonormal
basis,M must be symmetric [19]. We can achieve this
criterion without loss of generality through a simple
variable substitution, where we define

~x ≡
�
~R
~S

�
≡
�
cR 0
0

����������
cRcS

p
�
x: (9)

Use of variable substitution results in the symmetric
matrix

~M �
"

0 jκ��������
cRcS

p
jκ��������
cRcS

p jϑ
cS

#
: (10)

The eigenvalues of ~M are found in the usual
fashion by solving

�����
γ −jκ��������

cRcS
p

−jκ��������
cRcS

p γ − jϑ
cS

����� � 0; (11)

which gives

γ� � j
2

 
ϑ

cS
�

����������������������
ϑ2

c2S
� 4κ2

cRcS

s !
: (12)

Defining ξ� and ξ
−

as the (column) eigenvectors of
~M corresponding to γ� and γ

−

, respectively, we can
use the eigenvalues and the matrices representing
the variable substitution to define the transfer ma-
trix of a grating of thickness d as

G�
" 1

cR
0

0 1��������
cRcS

p

#
�ξ� ξ

−

�
�
eγ�d 0

0 eγ−d

�
�ξ� ξ

−

�T
�
cR 0

0
����������
cRcS

p
�
;

(13)

such that the amplitudes of the R and S waves at the
input (z � 0) and output (z � d) of the grating are
related by

xd � Gx0: (14)

The boundary conditions for a transmission gra-
ting are such that the amplitude of the Rwave at z �
0 is 1 and the amplitude of the S wave at z � 0 is 0.
Given these values for the components of x0, the
diffraction efficiency of the grating is given by

η � cS
cR

SdS�
d; (15)

where Sd is the S-element of xd. This matches
Kogelnik’s result for a transmission phase grating.
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B. Multiplexed Gratings

The value of converting Kogelnik’s single grating
method to an explicit matrix solution becomes clear
when one must deal with multiple simultaneous
gratings under variations in the incident angle
and wavelength of the reference wave. Formulating
the solution in this way allows a rather straightfor-
ward algorithm to determine theN significant waves
present in the compound hologram and to build the
N ×N characteristic matrix ~M.

A typical situation involving two multiplexed gra-
tings is shown in Fig. 2. Here, the gratings (K1 and
K2) share one of their defining angles—note the
common direction of ρ1 and ρ2—and have different
defining wavelengths, denoted by β1 and β2. This
system could define, for example, a spectrum splitter
or a spectral beam combiner.

When this pair of gratings is reconstructed by a
plane wave ρ � ρ1, the momentum diagram appears
as in Fig. 3. Here, there are two directly coupled
waves: σ1 � ρ − K1 and σ2 � ρ − K2. The input wave
is Bragg-matched with K1—the corresponding out-
put vector terminates on the momentum circle—
and the input wave is nearly Bragg-matched with
K2. Note that, because this situation involves
different defining wavelengths for the multiplexed
gratings, an input wave cannot, in general, be Bragg-
matched with all of the gratings simultaneously. This
condition precludes the simplifications that led to an
analytical solution for Case’s two-grating monochro-
matic system [11].

In addition to the two directly coupled waves, Fig. 3
also depicts a wave that derives from interaction
with both gratings (σ3 � σ1 − K2 � ρ − K1 − K2). This
cross coupled wave must be included in the math-
ematical model to achieve accurate results. (This
concept was detailed for monochromatic systems
in [10]).

The algorithm for building the characteristic
matrix for a multiplexed system then proceeds as
follows. Given the input wavevector and the grating
vectors, all combinations of directly coupled waves
(σj � ρ� Ki) are constructed. Some of these vector
combinations will turn out to be insignificant to
the diffraction efficiency calculation especially when
their wave vectors terminate far from the momen-
tum circle. (This can be seen qualitatively for σ3 in
Fig. 3). This is equivalent to a wave having a large
dephasing parameter [see Eq. (6)], so the dephasing
parameter is used in the algorithm as a measure for
eliminating waves from consideration.

Those waves with dephasing parameters exceed-
ing some limit are eliminated, and then cross coupled
waves are determined through vector combination of
the directly coupled wavevectors and the grating vec-
tors. Again, insignificant waves are eliminated. This
process continues through a pre-determined number
of diffraction stages, or until a diffraction stage
results in no new significant waves.

An appropriate limit for the dephasing parameter
is dependent on the exact nature of the system being
modeled and must be determined iteratively. If the
limit is set too low, then waves with significant en-
ergy could be eliminated from the model, leading
to inaccurate results and poor system optimization.
Conversely, if the limit is set too high, then the size of
the characteristic matrix of the system increases
unnecessarily, leading to longer execution times for
the calculations, with no significant difference in
the end result.

One technique for determining the dephasing limit
for a given system is to set a relatively high limit and
then calculate diffraction efficiencies of the signifi-
cant waves for a sparse collection of input wave-
lengths. If the diffraction efficiency of any included
waves in the domain of interest does not exceed some
small value (e.g., 0.1%), then the dephasing limit can

Fig. 2. k-space diagram for defining two multiplexed gratings.
These gratings share one of their defining angles and have
different central operating wavelengths.

Fig. 3. k-space diagram for reconstructing two multiplexed gra-
tings. From the diagram, waves associated with σ1 and σ2 are
qualitatively expected to be significant to the solution. However,
σ3 is not qualitatively expected to be significant because jσ3j differs
so greatly from β.
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be reduced to eliminate these waves from the model;
thereby, the diffraction efficiencies of the significant
waves can be more quickly calculated for a dense set
of inputs.

When all significant waves are determined, the
characteristic matrix ~M for the system can be
constructed directly. Diagonal elements consist of
functions of the respective waves’ dephasing param-
eters. ϑ corresponding to the reference wave ρ is, by
definition, zero, thus, ~M00 � 0. Other diagonal
elements follow:

~Mmm � jϑm
cSm

; m ≠ 0: (16)

Conceptually, off-diagonal elements link waves to
each other through gratings. These elements are
functions of the two waves’ direction cosines and of
the grating’s coupling coefficient κ. If wave m and
wave n are coupled through grating p, then the cor-
responding (symmetric) matrix elements become

~Mmn � ~Mnm � jκp���������������
cSmcSn

p ; m ≠ n: (17)

For example, referencing Fig. 3, Grating 2 couples
wave S1 (corresponding to σ1) to wave S3, so the
corresponding matrix elements are

~M13 � ~M31 � jκ2��������������
cS1cS3

p : (18)

Likewise, Grating 1 couples the reference wave to
wave S1, leading to off-diagonal elements

~M01 � ~M10 � jκ1������������
cRcS1

p : (19)

All other matrix elements are 0, so for the system
depicted in Fig. 3, assuming ϑ3 is quantitatively
small enough such that wave S3 is not eliminated,
the nonzero elements in the 4 × 4 characteristic
matrix follow:

~M �

2
664
0 · · 0
· 0 0 ·
· 0 · 0
0 · 0 ·

3
775: (20)

(Recall that the reference wave is Bragg-matched
with grating 1, so ϑ1 � 0 and ~M11 � 0.)

So far, TE-polarization (i.e., electric field vectors
perpendicular to the plane of incidence) has been as-
sumed. However, TM-polarization, or indeed, arbi-
trary polarization, can be handled in the model at
this point with a straightforward addition to the
characteristic matrix. Again, following [8], the cou-
pling between the two waves, Sm and Sn is reduced
by the dot product of their respective (normalized)
polarization vectors hsm · sni, resulting in a more
general form for Eq. (17):

~Mmn � ~Mnm � jκphsm · sni���������������
cSmcSn

p ; m ≠ n: (21)

Once the characteristic matrix has been fully de-
termined, the relative power distribution among
all of the significant waves is calculated in a method
analogous to the discussion above. Continuing with
the example system of Fig. 3, the transfer matrix
Eq. (22) is built in an analogous fashion to Eq. (13):

G �

2
666664

1
cR

0 0 0

0 1���������
cRcS1

p 0 0

0 0 1���������
cRcS2

p 0

0 0 0 1���������
cRcS3

p

3
777775� ξ1 ξ2 ξ3 ξ4 �

2
6664
eγ1d 0 0 0
0 eγ2d 0 0
0 0 eγ3d 0
0 0 0 eγ4d

3
7775

× � ξ1 ξ2 ξ3 ξ4 �T

2
6664
cR 0 0 0
0

������������
cRcS1

p
0 0

0 0
������������
cRcS2

p
0

0 0 0
������������
cRcS3

p

3
7775; (22)

and the individual field amplitudes are found analo-
gously to Eq. (14):

xd �

2
664

Rd

S1d

S2d

S3d

3
775 � G

2
664
1
0
0
0

3
775: (23)

Finally, the diffraction efficiencies of the individual
waves are found from

ηi �
cSi
cR

SidS�
id: (24)

Using optimized libraries of standard matrix oper-
ations (e.g., architecture-specific implementations of
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BLAS, LAPACK, ATLAS, etc.), these calculations
execute quickly even for 10 × 10 and larger matrices.
While, again, rigorous coupled wave methods are not
used, the approximations employed here allow for
this efficient calculation method which, in turn,
provides for efficient optimization algorithms for
systems of multiplexed volume gratings.

To ensure that these approximations do not pre-
clude accurate results, we verified this mathematical
model experimentally, as detailed in the next section.

3. Experimental Verification

To demonstrate the validity of the mathematical
model developed in Section 2, we constructed multi-
plexed gratings in PFG–04 dichromated gelatin. The
efficiency of various diffraction orders were then
characterized as a function of input wavelength
and compared with the model.

A. Grating Design

The exposure source used for the experiment was a
Coherent Verdi laser operating at 532 nm and 5
Watts. The beam from this source was split, filtered,
expanded, and collimated. Then, each individual
beam was redirected to the holographic plate by mir-
rors mounted on rotation stages. The mirrors were
rotated to set each beam’s angle relative to the plate.
These angles and the laser wavelength completely
determine the period and tilt of the resulting
gratings.

The steering mirrors in the exposure setup were
also allowed to translate along one axis to set the po-
sition of the overlap of the two beams on the plate.
(Note that the coherence length of this laser is
greater than 20 m; therefore, path length-matching
of the beams on the scale of the optical tabletop is of
little concern.) Translating the mirrors allowed for
multiple experiments on a single plate and, more im-
portantly, allowed the two exposures of a particular
experiment to only partially overlap. This, in turn,
allowed characterization of each grating individually,
as well as characterization of the multiplexed pair.

We used the mathematical model to determine
period and tilt parameters for a grating pair that
would operate over much of the visible spectrum.
This pair was also designed to exhibit easily measur-
able cross coupling over a sufficiently wide wave-
length range. Exposure energies—beam intensity,
beam balance ratio, and exposure time—were deter-
mined iteratively to achieve the desired peak diffrac-
tion efficiency, which was deliberately kept low in
these experiments.

Data from the literature [20] suggest that the
effective dynamic range of PFG–04 dichromated
gelatin plates corresponds to an index modulation
n1 of approximately 0.012. To avoid clipping the
desired sinusoidal index variation through multiple
exposures, relatively low exposure energy was used
for these experiments. Staying well within the dy-
namic range of the material ensured that any diffrac-
tion orders evident during hologram reconstruction

were a result of grating direct and cross coupling pre-
dicted by the mathematical model and not the result
of nonlinear effects of the material.

B. Measurement

To reduce the impact of material and exposure incon-
sistency given our operating regime, the multiplexed
gratings were exposed on the holographic plate with
only partial overlap. This allowed each grating to be
characterized individually. The single gratings’ dif-
fraction orders were measured as a function of input
angle using a 632 nm laser source. Angle was used as
the free variable because the grating period and tilt
can be largely determined by finding the two input
angles at which there is a diffraction efficiency peak
for a fixed wavelength. This cannot be achieved
through a variation in wavelength alone.

However, toward the goal of applying multiplexed
gratings to spectral applications, we then character-
ized the multiplexed pair by fixing the input angle
and varying the input wavelength. The source in this
case consisted of a Bausch and Lomb grating mono-
chromator with a tungsten lamp. Imaging optics
were included after the output slit of the monochro-
mator to approximate a plane wave at the holo-
graphic grating, and a polarizer was inserted to
linearly polarize the light perpendicular to the plane
of incidence with the holographic plate. The mono-
chromator’s input and output slit widths were set
to provide a half-power output bandwidth of 5 nm.

Once each grating of a pair was characterized indi-
vidually, its modeled parameters were adjusted to
match the experimental data. The period and tilt
of a grating and the local thickness of the holographic
material vary from anticipated values due to gelatin
shrinkage during development, and the final index
modulation of a given grating is somewhat unpre-
dictable. This experimental variability is effectively
eliminated by adjusting the model to match (1) mea-
sured values for the peak diffraction efficiency, (2) the
two incidence angles at which diffraction efficiency
peaks occur at the measurement wavelength, and
(3) the input angles corresponding to the first zeros
of the diffraction efficiency curve.

After the single grating models’ parameters are
adjusted to fit experimental data as a function of
input angle, the multiplexed model is recalculated
for a fixed input angle but variable wavelength.
These theoretical curves are then compared with
experimental measurements of the multiplexed
gratings without further adjustment. Not only is
the initial single grating characterization versus
input angle more straightforward experimentally,
comparing data against both input angle and wave-
length variation further reinforces the validity of the
mathematical model.

C. Results

The experimental results for two different grating
pair designs are given in the following sections.
The first pair exhibits cross coupling interference.
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The second pair is similar, but Grating 2’s construc-
tion angles were adjusted to eliminate the interfer-
ence. This second pair is used as a control to
ensure all of the gratings are operating in a linear
region of the material.

1. Interfering Gratings
Characterizing the individual gratings of the inter-
fering pair and feeding this data back into the model
resulted in Fig. 4, which plots diffraction efficiency
versus input angle for Grating 1 and a similar plot
(not shown) for Grating 2. The solid curve represents
the adjusted model, and the measured data points
are superimposed. An expanded and collimated
beam from a 632.8 nm He–Ne laser was the light
source. The gratings’ defining parameters deter-
mined from the data fit are given in Table 1.

When the interfering multiplexed pair is charac-
terized as a function of input wavelength, the diffrac-
tion efficiency curves appear, as shown in Fig. 5. The
solid curves are theoretical data from themodel, with
measured data points for each diffracted wave super-
imposed. The lighter dashed curves show what the S-
wave diffraction efficiency of each grating would be if
the other grating were not present.

Note that the experimental data matches quite
well with the theory. There is a significant decrease
in peak diffraction efficiency for each grating, and the
two cross coupled waves appear as expected. The
cross coupled waves are given unique symbols, T12
and T21, corresponding to vectors τ12 � ρ − K1 � K2
and τ21 � ρ� K1 − K2, respectively.

2. NonInterfering Gratings
To further reinforce that the above results are due to
the physics of a multiplexed grating pair and not the
result of nonlinear material effects, a second, similar
grating pair was constructed. This second pair was
modified from the first to eliminate the occurrence
of cross coupled waves while keeping similar modu-
lation levels for each grating. Specifically, the operat-
ing angles of the second grating were modified to
detune the cross coupling with the first grating.

Again, the individual gratings were characterized
as a function of input angle at a fixed wavelength,
and the model parameters were adjusted to fit the
experimental data. The resulting grating parame-
ters for the noninterfering pair are given in Table 2.
Note that the gratings’ index modulation values in
this case are actually slightly higher than for the in-
terfering grating pair discussed above.

Plotting the adjusted model as a function of input
wavelength results in the solid curves of Fig. 6 and,
again, experimental measurements are superim-
posed. Note that, as in Fig. 5, the gratings’ nonmul-
tiplexed efficiency curves are included, but cannot be
seen in the plot because they lie directly behind the
multiplexed efficiency curves. That is, there is no
significant expected change in S-wave diffraction ef-
ficiency, and no appearance of T-wave (cross coupled)
efficiency resulting from multiplexing this grating
pair for this wavelength range and input angle. Also

Fig. 4. Diffraction efficiency of Grating 1 as a function of input
angle for an input wavelength of 632.8 nm. Solid lines show the
theoretical efficiency after adjusting the model to fit the measured
data.

Table 1. Parameters of Interfering Grating Pair as Determined by
Fitting Measured Diffraction Efficiency Data to the Theoretical Model

Grating 1 Grating 2

Bragg angle 1 [deg., air at 632.8 nm] 22.00 18.92
Bragg angle 2 [deg., air at 632.8 nm] −31.17 −31.17
Period [μm] 0.71 0.75
Index modulation n1 0.0040 0.0040
Thickness d [μm] 29.0 29.0

Fig. 5. Diffraction efficiency of the significant output waves of the
interfering grating pair as a function of input wavelength for an
input angle (in air) of 18.5°. Measured data is superimposed on
theoretical data. The lighter dashed curves indicate what the
S-wave diffraction efficiency of each grating would be if the other
grating was not present in the holographic element.

Table 2. Parameters of NonInterfering Grating Pair Determined by
Fitting Measured Diffraction Efficiency Data to the Theoretical Model

Grating 1 Grating 2

Bragg angle 1 [deg., air at 632.8 nm] 22.00 18.92
Bragg angle 2 [deg., air at 632.8 nm] −31.17 −39.50
Period [μm] 0.71 0.66
Index Modulation n1 0.0043 0.0046
Thickness d [μm] 29.0 29.0
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note the good fit of the experimental data reinforcing
that nonlinear material effects are not at play here.

4. Discussion

The mathematical method presented here is appli-
cable to both broad- and narrowband systems, where
maximizing efficiency is a design goal. A holographic
spectrum splitter is a fitting broadband system,
whereas a spectral beam combiner is a representa-
tive narrowband system.

A. Holographic Spectrum Splitter

Improving the efficiency of photovoltaic (PV) power
generation systems is an important contemporary
topic for optical engineers and physicists. Spectrum
splitting systems [21] improve solar conversion effi-
ciency by employing multiple, diverse PV cells opti-
mized for different portions of the solar spectrum
and, therefore, require efficient means of redirecting
appropriate spectral bands onto the correspond-
ing cells.

In an ideal system employing two bandgaps, the
spectrum splitting filter would have infinitely steep
transitions, diffracting all of the photons above some
cutoff energy and allowing the remaining photons to
pass through unaffected. A single volume Bragg gra-
ting, with its approximately sinc-squared diffraction
efficiency versus wavelength characteristic, does a
qualitatively poor job of approximating this desired
rectangular filter over a wide band of interest. In ad-
dition, employing a single grating over a wide band
will result in significant dispersion in the diffracted
light, which can complicate the design of such a
system.

Employing multiplexed gratings in a spectrum
splitting filter can alleviate both of these issues.
By optimizing the characteristics of two gratings
working together, the diffraction efficiency of the
HOE over the band of interest can approach the rec-
tangular ideal and improving the conversion effi-
ciency of the system. Moreover, because each
grating is effective over only roughly half of the band
of interest, the overall dispersion of the HOE can be

reduced, potentially simplifying the overall system
at the expense of a more complicated grating struc-
ture. However, multiplexing gratings also give rise to
additional cross coupled waves, which should be
minimized. An example theoretical response for
two multiplexed gratings is shown in Fig. 7.

To engineer and optimize such systems, an effi-
cient method for calculating diffraction efficiency of
both desired and spurious coupled waves in multi-
plexed gratings is needed.We can employ themethod
presented in the preceding sections in an optimiza-
tion algorithm that tailors two or more multiplexed
gratings to (1) maximize diffraction efficiency in-
band, (2) minimize diffraction efficiency out-of-band
(i.e., side-lobes), (3) minimize grating cross coupling
and spurious coupled waves (i.e., stray light), and
(4) minimize overall dispersion. Because our method
relies only on straightforward vector arithmetic and
well-optimized matrix operations, these calculations
have been sufficiently fast for use in our work to-date
with particle swarm optimization techniques.

B. Spectral Beam Combiner

The basic goal of a spectral beam-combining system
is to incoherently combine multiple laser sources at
different wavelengths into a single high-power
output. This output power increase comes at the
expense of increased output bandwidth, so often min-
imizing output bandwidth or, equivalently, maximiz-
ing channel density is a secondary goal.

In contrast to, for example, a simple blazed gra-
ting, the ability to decouple the physical position of
a source from its wavelength can be advantageous
to the mechanical design of such a system, and em-
ploying multiplexed volume gratings allows for this
flexibility. Of course, with this flexibility comes the
cost of analyzing and optimizing these HOEs to avoid
the adverse effects of grating interference and cross
coupled waves, which result in a decrease in the
overall combining efficiency of the system.

Fig. 6. Diffraction efficiency of the significant output waves of the
noninterfering grating pair as a function of input wavelength for
an input angle (in air) of 18.5°. Measured data is superimposed on
theoretical data.

Fig. 7. Diffraction efficiencies versus wavelength of various dif-
fraction orders for an example multiplexed transmission grating
pair compared with an ideal bandpass response. Note how the
combination of the two directly coupled waves (S1 and S2) ap-
proaches the ideal response, but multiplexing the gratings also
gives rise to stray light in the system in the form of cross coupled
waves T12 and T21.
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Previous related work from the literature forWDM
systems often simply suggests increasing the chan-
nel spacing to 1.5 [22], or three times [23] or more
the individual channel width so that the gratings op-
erate essentially independently. This simplifies the
analysis in many ways, but also could unnecessarily
increase the overall bandwidth of the system,
depending on competing requirements. If a narrow
operating bandwidth is a goal, as well as high-
efficiency, the techniques presented here can be used
to optimize such a system in the presence of grating
interference effects. In particular, an optimization
algorithm can position sources in space (i.e., set their
angles of incidence) and spectrum (i.e., set the center
wavelengths of the channels) and also prescribe the
material thickness (which has a strong effect on
channel width) to maximize channel density and
overall combining efficiency.

5. Conclusion

Broadband spectral systems employing multiplexed
volume Bragg gratings must be carefully analyzed to
understand and avoid grating interference effects
that reduce peak diffraction efficiency and introduce
undesirable spurious diffraction orders. Here, we
have introduced a straightforward matrix method
for calculating diffraction efficiency in multi-grating
systems that accounts for diffraction orders of inter-
est as well as spurious orders.

Although the method is also suitable for analyzing
diffraction efficiency as a function the angle of inci-
dence of the system, our focus here has been on var-
iations of the input wavelength. Our experimental
data with broadband two-grating holographic ele-
ments confirms the theory, and this method can
now be applied to optimization algorithms for laser
beam-combining, spectral splitting, and other spec-
tral systems utilizing multiplexed volume Bragg
gratings.
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