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Abstract: We present a numerical method for calculating two-dimensional index fields from 

measured boundary values of ray position and slope. Refractive index errors of <1% (RMS) of the 

total index range (         ) are achieved using this approach. 
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1. Introduction 

GRIN materials belong to a class of inhomogeneous optical media whose refractive index varies with position. 

Accurate knowledge of the index field of a GRIN element is of paramount importance for its integration into optical 

systems. In recent studies, deflectometry principles have been utilized in interrogating weakly refracting index fields 

in the x-ray regime [1,2]. The approximations associated with x-ray measurements become invalid at longer 

wavelengths (e.g. visible) where the index of materials is significantly larger than unity. In a previous study, we 

showed that boundary measurements of ray position and slope can be bootstrapped to ascertain the index profile of a 

thick one-dimensional (1-D) GRIN element, provided the index is known at some location [3]. In this study, we 

propose a method for measuring the two-dimensional (2-D) refractive index of rectangular GRIN elements using 

boundary measurements of ray position and ray slope. The method can be generalized to three-dimensional (3-D) 

GRIN elements as well. 

2. Linear algebraic system formulation 

Where diffraction is negligible, the ray equation of geometric optics governs the propagation of light inside a GRIN 

medium: 
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where    is the arc length along the ray trajectory,  ⃑ is the position of a point on the trajectory and   is the refractive 

index. Using small angle approximations, it is straight-forward to show from Eqn. (1) that the normal component of 

the local index gradient induces a change in the ray’s direction and the overall angular deflection of an interrogation 

ray can be expressed as a projection of the partial derivatives of the index field: 
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where  ̂      ( ) ̂     ( )  ̂denotes the normal unit vector to the ray trajectory and  ⃑⃑⃑  
  

  
 ̂  

  

  
  ̂is the 

gradient of the logarithmic index field     [ ]. Because 
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 are the partial derivatives of an underlying 

potential function  , they must satisfy 
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A rectangular grid of discrete sample points is used to represent the partial derivatives in our approach. The values 

of each field quantity at these sample points are treated as the degrees of freedom (DoFs) in the system. A set of 

simultaneous algebraic equations in the DoFs of the system is constructed from Eqn. (2) and Eqn. (3). In order to 

linearize the system,    and   in Eqn. (2) are assumed to be independent of 
  

  
 and 

  

  
 and approximate ray 

trajectories are generated from measured boundary values of ray position and slope. The linear system is 

subsequently inverted using LSQR [4] and the computed partial derivatives are integrated to reconstruct the index 

field. Assuming knowledge of the integration constant (can be obtained from boundary value measurements of the 

index field), the reconstructed index field is used to make corrections to approximate trajectories. A new system is 

generated from updated trajectories and used to improve the reconstruction. This process is repeated until the ray 

trajectories and the index field are consistent according to Eqn. (1). 

3. Numerical simulation 

In theory, the minimum number of measured projections needed to invert the system is the number of DoFs. In 

practice, redundant measurements are typically needed to suppress error contributions from individual 

measurements. In our simulation, numerical ray tracing is used to generate boundary values for ray position and ray 

slope for interrogations rays in the rectangular index profile shown in Fig. 1( ).     interrogations rays propagating 

from      to      and another     rays propagating from      to      are used to invert the system. The index 

field is reconstructed on an       grid following the procedure outlined in the previous section. Reconstruction 

error in the index is shown in Fig. 1( ), with an RMS value of          refractive index units (R.I.U.). 

    

Fig. 1. ( ) Test index profile used in simulation and ( ) reconstruction error in refractive index. 
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