Hidden Interfaces and High-Temperature Magnetism in Intrinsic Topological Insulator - Ferromagnetic Insulator Heterostructures

Valeria Lauter Quantum Condensed Matter Division, Oak Ridge National Laboratory, USA

Ferhat Katmis, Jagadeesh S. Moodera Department of Physics and Francis Bitter Magnet Laboratory MIT Cambridge, USA

Don Heiman Department of Physics, Northeastern University, Boston

Outline

- **Topological Insulators a new** phase of matter with TRS
 - Symmetry breaking in TI via magnetic proximity
 - **Induce ferromagnetism** in Topological Insulator via exchange coupling in TI-FMI

Polarized Neutron Reflectometry: depth resolved vector magnetometry for TI – FMI heterostructures

National Laboratory REACTOR

AGNETISM

& EFLECTOMETER

Interface ferromagnetism in TI via magnetic proximity

Introducing ferromagnetic order in TI:

by doping with specific elements:

- hard to separate the surface and the bulk phases.
- introduces crystal defects, magnetic scattering centers, impurity states in the insulating gap are detrimental to mobility and the transport of spinmomentum locked surface electrons in TIs.

by uniformly depositing magnetic atoms (Fe) over the TI surface:

- the transport properties of a TI are influenced by the metallic ferromagnetic overlayer or atoms.

• by magnetic proximity with FI:

- the spin-momentum locked helical electronic states in Tis and topological magneto-electric effect

Topological insulator materials: Magnetic?

Checkelsky, *et* المنابعة منابعة منابعة المنابعة المنابعة منابعة المنابعة منابعة المنابعة المنابعة منابعة ممابعة

Kou, et al., Nano Lett. (2013)

Mellnik, et al., Nature (2014)

Cr-doped (BiSb)₂Te₃

The lowest sub-bands

Fan, et al., Nat. Mat. (2014)

V-doped (BiSb)₂Te₃

Chang, et al., Nat. Mat. (2015)

Kou, et al., PRL (2014)

Topological insulator materials: Magnetism via proximity

for the U.S. Department of Energy TSD Workshop, University of Minnesota, May 12 – 13, 2016 lauterv@ornl.gov

Interface ferromagnetism in TI via magnetic proximity

- The particular type of *interface* between a *topological insulator* and a *ferromagnet* – might become key to the computer industry's future ability.
- The goal is the ability to manipulate surface electron states.
- We introduce ferromagnetic order onto the surface of TI Bi₂Se₃ thin films by using FI EuS.

EuS 4f-5d energy gap 1.64 eV

Fermi level inside the gap

F 5d exchange interactions BI,Se EuS

National Laboratory

AGNETISM

FFLECTOMETE

Characterization Bi2Se3/EuS bilayers

- (B) electron diffraction image with an hexagonal symmetry of Bi₂Se₃
- (C) HRTEM image for substrate and Bi_2Se_3
- (**D**) HRTEM images for EuS and Bi_2Se_3 interface

OAK RIDGE HIGH FLUX National Laboratory REACTOR

7 Managed by UT-Battelle 7 Presentation Dopmenent of Energy

APS meeting, Denver, March 3 - 7, 2014

Epitaxial relationship between EuS & Bi₂Se₃

SQUID EuS = 1 nm $Bi_2Se_3 = 20 \text{ nm}$ 80 80 EuS 60 60 Bi₂Se₃ M₀/M_{sat} [%] M_0/M_{sat} [%] In-plane In-plane 40 Out-of-plane Out-of-plane 200 H // surface M [emu/cm3] $H \perp surface$ 20 20 5 10 15 20 5 0 10 @ 5 K -200 Bi₂Se₃ thickness [nm] EuS thickness [nm] -1000 -500 500 1000 0 Field [Oe]

Strong interface magnetization

AGNETISM

HIGH FLUX ISOTOPE

IDGE

National Laboratory REACTOR

REFLECTOMETER

- All samples display ferromagnetism
- Out-of-plane remanance ratio does not depend on thicknesses ----->
 evidence that the out-of-plane component is at the interface

AGNETISM

for the U.S. Department of Energy TSD Workshop, University of Minnesota, May 12 – 13, 2016 lauterv@ornl.gov

REFLECTOMETER Spallation Neutron Source, ORNL, TN 🗸

AGNETISM

NECTEDIUS

SOURCE

11 Managed by UT-Battelle 11 Presentation Depandent of Energy Advances in Polarized Neutron Reflectometry, Bochum, July 3 – 4, 2013 National Daboratory REACTOR

Magnetism Reflectometer at SNS

APS meeting, Denver, March 3 - 7, 2014

AGNETISM

REFLECTOMETER

Magnetism Reflectometer at SNS⁴

High intensity Low background High polarization Polarization analysis sample size 5x5 mm² 10⁻⁸ 98.5%

Polarized and unpolarized beam Fast laser pre-alignment Efficient thermal cycling (5K – 750K)

Sample environment new features:

Displex: In-situ annealing Sample rotation Bias voltage

<u>Electromagnet</u> 1.15 Tesla (50 mm gap) 1.24 Tesla (46 mm gap) 2.40 Tesla (15 mm gap)

AGNETISM

AEFLECTOMETER

Sample Temperature from 5K to750K

APS meeting, Denver, March 3 - 7, 2014

Polarized Neutron Reflectometry experiment

 $AI_2O_3/EuS/Bi_2Se_3//AI_2O_3$ – structure profile $AI_2O_3/EuS/Bi_2Se_3//AI_2O_3$ – magnetization profile $AI_2O_3/EuS/Bi_2Se_3//AI_2O_3$ – absorbtion profile

Fermi pseudopotential: $V_{\pm} = 2\pi\hbar/m N(b_n \pm b_m)$ Momentum transfer $Q = 4\pi \sin \alpha_i /\lambda$ $Nb_n - structural composition$ $Nb_m - absolute magnetization$ vector profile M !

NIm_b- absorption profile

Configuration of PNR experiment probing the magnetic moment distribution inside Bi2Se3/EuS interface

for the U.S. Department of Energy TSD Workshop, University of Minnesota, May 12 – 13, 2016 lauterv@ornl.gov

Magnetization – PNR @ 5 K

16 Managed by UT-Battelle for the U.S. Department of Energy TSD Workshop, University of Minnesota, May 12 – 13, 2016 lauterv@ornl.gov

National Laboratory REACTOR

SOURCE

17

& EFLECTOMETER R+ R- fit 10^{0} R+ fit R+ fit2 R-R- fit2 10⁻¹ Reflectivity 1 -01 10-4 10⁻⁵ 10⁻⁶ 0.04 0 0.02 0.06 0.08 0.1 0.12 0.16 Q [Å⁻¹]

- Absorption: Im part of the SLD provides additional information about Eu distribution
- No Eu atoms are determined in Bi₂Se₃

 $Al_2O_3/EuS/Bi_2Se_3//Al_2O_3$ – structure profile $Al_2O_3/EuS/Bi_2Se_3//Al_2O_3$ – magnetization profile $Al_2O_3/EuS/Bi_2Se_3//Al_2O_3$ – absorbtion profile

AGNETISM

Magnetization – PNR @ 50,75,120,300 K

AGNETISM

QEFLECTOMETER

Magnetization behavior of bilayers (10 QL/ 5 nm)

- Non-zero magnetization present in the 2 QL Bi₂Se₃ interfacial layer also penetrates into the EuS layer
- Magnetization reduced by an order of magnitude at higher temperatures
- No magnetization was detected above ~50 K in the pure EuS film.

18 Managed by UT-Battelle for the U.S. Department of Energy TSD Workshop, University of Minnesota, May 12 – 13, 2016 lauterv@ornl.gov

Reference Sample - EuS//Sapphire

AGNETISM

National Laboratory REACTOR

SOURCE

& EFLECTOMETER

PNR: Magnetic moment distribution

AGNETISM

HIGH FLUX ISOTOPE

National Laboratory REACTOR

& EFLECTOMETER

SQUID magnetometry measurement

Magnetization versus Temperature at various perpendicular applied fields

 Large S-O interaction, the spin-momentum locking at Dirac surface state creates strong anisotropy and stabilizes the ferromagnetic state!

ISOTOPE

National Laboratory REACTOR

AGNETISM

LETTER Nature 17635, May 9, 2016 /doi:10.1038

A high-temperature ferromagnetic topological insulating phase by proximity coupling

Ferhat Katmis_{1,2,3}*, Valeria Lauter₄*, Flavio S. Nogueira_{5,6}, Badih A. Assaf_{7,8}, Michelle E. Jamer₇, Peng Wei_{1,2,3}, Biswarup Satpati₉, John W. Freeland₁₀, Ilya Eremin₅, Don Heiman₇, Pablo Jarillo-Herrero₁ & Jagadeesh S. Moodera_{1,2,3}

National Laboratory REACTOR

* Authors contributed equally to this work

Results

- PNR depth resolved vector magnetometry- measures the spatial distribution of magnetization at the buried interfaces of Bi₂Se₃/EuS bilayers and the detailed chemical composition of the heterostructre
- The magnetization in the interfacial 2 ML EuS layer has an outof-plane component.
- PNR provides evidence that Bi₂Se₃/EuS heterostructures exhibit proximity-induced interfacial magnetization in 3QL layer of Bi₂Se₃
- This effect originates through exchange interaction without structural perturbation at the interface
- Magnetism persists up to high T above the Tc of EuS

Acknowledgements

The work at SNS was supported by the Scientific User Facilities Division, Office of Basic Energy Sciences and DOE