

IBM Research

Physics in Quasi-2D Materials for Spintronics Applications Topological Insulators and Graphene

> Ching-Tzu Chen IBM TJ Watson Research Center

May 13, 2016

2016 C-SPIN Topological Spintronics Device Workshop

© 2016 IBM Corporation

SpintronicsElectrical
PropertiesMagnetic
Properties(e.g., I, V, Q)(e.g., M, spin)

Example: Spin-transfer torque MRAM (magnetoresistive random access memory)

- Magnetic tunnel junction
- Write spin-transfer torque
- Read tunneling magnetoresistance

Building blocks: Spin generation, modulation/control, detection, transport/conduction, amplification, etc.

Spintronics in Quasi-2D Materials

A. Spin-orbit coupling for spin generation

 Charge-spin conversion in topological insulators and spin-Hall metals

Luqiao Liu (IBM), Anthony Richardella (PSU), Ion Garate (Sherbrooke), Nitin Samarth (PSU), Yu Zhu, Jonathan Sun (IBM)

[1] L. Liu, et al., **Phys. Rev. B 91**, 235437 (2015).

[2] L. Liu, C.-T. Chen and J. Z. Sun, Nature Phys. 10, 561 (2014).

B. Exchange coupling for spin modulation

• Strong interfacial exchange field in graphene/magneticinsulator heterostructures

Peng Wei (MIT), Sunwoo Lee (Columbia), Florian Lemaitre, Lucas Pinel, Davide Cutaia, Yu Zhu (IBM), Wujoon Cha, Jim Hone (Columbia), Don Heiman (Northeastern), Ferhat Katmis, Jagadeesh Moodera (MIT)

[3] P. Wei, et al., Nature Mat. (2016) , doi:10.1038/nmat4603

Spin-Orbit Coupling for Spin Generation

- Boost spin current generation efficiency:
 - Isolate spin generation from charge current, bypassing MTJ breakdown limit
 - Magnetic moment manipulation for in-plane moment, assume $\theta_{SH} \sim 50\%$, $I_{c,MTJ-STT}/I_{c,SHE} \sim l/t \sim 5$ (junction size/SH metal thickness)
 - Not yet obvious how much benefit for perpendicular moment

Charge-Spin Conversion in TI: Spin-Polarized Tunneling

- Topological surface states spinmomentum locking:
 - * Quantify charge/spin conversion electrically
 - * Energy dependence
 - * Temperature dependence
 - * Verify: symmetry
 - * Verify: surface state vs. bulk state

- Method: 4-terminal spin-polarized tunneling technique
 - * Tunneling (Inverse Edelstein effect)
 - * Potentiometry (Edelstein effect)
 - * Allow self-consistency check (Onsager reciprocity relationship)
 - * Eliminate current shunting
 - * Isolate TI from FM (CoFeB) influence

Charge-Spin Conversion in TI: Other Methods

- Potentiometry measurements:
 - * Li, Jonker, et al., Nature Nano (2013)
 - * Tang, KL Wang et al., Nano Lett (2014)
 - * JS Lee, Samarth et al., PRB (2015)
 - * Tian, YP Chen et al., Sci Rep (2015)
- Spin-torque FMR:
 - * Mellnik, Ralph et al., Nature (2014)
 - * Y. Wang, H. Yang et al., PRL (2015)
- Spin pumping:
 - * Shiomi et al., Saitoh et al., PRL (2014)
 - * Jamali, JP Wang et al., Nano Lett (2015)
- Spin-torque switching:
 - * Fan, KL Wang et al., Nature Mat (2014),
 - * Fan, KL Wang et al., Nature Nano (2016)

Nature **511**, 449 (2014) Ralph group

IBM Research

Spin-Polarized Tunneling in Bi₂Se₃: Zero Bias

Potentiometry Measurement in Bi₂Se₃: Zero Bias

Potentiometry configuration (Edelstein effect)

Onsager relation
$$\frac{dV}{dI} \approx \eta P_{TI} P_J R_{\Box} \frac{l}{w}$$

 $\eta P_{TI} = (0.01 - 0.1) \times 0.4$

 $\theta_{SH} \sim 0.8$ assuming $\lambda_{sf} \sim 1 nm$

Spin-Polarized Tunneling Data: Pt & Ta

 $|\theta_{SH}(Pt)| = 0.04 - 0.09$ $|\theta_{SH}(Ta)| = 0.05 - 0.11$

9

IBM Research

Spin-Polarized Tunneling in Bi₂Se₃: Zero Bias

Surface State vs. Bulk State Contribution in Bi₂Se₃

Bulk SHE: realistic bandstructure (credit: Flatte, Sahin)

1-2 orders of magnitude larger than theoretical bulk SHE value

Spin-Polarized Tunneling in Bi₂Se₃: Finite Bias

IBM Research

Liu et al., Phys. Rev. B 91, 235437 (2015)

Optimizing Charge-Spin Conversion via Surface State

Summary A

- Spin-polarized tunneling study on Bi₂Se₃ and (Bi_{0.5}Sb_{0.5})₂Te₃
 - * Record-high charge-spin conversion observed in TI
 - * Surface-state origin: spin-momentum locking
 - * energy dependence information

Liu et al., Phys. Rev. B 91, 235437 (2015) Liu, Chen, & Sun, Nat. Phys. **10**, 561 (2014)

Potential Applications

Spin-orbit-torque MRAM and spin logic using TI?

Graphene Spintronics & Exchange Field

- Spin transport: small spin-orbit coupling, long spin relaxation length ($\geq \mu m$)
- Spin generation: spin injection and Zeeman spin-Hall effect

- 2D: classical and quantum effects (e.g. QHE, QSHE, QAHE)
- 2D: spin control by Rashba or Exchange Field (10 100 Tesla)

IBM Research

Graphene/Magnetic-Insulator: Exchange Field

- Graphene/EuS as model system: in-situ deposition
 - Much better controlled stoichiometry (direct evaporation of target materials)
 - EuS wide band-gap insulator (1.65 eV), no current shunting
 - Large exchange splitting in bulk conduction band, ~0.36 eV (c.f. Busch, Junod, and Wachter, Phys. Lett. 12, 11 (1964))
 - Large magnetic moment per Eu ion, $\langle S_z \rangle \sim 7 \mu_B$
 - Expect large exchange splitting, $\Delta \propto J\langle S_z \rangle$
 - EuS demonstrated to spin-polarize quasiparticles in AI and Bi₂Se₃

17

IBM Research

Ching-Tzu Chen

CVD Graphene/EuS Heterostructure: Raman, XRD, TEM

Electrical Detection of Interfacial Exchange Field:

Zeeman spin-Hall effect & nonlocal transport

- Applied field ($\mu_0 H$) + <u>exchange field</u> (B_{exc}) = total Zeeman field (B_Z)
- \rightarrow spin splitting (E_Z)
- \rightarrow spin-polarized electron vs. hole-like carriers near Dirac point

- $\mu_0 H(\perp)$ couples to orbital motion:
- → transverse spin current (Zeeman spin Hall effect)
- → inverse spin-Hall-like effect → nonlocal voltage/resistance ($R_{nl,D} \equiv V_{nl,D}/I$)

Zeeman Spin-Hall Effect: *EuS induced enhancement*

Magnetic origin of $R_{nl,D}$

- Enhancement of R_{nl} signal by EuS deposition
- Reduction of R_{nl} signal upon EuS oxidation
- R_{nl} correlates with M(T)

$$R_{nl,D} \propto \frac{1}{\rho_{xx}} \left(\frac{E_Z}{\partial \mu} \frac{\partial \rho_{xy}}{\partial \mu} \right)^2 \bigg|_{\mu_D}$$

EuS Induced Interfacial Exchange Field

Quantifying the EuS induced exchange field

 E_Z and B_Z are **lower-bound estimates** because:

- We assume E_Z contributed only by $\mu_0 H$ at onset
- $\frac{\beta(\mu_0 H)}{\beta(\mu_0 H_0)}$ depends on mobility and is smaller in graphene/EuS (<10% correction)

21

IBM Research

Graphene/EuS: Quantum Hall regime

IBM Research

Quantum Effect: Landau Level (LL) Splitting

• v = 0 LL splitting in R_{nl} :

Quantum Effect: Spin-Polarized Chiral Edge States

D. Abanin et al., PRL (2006)

Ching-Tzu Chen

- Unique regime: Zeeman >> orbital field ($\mu_0 H$)
- Chiral spin edge modes \rightarrow gapless modes

Summary B: Graphene/EuS Exchange Field

Electrical detection via Zeeman SHE

IBM Research

- * Orders of magnitude enhancement in ZSHE R_{nl}
- * $R_{nl}(T)$ correlates with M(T): magnetic origin
- * Giant B_Z (> 15T) when EuS nearly polarized (spin control)
- * Observed unusual chiral spin edge modes in low field

P. Wei, et al., Nature Mat. (2016), doi:10.1038/nmat4603. arXiv: 1510.05920