

Heusler Alloys for Spintronic July 30th. 2015 (Minneapolis)

X-ray and Neutron Analysis of Heusler Alloys

Kanta Ono High Energy Accelerator Research Organization (KEK)

Collaborators

- R.Y. Umetsu ¹ K. Saito ² T. Ishigaki ³ K. Minakuchi ⁴ M. Nagasako ¹
- R. Kainuma⁴
- 1) Institute for Materials Research, Tohoku University
- 2) High Energy Accelerator Research Organization (KEK)
- 3) Frontier Research Center for Applied Atomic Sciences, Ibaraki University
- 4) Department of Materials Science, Tohoku University

KEK

Photon Factory

Tsukuba

J-PARC/MLF

Tokai

Neutron experiment facility at J-PARC/MLF

Outline

- 1. Structure and magnetic structure analysis of Heusler alloys using x-ray and neutrons
- 2. Crystal and magnetic structures of Mn₂CoGa Heusler alloy

Hg₂CuTi-type (Xa)

L2_{1b}-type (Modified L2₁) (Co, Mn randomly distributed)

Structure of Heusler alloys

 $L2_1$ -type Space group : 225 A – B – A - C $Hg_2CuTi (X_a)$ -type Space group : 216 A - A - B - C $L2_{1b}$ -type Space group : 225 (A,B) – A – (A,B) - C

Neutron diffraction / scattering

Neutron

• No charge

- spin 1/2
- meV~Åwavelength

Advantages

- Sensitive to light elements
- Structure and magnetic structure
- Phonon, magnon dispersion
- Crystal field splitting

Disadvantages

- Research reactor or large accelerator
- mg ~ g samples (difficult for thin films)

	X-ray	Neutron
Scattering	Proportional to	
cross	the number of	Random
section	electrons	
Magnetic	Circular	spin1/2
scattering	dichroism	
energy	keV	meV

	elastic	inelastic
Nuclear	Crystal structure	phonon
Magnetic	Magnetic structure	magnon crystal field

Magnetic structure

- Magnetic structure analysis
 - Almost identical to x-ray crystal structure analysis
 - Magnetic unit cell is sometimes different from crystals
 - Magnetic scattering can be observed only in large d region for both $\theta\text{-}2\theta$ and Time of flight (TOF)

Crystallographic unit cell

Magnetic unit cell

Region of magnetic scattering contributions

Site occupancy, degree of order

- Site occupancy
 - Each element (nuclear) has different nuclear scattering length

Contribution of elements A,B at one site to the diffraction peaks $O_A*b_A*\alpha_A+O_B*b_B*\alpha_B$, $O_A+O_B=1$

Usually similar

 \rightarrow scattering length b_A, b_B contrast is important

Neutron scattering length (fm)			
Mn	-3.75		
Fe	9.45		
Со	2.49		
Cu	7.72		
AI	3.45		
Ga	7.28		

(1, 2, 3, 3, 3, 4)

Mn-based Heusler alloys : Mn₂YZ

Recently, Mn-based Heulser alloys with a chemical formula of Mn₂YZ have been attracted attention in the field of spintronics because many of them are reported to be half-metallic ferro- or ferri-magnets.

Especially, Mn₂CoAl has been reported to have spin gapless semiconductor-type density of states [1,2], and the physical properties associated to the unique electronic structure are expected to have spintronics applications.

DOS of (a) Half metallic ferromagnet and (b) Spin gapless semiconductor

[1] G. D. Liu *et al.*, *Phys. Rev. B*, 77 (2008) 014424.
[2] S. Ouardi *et al.*, *Phys. Rev. Lett.*, 110 (2013) 100401.

Mn-based half metallic Heusler alloys

Recent topics

Spin Gapless Semiconductor (SGS)

New material for spintronics

PbPdO₂: X.L. Wang, Phys. Rev. Lett. (2008). Mn₂CoAl:

S. Ouraudi, et al. Phys. Rev. Lett. (2013).

DOS of

(a) Half metallic ferromagnet and(b) Spin gapless semiconductor

Mn₂CoAl band structure

S. Ouardi et al., Phys. Rev. Lett., 110 (2013) 100401.

Crystal structure of Mn₂CoZ

The crystal structure of Mn_2CoZ series is thought to be Hg_2CuTi type [1]

[1] G. D. Liu et al., Phys. Rev. B, 77 (2008) 014424.

[2] P. J. Brown et al., J. Phys.: Condens. Matter, 22 (2010) 506001.

[3] R. B. Helmholdt, K. H. J. Buschow, J. Less-Common Metals, 128 (1987) 167-171.

[4] J. Winterlik et al., Phys. Rev. B, 83 (2011) 174448.

Since the atomic configuration closely correlates with the electronic structure, investigations on the crystal structure are very important.

The crystal structure of Mn_2NiGa , Mn_2NiSn and Mn_2CoSn was confirmed to be L21b-type structure from neutron diffractions [2,3] and Mössbauer spectroscopy and NMR [4].

Introduction : Mn₂CoGa

In the phase diagram for Mn-Co-AI ternary alloy, the equilibrium state below 1273 K of the stoichiometric Mn₂CoAI is in two-phase region.

In the present study, we focus on the related material of Mn₂CoGa, which has been already reported to indicate half-metallic density of states from theoretical calculations.

Magnetic and powder neutron diffraction measurements were performed in the Mn_2CoGa alloy, and high angle annular dark field-scanning transmission electron microscopy (HAADF-STEM) observations were also carried out.

Phase diagrams of Mn-Co-Al and Mn-Co-Ga

Phase diagram of Mn-Co-Al Phase diagrams of Mn-Co-Ga

Stoichiometric composition of Mn₂CoAl locates in the two phase region at 1273 K.

R. Kainuma et al., J. Alloys Compds., 269 (1998) 173–180

Single phase of stoichiometric composition for Mn_2CoGa is stable at lower temperature.

Minakuchi et al., J. Alloys and Compounds 645 (2015) 577

Possible structure models for Mn₂CoGa

Only L2₁, Hg₂CuTi type structure is considered in previous research

. Minakuchi et al., J. Alloys and Compounds 645 (2015) 577

Experimental

Sample preparation: Induction melting in an argon atmosphere Annealing at 1173 K for 1 day and 773 K for 7 days

Sample identification:

Optical microscope X-ray diffraction ICP-AES (Mn:49.8, Co:24.6, Ga:25.6 at.%)

Thermal analysis: Differential scanning calorimeter (DSC)

Magnetic measurement:SQUID magnetometerVibrating sample magnetometer

Neutron diffraction:

Ibaraki Materials Design Diffractometer (iMATERIA) in J-PARC

Experimental

Sample

 $-Mn_2CoGa$

-powder, 4g

Instrument

-BL20 iMATERIA, J-PARC/MLF

-300K

-d range 0.2-5.1 Å (back scattering, double-frame)

Magnetic properties of Mn₂CoGa

Spontaneous magnetization at 5 K for Mn_2CoGa is 2.06 μ B/f.u., and close to the integer number.

Thermal and magnetic properties of Mn₂CoGa

DSC curves

The Curie temperature and order-disorder phase transition temperature are 741 and 1045 K, respectively.

Electronic structure of Mn₂CoGa

DOS of Mn₂CoGa with Hg₂CuTi-type

Structure models of Mn₂CoGa

(1) Hg₂CuTi-type 216 (Mn,Mn,Co,Ga) (2) *L*2_{1b}-type (Modified *L*2₁) 225 {(Mn/Co), Mn, (Mn/Co), Ga} (3) *L*2₁-type, 225 (Mn,Co,Mn,Ga)

🔵 Mn 🔵 Mn/Co 🔘 Ga

X-ray diffraction

Experiment

Simulations

It is very difficult to determine the crystal structure of Mn₂CoGa from XRD

Powder neutron diffraction of Mn₂CoGa

Model of Hg₂CuTi-type

a = 0.6061 nm

 $m_{Mn} (A \text{ site}) = -1.46 \mu_B$ Cal. : $m_{Mn} (B \text{ site}) = 3.57 \mu_B$ $m_{Co} (C \text{ site}) = 0.31 \mu_B$ $m_{total} = 2.4 \mu_B$ $\begin{array}{l} (-2.00 \ \mu_{B})^{**} \\ (3.04 \ \mu_{B}) \\ (0.83 \ \mu_{B}) \\ (1.94 \ \mu_{B}) \end{array} \quad (Exp.(5K) = \ 2.06 \ \mu_{B}) \end{array}$

 $\chi^2 = 7.43$

Powder neutron diffraction of Mn₂CoGa

Magnetic and crystal structure of Mn₂CoGa

Determined structure (*L*2_{1b}-type)

$$a = 0.6045 \text{ nm}$$

$$m_{Mn} (A,C \text{ site}) = -1.75 \mu_{B} (-1.88 \mu_{B})$$

$$m_{Mn} (B \text{ site}) = 2.81 \mu_{B} (3.01 \mu_{B})$$

$$m_{Co} (A,C \text{ site}) = 0.81 \mu_{B} (0.84 \mu_{B})$$

$$m_{total} = 1.9 \mu_{B} (1.99 \mu_{B})$$

$$(Exp.(5K) = 2.06 \mu_{B})$$

The reliability value, χ^2 , in the model of $L2_{1b}$ -type is smaller than that of Hg₂CuTitype.

Obtained values of the magnetic moments in the $L2_{1b}$ -type are also more reasonable than that in the Hg₂CuTi-type structure.

HAADF-STEM image

The obtained HAADF image also suggests the $L2_{1b}$ -type

Conclusions

- Spontaneous magnetization at 5 K for Mn₂CoGa is 2.06 µB/f.u., and close to the integer number. The Curie temperature and order-disorder phase transition temperature are 741 and 1045 K, respectively.
- Powder neutron diffraction suggests that the atomic configuration of Mn₂CoGa is the L2_{1b}-type structure. Obtained magnetic moments in the model of L2_{1b}-type are closer to the experimental value from the magnetic measurement.
- 3. The result of the HAADF-STEM image also supports the $L2_{1b}$ -type structure.